
Fourier Sparse Leverage Scores and Approximate
Kernel Learning

Tamás Erdélyi
Texas A&M University

terdelyi@math.tamu.edu

Cameron Musco
University of Mass. Amherst
cmusco@cs.umass.edu

Christopher Musco
New York University
cmusco@nyu.edu

Abstract

We prove new explicit upper bounds on the leverage scores of Fourier sparse
functions under both the Gaussian and Laplace measures. In particular, we study
s-sparse functions of the form f(x) =

∑s
j=1 aje

iλjx for coefficients aj ∈ C
and frequencies λj ∈ R. Bounding Fourier sparse leverage scores under various
measures is of pure mathematical interest in approximation theory, and our work
extends existing results for the uniform measure [Erd17, CP19a]. Practically, our
bounds are motivated by two important applications in machine learning:
1. Kernel Approximation. They yield a new random Fourier features algorithm
for approximating Gaussian and Cauchy (rational quadratic) kernel matrices. For
low-dimensional data, our method uses a near optimal number of features, and its
runtime is polynomial in the statistical dimension of the approximated kernel matrix.
It is the first “oblivious sketching method” with this property for any kernel besides
the polynomial kernel, resolving an open question of [AKM+17, AKK+20b].
2. Active Learning. They can be used as non-uniform sampling distributions
for robust active learning when data follows a Gaussian or Laplace distribution.
Using the framework of [AKM+19], we provide essentially optimal results for
bandlimited and multiband interpolation, and Gaussian process regression. These
results generalize existing work that only applies to uniformly distributed data.

1 Introduction

Statistical leverage scores have emerged as an important tool in machine learning and algorithms,
with applications including randomized numerical linear algebra [DMM06a, Sar06], efficient kernel
methods [AM15, MM17, AKM+17, LTOS19, SK19, LHC+20, FSS19, KKP+20], graph algorithms
[SS11, KS16], active learning [DWH18, CVSK16, MMY15, AKM+19], and faster constrained and
unconstrained optimization [LS15, AKK+20a].

The purpose of these scores is to quantify how large the magnitude of a function in a particular class
can be at a single location, in comparison to the average magnitude of the function. In other words,
they measure how “spiky” a function can be. The function class might consist of all vectors y ∈ Rn
which can be written as Ax for a fixed A ∈ Rn×d, all degree q polynomials, all functions with
bounded norm in some kernel Hilbert space, or (as in this paper) all functions that are s-sparse in
the Fourier basis. By quantifying where and how much such functions can spike to large magnitude,
leverage scores help us approximate and reconstruct functions via sampling, leading to provably
accurate algorithms for a variety of problems.

Formally, for any class F of functions mapping some domain S to the complex numbers C, and any
probability density p over S, the leverage score τF,p(x) for x ∈ S is:

τF,p(x) = sup
f∈F :‖f‖2p 6=0

|f(x)|2 · p(x)

‖f‖2p
where ‖f‖2p =

∫
y∈S
|f(y)|2 · p(y) dy. (1)
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Readers who have seen leverage scores in the context of machine learning and randomized algorithms
[SS11, MMY15, DM16] may be most familiar with the setting where F is the set of all length n
vectors (functions from {1, . . . , n} → R) which can be written as Ax for a fixed matrix A ∈ Rn×d.
In this case, p is taken to be a discrete uniform density over indices 1, . . . , n, and it is not hard to
check that (1) is equivalent to more familiar definitions of “matrix leverage scores”.1

When F is the set of all degree q polynomials, the inverse of the leverage scores is known as
the Christoffel function. In approximation theory, Christoffel functions are widely studied for
different densities p (e.g., Gaussian on R or uniform on [−1, 1]) due to their connection to orthogonal
polynomials [Nev86]. Recently, they have found applications in active polynomial regression
[RW12, HD15, CCM+15, CM17] and more broadly in machine learning [PBV18, LP19].

