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A Fine-tuning f ′ with Frozen h

Empirical results in Section 3.1 in the main paper show that simply removing ReLUs lead to improved
transferability. In this section, we try freezing all learnable parameters in the unmodified sub-net h
during fine-tuning and a similar observation about the initial improvement of transferability can still
be made (see Figure 5). Yet, we see obviously in Figure 5 that the curves bear a longer period of
decrease and finally the obtained success rates are even worse than those of the baseline, owing to its
lower learning capacity if h is frozen. Classification loss of these modified VGG-19 models on the
benign CIFAR-10 test set is also reported, in Figure 6.
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Figure 5: How the transferability of (a) FGSM and (b) I-FGSM adversarial examples changes while
fine-tuning g′ (i.e., the purely linear blocks of f ′). h is frozen during the fine-tuning process. We
perform untargeted attacks under the constraint of `∞ constraints and ε is set as 0.03.

0 20 40 60 80 100 120 140 160
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

Te
st
 L
os
s

f ′
m finetuned from scratch finetuned with h frozen

Figure 6: Test classification loss of different source models tested here and in Section 3.1.
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B Benign-test-set Performance of The Victim Models

Table 5: Benign-test-set accuracy of the models. On ImageNet, it is evaluated on the 50 000 official
validation images.

Dataset VGG-19
(2015)

WRN
(2016)

ResNeXt
(2017)

DenseNet
(2017)

PyramidNet†
(2019)

GDAS
(2019)

CIFAR-10 93.34% 96.21% 96.31% 96.68% 98.44% 97.19%

Dataset ResNet
(2016)

Inception
v3 (2016)

DenseNet
(2017)

MobileNet
v2 (2018)

PNASNet
(2018)

SENet
(2018)

ImageNet 76.15% 77.45% 74.65% 71.88% 82.90% 81.32%

C Re-interpret Intermediate Feature-based Attacks?

As mentioned in the main paper, many recent successes in improving adversarial transferability benefit
from maximizing intermediate level distortions rather than the final prediction losses [8, 3, 2] of DNNs.
Taking ILA [2] as an example, it opts to maximizing the projection of disturbance h(x+ r)− h(x)
on a guidance direction v := h(x+ r0)− h(x), given a prior adversarial perturbation r0, i.e.,

max
‖r‖p≤ε

J(x+ r, y) s.t., J(x+ r, y) = vT (h(x+ r)− h(x)). (4)

Recall that many adversarial attacks attempt to solve the optimization problem (1). With the common
decomposed representation f = g ◦ h, we can write L = l ◦ s ◦ g ◦ h, in which s is the softmax
function and l is the cross-entropy loss that takes both the output of s and the one-hot encoding of y
as inputs. Apparently, J in Eq. (4) is more linear than L on account of the additional non-linearity of
l, s, and g. It can be considered as substituting s ◦ g with an identity mapping and replacing l with a
linear loss. Likewise, AA [3] also exploits an identity mapping, in combination with a quadratic loss
though. Whether their practical effectiveness partially comes from higher linearity worth exploring in
future work.

D Single-step Back-end Attacks

When a single-step back-end attack FGSM is adopted, different methods are compared in Table 6
and 7. It can be seen that the superiority of method holds in most cases as with I-FGSM. It is worthy
of mentioning that ILA is performed after the FGSM examples are obtained in advance, and thus it
takes one more step in comparison to LinBP and others. We verified this by using a two-step policy
for our LinBP on CIFAR-10, and it showed that our LinBP indeed achieved higher average success
rates (90.49%, 74.44%, and 52.95%) than those of ILA in Table 6 (85.72%, 70.94%, and 50.68%).

Table 6: Success rates of transfer-based attacks on CIFAR-10 using FGSM with `∞ constraints in
the untargeted setting. TAP boils down to FGSM in the single-step setting hence their performance
are the same. For ILA, we test it on the basis of FGSM examples crafted offline and take one more
step following its optimization objective, i.e., two steps in total. The source model is a VGG-19 with
batch normalization and the symbol * indicates that the victim model is the same as the source model.
Average is obtained from models different from the source.