We study leverage scores for the class of Fourier sparse functions. In particular, we define:2

Ts =

f : f(x) =

s∑
j=1

aje
iλjx, aj ∈ C, λj ∈ R

 , (2)

where each λj is the frequency of a complex exponential with coefficient aj . For ease of notation we
will denote the leverage scores of Ts for a distribution p as τs,p(x) instead of the full τTs,p(x).

In approximation theory, the Fourier sparse leverage scores have been studied extensively, typically
when p is the uniform density on a finite interval [Tur84, Naz93, BE96, Kós08, Lub15, Erd17].
Recently, these scores have also become of interest in algorithms research due to their value in
designing sparse recovery and sparse FFT algorithms in the “off-grid” regime [CKPS16, CP19b,
CP19a]. They have also found applications in active learning for bandlimited interpolation, Gaussian
process regression, and covariance estimation [AKM+19, MM20, ELMM20].

1.1 Closed form leverage score bounds

When studying the leverage scores of a function class over a domain S , one of the primary objectives
is to determine the scores for all x ∈ S. This can be challenging for two reasons:

• For finite domains (e.g., functions on S = {1, . . . , n}) it may be possible to directly solve
the optimization problem in (1), but doing so is often computationally expensive.

• For infinite domains (e.g., functions on S = [−1, 1]), τF,p(x) is itself a function over S,
and typically does not have a simple closed form that is amenable to applications.

Both of these challenges are addressed by shifting the goal from exactly determining τF,p(x) to upper
bounding the leverage score function. In particular, the objective is to find some function τ̄F,p such
that τ̄F,p(x) ≥ τF,p(x) for all x ∈ S and

∫
x∈S τ̄F,p(x)dy is as small as possible.

For linear functions over finite domains, nearly tight upper bounds on the leverage scores can be
computed more quickly than the true scores [MDMW12, CLM+15]. Over infinite domains, it is
possible to prove for some function classes that τ̄F,p(x) is always less than some fixed value C,
sometimes called a Nikolskii constant or coherence parameter [HD15, Mig15, AC20]. In other cases,
simple closed form expressions can be proven too upper bound the leverage scores. For example,
when F is the class of degree q polynomials and p is uniform on [−1, 1], the (scaled) Chebyshev
density τ̄F,p(x) = 2(q+1)

π
√

1−x2
upper bounds the leverage scores [Lor83, AKM+19].

1.2 Our results

The main mathematical results of this work are new upper bounds on the leverage scores τs,p(·) of the
class of s-sparse Fourier functions Ts, when p is a Gaussian or Laplace distribution. These bounds
extend known results for the uniform distribution, and are proven by leveraging several results from

1In particular, (1) is equivalent to the definition τF,p(i) = aTi (A
TA)−1ai where ai is the ith row of A, and

to τF,p(i) = ‖ui‖22, where ui is the ith row of any orthogonal span for A’s columns. See [AKM+17] for details.
2It can be observed that any degree s polynomial can be approximated to arbitrarily high accuracy by a

function in Ts, by driving the frequencies λ1, . . . , λs to zero and taking a Taylor expansion. So the leverage
scores of Ts actually upper bound those of the degree s polynomials [CKPS16].
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approximation theory on concentration properties of exponential sums [Tur84, BE95, BE06, Erd17].
We highlight the applicability of our bounds by developing two applications in machine learning:

Kernel Approximation (Section 3). We show that our leverage score upper bounds can be used
as importance sampling probabilities to give a modified random Fourier features algorithm [RR07]
with essentially tight spectral approximation bounds for Gaussian and Cauchy (rational quadratic)
kernel matrices. In fact, we give a black-box reduction, proving that an upper bound on the Fourier
sparse leverage scores for a distribution p immediately yields an algorithm for approximating kernel
matrices with kernel function equal to the Fourier transform of p. This reduction leverages tools from
randomized numerical linear algebra, in particular column subset selection results [DMM06b, GS12].
We use these results to show that Fourier sparse functions can universally well approximate kernel
space functions, and in turn that the leverage scores of these kernel functions can be bounded using
our Fourier sparse leverage score bounds.