Dataset Method ε
VGG-19*

(2015)
WRN

(2016)
ResNeXt
(2017)

DenseNet
(2017)

PyramidNet†
(2019)

GDAS
(2019) Average

CIFAR-10

FGSM
0.1 82.52% 74.98% 81.64% 84.28% 61.34% 88.86% 78.22%

0.05 73.38% 55.34% 61.64% 59.00% 32.50% 67.18% 55.13%
0.03 66.68% 39.52% 42.36% 39.86% 17.42% 39.00% 35.63%

TAP+FGSM
0.1 82.52% 74.98% 81.64% 84.28% 61.34% 88.86% 78.22%

0.05 73.38% 55.34% 61.64% 59.00% 32.50% 67.18% 55.13%
0.03 66.68% 39.52% 42.36% 39.86% 17.42% 39.00% 35.63%

ILA+FGSM
0.1 88.92% 85.32% 87.46% 89.30% 76.68% 89.82% 85.72%

0.05 87.14% 73.9% 76.48% 76.82% 48.12% 79.40% 70.94%
0.03 82.04% 55.98% 59.64% 58.36% 24.76% 54.66% 50.68%

LinBP+FGSM
0.1 92.06% 84.16% 87.24% 87.76% 72.36% 89.38% 84.18%

0.05 95.18% 73.96% 77.60% 76.34% 43.76% 77.50% 69.83%
0.03 92.50% 55.64% 59.70% 55.82% 22.30% 52.28% 49.15%
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Table 7: Success rates of transfer-based attacks on ImageNet using FGSM with `∞ constraints. TAP
boils down to FGSM in the single-step setting thus their performance are the same. For ILA, we test it
on the basis of FGSM examples crafted in advance and take one more step following its optimization
objective, i.e., two steps in total. The source model is a ResNet-50 and the symbol * indicates that the
victim model is the same as the source. Average is obtained from models different from the source.

Dataset Method ε
ResNet*
(2016)

Inception
v3 (2016)

DenseNet
(2017)

MobileNet
v2 (2018)

PNASNet
(2018)

SENet
(2018) Average

ImageNet

FGSM
0.1 88.64% 47.88% 63.86% 79.80% 39.30% 48.96% 55.96%

0.05 86.46% 32.52% 44.96% 50.34% 24.36% 28.26% 36.09%
0.03 84.38% 23.04% 35.26% 37.72% 16.44% 18.74% 26.24%

TAP+FGSM
0.1 88.64% 47.88% 63.86% 79.80% 39.30% 48.96% 55.96%

0.05 86.46% 32.52% 44.96% 50.34% 24.36% 28.26% 36.09%
0.03 84.38% 23.04% 35.26% 37.72% 16.44% 18.74% 26.24%

ILA+FGSM
0.1 84.38% 50.40% 67.10% 82.12% 39.10% 51.60% 58.86%

0.05 74.56% 30.56% 44.14% 55.44% 19.98% 27.28% 35.48%
0.03 74.38% 20.68% 32.64% 38.66% 13.26% 16.54% 24.36%

SGM+FGSM
0.1 85.00% 44.66% 61.04% 78.84% 35.26% 46.22% 53.20%

0.05 84.30% 28.04% 40.90% 50.74% 19.88% 25.68% 33.05%
0.03 82.96% 19.72% 31.74% 37.72% 12.70% 16.42% 23.66%

LinBP+FGSM
0.1 91.42% 52.88% 69.44% 83.98% 42.66% 52.72% 60.34%

0.05 90.52% 34.80% 49.24% 56.26% 25.78% 31.18% 39.45%
0.03 88.56% 24.80% 39.28% 41.68% 17.32% 19.94% 28.60%