Our results make progress on a central open question on the power of oblivious sketching methods
in kernel approximation: in particular, whether oblivious methods like random Fourier features and
TensorSketch [PP13, CP17, PT20] can match the performance of non-oblivious methods like Nyström
approximation [GM13, AM15, MM17]. This question was essentially closed for the polynomial
kernel in [AKK+20b]. We give a positive answer for Gaussian and Cauchy kernels in one dimension.

Active Learning (Appendix C). It is well known that leverage scores can be used in active sampling
methods to reduce the statistical complexity of linear function fitting problems like polynomial
regression or Gaussian process (GP) regression [CP19a, CM17]. The scores must be chosen with
respect to the underlying data distribution D to obtain an accurate function fit under that distribution
[PBV18]. Theorems 1 and 2 immediately yield new active sampling results for regression problems
involving s arbitrary complex exponentials when the data follows a Gaussian or Laplacian distribution.

While this result may sound specialized, it’s actually quite powerful due to recent work of [AKM+19],
which gives a black-box reduction from active sampling for Fourier-sparse regression to active
sampling for a wide variety of problems in signal processing and Bayesian learning, including
bandlimited function fitting and GP regression. Plugging our results into this framework gives
algorithms with essentially optimal statistical complexity: the number of samples required depends
on a natural statistical dimension parameter of the problem that is tight in many cases.

We note that any future Fourier sparse leverage score bounds proven for different distributions (beyond
Gaussian, Laplace, and uniform) would generalize our applications to new kernel matrices and data
distributions. Finally, while our contributions are primarily theoretical, we present experiments on
kernel sketching in Section 4. We study a 2-D Gaussian process regression problem, representative
of typical data-intensive function interpolation tasks, showing that our oblivious sketching method
substantially improves on the original random Fourier features method on which it is based [RR07].

1.3 Notation

Boldface capital letters denote matrices or quasi-matrices (linear maps from finite-dimensional vector
spaces to infinite-dimensional function spaces). Script letters denote infinite-dimensional operators.
Boldface lowercase letters denote vectors or vector-valued functions. Subscripts identify the entries
of these objects. E.g., Mj,k is the (j, k) entry of matrix M and zj is the jth entry of vector z. I
denotes the identity matrix. � denotes the Loewner ordering on positive semidefinite (PSD) matrices:
N �M means that M −N is PSD. A∗ denotes the conjugate transpose of a vector or matrix.

2 Fourier Sparse Leverage Score Bounds

We now state our main leverage score bounds for the Gaussian and Laplace distributions. These
theorems are of mathematical interest and form the cornerstone of our applications in kernel learning:
Theorem 1 (Gaussian Density Leverage Score Bound). Consider the Gaussian density g(x) =

1
σ
√

2π
e−x

2/(2σ2) and let:

τ̄s,g(x) =

{
1√
2σ
· e−x2/(4σ2) for |x| ≥ 6

√
2σ ·
√
s

1√
2σ
· e · s for |x| ≤ 6

√
2σ ·
√
s.

We have τs,g(x) ≤ τ̄s,g(x) for all x ∈ R and
∫∞
−∞ τ̄s,g(x) dx = O(s3/2).
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We do not know if the upper bound of Theorem 1 is tight, but we know it is close. In particular, if
Ts is restricted to any fixed set of frequencies λ1 > . . . > λs it is easy to show that the leverage
scores integrate to exactly s, and the leverage scores of Ts can only be larger. So no upper bound
can improve on

∫∞
−∞ τ̄s,g(x) dx = O(s3/2) by more than a O(

√
s) factor. Closing this O(

√
s) gap,

either by strengthening Theorem 1, or proving a better lower bound would be very interesting.

Theorem 2 (Laplace Density Leverage Score Bound). Consider the Laplace density z(x) =
1√
2σ
e−|x|

√
2/σ and let:

τ̄s,z(x) =

{√
2
σ · e

−|x|
√

2/(6σ) for |x| ≥ 9
√

2σ · s√
2
σ ·

e2·s
1+|x|

√
2/σ

for |x| ≤ 9
√

2σ · s.

We have τs,z(x) ≤ τ̄s,z(x) for all x ∈ R and
∫∞
−∞ τ̄s,z(x) dx = O(s ln s).

Again, we do not know if Theorem 2 is tight, but
∫∞
−∞ τ̄s,z(x) dx = O(s ln s) cannot be improved

below s. The best known upper bound for the uniform density also integrates to O(s ln s) [Erd17].

(a) Leverage scores for Gaussian density. (b) Leverage scores for Laplace density.

Figure 1: Empirically computed (see Appendix D for details) estimates for the Fourier sparse leverage
scores, for sparsity s = 5. The solid blue lines are normalized magnitudes of 5-sparse Fourier
functions that “spike” well above their average. I.e., they plot |f(x)|2 · p(x)/‖f‖2p for various f ∈ T5.
The leverage score function τ5,p(x) is the supremum of all such functions. The dashed red lines are
closed-form upper bounds for the leverage scores: establishing such bounds is our main research
objective. For illustration, the ones plotted here are tighter than what we can currently prove, but they
have the same functional form as Theorems 1 and 2 (just with different constants).

Theorems 1 and 2 are proven in Appendix A and the upper bounds visualized in Figure 1. They build
on existing results for when p is the uniform distribution over an interval [BE06, Erd17]. This case has
been studied since the work of Turán, who proved the first bounds for Ts and related function classes
that are independent of the frequencies λ1, . . . , λs, and only depend on the sparsity s [Tur84, Naz93].
Our bounds take advantage of the exponential form of the Gaussian and Laplace densities e−x

2

and
e−|x|

2

. We show how for f ∈ Ts to write the weighted function f(x) · p(x) (whose norm under the
uniform density equals f ’s under p) in terms of a Fourier sparse function in an extension of Ts that
allows for complex valued frequencies. Combining leverage score type bounds on this extended class
[BE06, Erd17] with growth bounds based on Turán’s lemma [Tur84, BE95] yields our results.

When the minimum gap between frequencies in f ∈ Ts is lower bounded, we also give a tight
bound (integrating to O(s)) based on Ingham’s inequality [Ing36], applicable e.g., in our oblivious
embedding results when data points are separated by a minimum distance.
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3 Kernel Approximation

Given data points3 x1, . . . , xn ∈ R and positive definite kernel function k : R × R → R, let
K ∈ Rn×n be the kernel matrix: Ki,j = k(xi, xj) for all i, j. K is the central object in kernel
learning methods like kernel regression, PCA, and SVM. Computationally, these methods typically
need to invert or find eigenvectors of K, operations that require O(n3) time. When n is large, this
cost is intractable, even for data in low-dimensions. In fact, even the O(n2) space required to store
K can quickly lead to a computational bottleneck. To address this issue, kernel approximation
techniques like random Fourier features methods [RR07], Nyström approximation [WS01, GM13],
and TensorSketch [PP13] seek to approximate K by a low-rank matrix.

These methods compute an explicit embedding g : R→ Cm with m� n which can be applied to
each data point xi. If G ∈ Cm×n contains g(xi) as its ith column, the goal is for K̃ = G∗G, which
has rankm, to closely approximate K. I.e., for the inner product K̃i,j = g(xi)

∗g(xj) to approximate
Ki,j . If the approximation is good, K̃ can be used in place of K in downstream applications. It can
be stored in O(nm) space, admits O(nm) time matrix-vector multiplication, and can be inverted
exactly in O(nm2) time, all linear in n when m is small.

Oblivious Embeddings Like sketching methods for matrices (see e.g., [Woo14]) kernel approxima-
tion algorithms fall into two broad classes.

1. Data oblivious methods choose a random embedding g : R→ Cm without looking at the
data x1, . . . , xn. g(xi) can then be applied independently, in parallel, to each data point.
Oblivious methods include random Fourier features and TensorSketch methods.

2. Data adaptive methods tailor the embedding g : R → Cm to the data x1, . . . , xn. For
example, Nyström approximation constructs g by projecting (in kernel space) each xi onto
m landmark points selected from the data.

Data oblivious methods offer several advantages over adaptive methods: they are easy to parallelize,
naturally apply to streaming or dynamic data, and are typically simpler to implement. However, data
adaptive methods currently give more accurate kernel approximations than data oblivious methods
[MM17]. A major open question in the area [AKM+17, AKK+20b] is if this gap is necessary.

Our main contribution in this section is to establish that it is not necessary for the commonly used
Gaussian and Cauchy kernels: for low-dimensional data we present a data oblivious method with
runtime linear in n that nearly matches the best adaptive methods in speed and approximation quality.

3.1 Formal results

Prior work on randomized algorithms for approximating K considers several metrics of accuracy.
We study the following popular approximation guarantee [AM15, MM17, AKK+20b]:

Definition 1. For parameters ε, λ ≥ 0, we say K̃ is an (ε, λ)-spectral approximation for K if:

(1− ε)(K + λI) � K̃ + λI � (1 + ε)(K + λI). (3)

Definition 1 can be used to prove guarantees for downstream applications: e.g., that K̃ is a good
preconditioner for kernel ridge regression with regularization λ, or that using K̃ in place of K leads
to statistical risk bounds. See [AKM+17] for details. With (3) as the approximation goal, the data
adaptive Nyström method combined with leverage score sampling [AM15] yields the best known
kernel approximations among algorithms with runtime linear in n. Specifically, for any positive
semidefinite kernel function the RLS algorithm of [MM17] produces an embedding satisfying (3)
with ε = 0 and with m = O(sλ log sλ) in Õ(ns2

λ) time where sλ is the statistical dimension of K:

Definition 2 (λ-Statistical Dimension). The λ-statistical dimension sλ of a positive semidefinite
matrix K with eigenvalues λ1 ≥ . . . ≥ λn ≥ 0 is defined as sλ

def
=
∑n
i=1

λi
λi+λ

.

3Results are stated for 1D data, where applications of kernel methods include time series analysis and audio
processing. As shown in Section 4, our algorithms easily extend to higher dimensions in practice. In theory,
however, extended bounds would likely incur an exponential dependence on dimension, as in [AKM+17].
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The statistical dimension is a natural complexity measure for approximation K and the embedding
dimension of O(sλ log sλ) from [MM17] is near optimal.4 Our main result gives a similar guarantee
for two popular kernel functions: the Gaussian kernel k(xi, xj) = e−(xi−xj)2/(2σ2) with width σ
and the Cauchy kernel k(xi, xj) = 1

1+(xi−xj)2/σ2 with width σ. The Cauchy kernel is also called
the “rational quadratic kernel”, e.g., in sklearn [PVG+11].
Theorem 3. Consider any set of data points x1, . . . , xn ∈ R with associated kernel matrix
K ∈ Rn×n which is either Gaussian or Cauchy with arbitrary width parameter σ. There exists a
randomized oblivious kernel embedding g : R→ Cm such that, if G = [g(x1) . . . ,g(xn)],with high
probability K̃ = G∗G satisfies (3) with embedding dimension m = O( sλε2 ). G can be constructed in
Õ(n · s3.5

λ /ε4) time for Gaussian kernels and Õ(n · s3
λ/ε

4) time for Cauchy kernels.

Theorem 3 is a simplified statement of Corollary 26, proven in Appendix B. There we explicitly
state the form of g, which as discussed in Section 3.2 below, is composed of a random Fourier
features sampling step followed by a standard random projection. For one dimensional data, our
method matches the best Nyström method in terms of embedding dimension up to a 1/ε2 factor,
and in terms of running time up to an s1.5

λ factor. It thus provides one of the first nearly optimal
oblivious embedding methods for a special class of kernels. The only similar known result applies
to polynomial kernels of degree q, which can be approximated using the TensorSketch technique
[PP13, MSW19, ANW14]. A long line of work on this method culminated in a recent breakthrough
achieving embedding dimensionm = O

(
q4sλ/ε

2
)
, with embedding timeO(nm) [AKK+20b]. That

method can be extended e.g., to the Gaussian kernel, via polynomial approximation of the Gaussian,
but one must assume that the data lies within a ball of radius R and the embedding dimension suffers
polynomially in R.

3.2 Our approach

Theorem 3 is based on a modified version of the popular random Fourier features (RFF) method from
[RR07], and like the original method can be implemented in a few lines of code (see Section 4). As
for all RFF methods, it is based on the following standard result for shift-invariant kernel functions:
Fact 4 (Bochner’s Theorem). For any shift invariant kernel k(x, y) = k(x− y) where k : R→ R
is a positive definite function with k(0) = 1, the inverse Fourier transform given by pk(η) =∫
t∈R e

2πiηtk(t)dt is a probability density function. I.e. pk(η) ≥ 0 for all η ∈ R and
∫
η∈R pk(η) = 1.

As observed by Rahimi and Recht in [RR07], Fact 4 inspires a natural class of linear time randomized
algorithms for approximating K. We begin by observing that K can be written as K = Φ∗Φ,
where ∗ denotes the Hermitian adjoint and Φ : Cn → L2 is the linear operator with [Φw](η) =√
pk(η) ·

∑n
j=1 wje

−2πiηxj for w ∈ Cn, η ∈ R.

It is helpful to think of Φ as an infinitely tall matrix with n columns and rows indexed by real
valued “frequencies” η ∈ R. RFF methods approximate K by subsampling and reweighting rows
(i.e. frequencies) of Φ independently at random to form a matrix G ∈ Cm×n. K is approximated by
K̃ = G∗G. In general, row subsampling is performed using a non-uniform importance sampling
distribution. The following general framework for unbiased sampling is described in [AKM+17]:
Definition 3 (Modified RFF Embedding). Consider a shift invariant kernel k : R→ R with inverse
Fourier transform pk. For a chosen PDF q whose support includes that of pk, the Modified RFF
embedding g(x) : R→ Cm is obtained by sampling η1, . . . , ηm independently from q and defining:

g(x) =
1√
m

[√
pk(η1)

q(η1)
e−2πiη1x, . . . ,

√
pk(ηm)

q(ηm)
e−2πiηmx

]∗
.

It is easy to observe that for the modified RFF method E[g(x)∗g(y)] = k(x, y) and thus E[G∗G] =
K. So, the feature transformation g(·) gives an unbiased approximation to K for any sampling
distribution q used to select frequencies. However, a good choice for q is critical in ensuring that

4It can be show that embedding dimension m =
∑n
i=1 1[λi ≥ λ] is necessary to achieve (3). Then observe

that sλ ≤
∑n
i=1 1[λi ≥ λ] +

1
λ

∑
λi<λ

λi. For most kernel matrices encountered in practice, the leading term
dominates, so sλ is roughly on the order of the optimal m.
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G∗G concentrates closely around its expectation with few samples. The original Fourier features
method makes the natural choices q = pk, which leads to approximation bounds in terms of
‖K− K̃‖∞ [RR07]. [AKM+17] provides a stronger result by showing that sampling proportional
to the so-called kernel ridge leverage function is sufficient for an approximation satisfying Definition
1 with m = O(sλ log sλ/ε

2) samples. That function is defined as follows:

Definition 4 (Kernel Ridge Leverage Function). Consider a positive definite, shift invariant kernel
k : R → R, a set of points x1, . . . , xn ∈ R with associated kernel matrix K ∈ Rn×n, and a ridge
parameter λ ≥ 0. The λ-ridge leverage score of a frequency η ∈ R is given by:

τλ,K(η) = sup
w∈Cn,w 6=0

|[Φw](η)|2

‖Φw‖22 + λ‖w‖22
.

Def. 4 is closely related to the standard leverage score of (1). It measures the worse case concentration
of a function Φw in the span of our kernelized data points at a frequency η. Since ‖Φw‖22 =
w∗Φ∗Φw = w∗Kw, leverage score sampling from this class directly aims to preserve w∗Kw for
worse case w and thus achieve the spectral guarantee of Def. 1. Due to the additive error λI in this
guarantee, it suffices to bound the concentration with regularization term λ‖w‖22 in the denominator.

Of course, the above ridge leverage function is data dependent. To obtain an oblivious sketching
method [AKM+17] suggests proving closed form upper bounds on the function, which can be used
in its place for sampling. They prove results for the Gaussian kernel, but the bounds require that data
lies within a ball of radius R, so do not achieve an embedding dimension linear in sλ for any dataset.
We improve this result by showing that it is possible to bound the kernel ridge leverage function in
terms of the Fourier sparse leverage function for the density pk given by the kernel Fourier transform:

Theorem 5. Consider a positive definite, shift invariant kernel k : R→ R, any points x1, . . . , xn ∈
R and the associated kernel matrix K, with statistical dimension sλ. Let s = 6dsλe+ 1. Then:

∀η ∈ R, τλ,K(η) ≤ (2 + 6sλ) · τs,pk(η).

We prove Theorem 5 in Appendix B. We show that Φw can be approximated by an s = 6dsλe+ 1
Fourier sparse function, so bounding how much it can spike (i.e., which bounds the ridge leverage
score of Def. 4) reduces to bounding the Fourier sparse leverage scores. With Theorem 5 in place,
we immediately obtain a modified random Fourier features method for any kernel k, given an upper
bound the Fourier sparse leverage scores of pk. The Fourier transform of the Gaussian kernel is
Gaussian, so Theorem 1 provides the required bound. The Fourier transform of the Cauchy kernel is
the Laplace distribution, so Theorem 2 provides the required bound.

Final Embeddings via Random Projection. In both cases, Theorem 5 combined with our leverage
scores bounds does not achieve a tight result alone, yielding embeddings with m = O(poly(sλ)).
To achieve the linear dependence on sλ in Theorem 3, we show that it suffices to post-process the
modified RFF embedding g with a standard oblivious random projection method [CNW16]. Proofs
are detailed in Appendix B.3, with a complete statement of the random features + random projection
embedding algorithm given in Corollary 26.

It is worth noting that, given any approximation K̃ = G∗G satisfying Definition 1, we can always
apply oblivious random projection to G to further reduce the embedding to the target dimension
O
(
sλ
ε2

)
, while maintaining the guarantee of Definition 1 up to constants on the error parameters.5

Thus, the main contribution of Theorem 3 is achieving a lower initial dimension of G via this
sampling step, which directly translates into a faster runtime to produce the final embedding. Our
initial embedding dimension, and hence runtime depends polynomially on sλ and ε. Existing work
[AKM+17, AKK+20b] makes an additional assumption that the data points fall in some radiusR, and
their initial embedding dimension and hence runtime suffers polynomially in this parameter. Related
results make no such assumption, but depend linearly on 1/λ [AKM+17, LTOS19], a quantity which
can be much larger than sλ in the typical case when K has decaying eigenvalues.

5We also need the slightly stronger condition that K̃’s statistical dimension is close to that of K. This
condition holds for essentially all known sketching methods.
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4 Experimental Results

We now illustrate the potential of Fourier sparse leverage score bounds by empirically evaluating the
modified random Fourier features (RFF) method of Section 3. We implement the method without
the final JL projection, and use simplifications of the frequency distributions from Theorems 1 and
2, which work well in experiments. For data in Rd for d > 1, we extend these distributions to their
natural spherically symmetric versions. See Appendix E for details and Figure 2 for a visualization.

(a) Classical RFF Distribu-
tion, Gaussian kernel.

(b) Modified RFF Distribu-
tion, Gaussian kernel.

(c) Classical RFF Distribu-
tion, Cauchy kernel.

(d) Modified RFF Distribu-
tion, Cauchy kernel.

Figure 2: Distributions used to sample random Fourier features frequencies η1, . . . , ηm. The “Classi-
cal RFF” distributions are from the original paper by Rahimi, Recht [RR07]. The “Modified RFF”
distributions are simplified versions of the leverage score upper bounds from Thoerems 1 and 2. No-
tably, our modified distributions sample high frequencies (i.e. large `2 norm) with higher probability
than Classical RFF, leading to theoretical and empirical improvements in kernel approximation.

We compare our method against the classical RFF method on a kernel ridge regression problem
involving precipitation data from Slovakia [NM13], a benchmark GIS data set. See Figure 3 for
a description. The regression solution requires computing (K + λI)−1y, where y is a vector of
training data. Doing so with a direct method is slow since K is large and dense, so an iterative solver
is necessary. However, when cross validation is used to choose a kernel width σ and regularization
parameter λ, the optimal choices lead to a poorly conditioned system, which leads to slow convergence.

Figure 3: The left image shows precipitation data for Slovakia in mm/year at n = 196k locations
on a regular lat/long grid [NM13]. Our goal is to approximate this precipitation function based on
6400 training samples from randomly selected locations (visualized as black dots). The right image
shows the prediction given by a kernel regression model with Gaussian kernel, which was computed
efficiently using our modified random Fourier method along with a preconditioned CG method.

There are two ways to solve the problem faster using a kernel approximation: either K̃ can be used in
place of K when solving (K̃+λI)−1y, or it can be used as a preconditioner to accelerate the iterative
solution of (K + λI)−1y. We explore the later approach because [AKM+17] already empirically
shows the effectiveness of the former. While their modified RFF algorihm is different than ours in
theory, we both make similar practical simplifications (see Appendix E), which lead our empirically
tested methods to be almost identical for the Gaussian kernel. Results on preconditioning are shown
in Figure 4. Our modified RFF method leads to substantially faster convergence for a given number
of random feature samples, which in turn leads to better downstream prediction error. The superior
performance of the modified RFF method can be explained theoretically: our method is designed
to target the spectral approximation guarantee of Definition 1, which is guaranteed to ensure good
preconditioning for K + λI [AKM+17]. On the other hand, the classical RFF method actually
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(a) Preconditioned CG Convergence. (b) Resulting test error for kernel regression.

Figure 4: The left plot shows residual convergence when solving minx ‖(K + λI)x − y‖ using
PCG. Baseline convergence (the black line) is slow, so we preconditioned with both a classical
RFF approximation and our modified RFF approximation. Classical RFF accelerates convergence
in the high error regime, but slows convergence eventually. Our method significantly accelerates
convergence, with better performance as the number of RFF samples increases. On the right, we
show that better system solve error leads to better downstream predictions. The black bar represents
the relative error of a prediction computed by exactly inverting K + λI. An approximate solution
obtained using our preconditioner approaches this ideal error more rapidly than the other approaches.

achieves better error than our method in other metrics like ‖K− K̃‖2, both in theory [Tro15] and
empirically (Figure 4). However, for preconditioning, such bounds will not necessarily ensure fast
convergence. The key observation is that the spectral guarantee requires better approximation in the
small eigenspaces of K. By more aggressively sampling higher frequencies that align with these
directions (see Figure 2) the modified method obtains a better approximation.

Figure 5: The left plot compares relative spectral norm errors for randomized kernel approximations
for a Gaussian kernel matrix K. The classical RFF method actually has better error. However, as
shown in the right plot, the modified method better approximates the small eigenvalues of K, which
is necessary for effective preconditioning as it leads to a better relatively condition number.

Broader Impacts
Our work contributes to an improved understanding of sampling for kernel approximation and kernel-
related function approximation problems. It ties together work in machine learning, signal processing,
and approximation theory, which we feel has value in connecting different research communities. Our
results in particular focus on low-dimensional interpolation problems, which arise in application areas
such as geology, ecology and other scientific fields, medical imaging, and wireless communication.
In many of these areas, data driven methods are used to effect positive societal change.

As with all work on efficient learning methods, the algorithms we present, or future variants of them,
have the potential to scale inference to even larger data sets than the current state of the art. This can
lead to a variety of negative impacts. For example, it may drive the proliferation of massive data
collection by corporations and governments for inference tasks, and thus contribute to the associated
privacy risks of this data collection. Kernel methods and Gaussian process regression are extremely
general tools, used in many applications, including those that may have negative society impacts, such
are cell-phone localization, and human and other target tracking. It is possible that our techniques
could be employed in these applications.
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