E Stronger Multi-step Back-end Attacks

In this section, we test more powerful back-end attacks for our LinBP, including DI2-FGSM (in which
the momentum mechanism is also incorporated and thus it is more powerful than the momentum
iterative FGSM [1] in the concerned setting) and PGD. Note that PGD tested here incorporated
randomness at each of its optimization iterations, as such randomness is shown to be beneficial to the
adversarial transferability in experiments. We observe that our LinBP works better in conjunction
with them than with I-FGSM. See Table 8 and 9 for detailed results when combining our LinBP with
DI2-FGSM and PGD, respectively. We also consider an ensemble adversarial attack [6] on ImageNet,
utilizing ResNet-50 and Inception v3 as source models, with the help of which we achieve an average
success rate of 98.17%, 78.94%, and 49.42%, under ε = 0.1, 0.05, and 0.03, respectively.

Table 8: Success rates of transfer-based attacks on ImageNet using DI2-FGSM. The source model
is a ResNet-50 and the symbol * indicates that the victim model is the same as the source model.
The mean and standard deviation results of five runs are reported. Average is obtained from models
different from the source.

Dataset Method ε
ResNet*
(2016)

Inception v3
(2016)

DenseNet
(2017)

MobileNet v2
(2018)

PNASNet
(2018)

SENet
(2018) Average

ImageNet

DI2-FGSM
0.1 100.00%±0.00% 68.06%±0.35% 89.56%±0.21% 90.10%±0.16% 69.76%±0.22% 76.04%±0.12% 78.70%
0.05 100.00%±0.00% 39.60%±0.32% 67.62%±0.18% 67.32%±0.12% 39.66%±0.28% 46.88%±0.22% 52.22%
0.03 100.00%±0.00% 23.40%±0.26% 48.02%±0.28% 48.12%±0.26% 22.28%±0.34% 25.86%±0.22% 33.54%

LinBP+DI2-FGSM
0.1 100.00%±0.00% 96.04%±0.09% 99.58%±0.12% 99.12%±0.05% 96.34%±0.15% 97.52%±0.08% 97.72%
0.05 100.00%±0.00% 68.30%±0.24% 92.14%±0.13% 91.20%±0.18% 68.76%±0.16% 79.34%±0.23% 79.95%
0.03 100.00%±0.00% 37.98%±0.28% 71.48%±0.33% 71.06%±0.29% 36.16%±0.25% 47.74%±0.27% 52.88%

Table 9: Success rates of transfer-based attacks on ImageNet using PGD. The source model is a
ResNet-50 and the symbol * indicates that the victim model is the same as the source model. The
mean and standard deviation results of five runs are reported. Average is obtained from models
different from the source.

Dataset Method ε
ResNet*
(2016)

Inception v3
(2016)

DenseNet
(2017)

MobileNet v2
(2018)

PNASNet
(2018)

SENet
(2018) Average

ImageNet

PGD
0.1 100.00±0.00% 68.34±0.17% 90.02±0.29% 87.72±0.16% 67.71±0.46% 73.32±0.25% 77.42%

0.05 100.00±0.00% 38.68±0.30% 66.46±0.43% 65.86±0.4% 35.40±0.26% 43.49±0.36% 49.98%
0.03 100.00±0.00% 20.80±0.22% 43.04±0.37% 44.88±0.2% 17.33±0.33% 22.86±0.12% 29.78%

LinBP+PGD
0.1 100.00±0.00% 95.70±0.23% 99.55±0.07% 99.23±0.05% 95.44±0.13% 97.51±0.09% 97.49%

0.05 100.00±0.00% 72.72±0.41% 93.70±0.07% 93.05±0.15% 70.07±0.36% 81.79±0.23% 82.27%
0.03 100.00±0.00% 41.65±0.37% 74.15±0.20% 74.14±0.26% 37.57±0.48% 52.05±0.31% 55.91%

F Other ε Settings and More Source Models

We notice that there exist different setting in evaluations of adversarial attacks in recent papers, some
use ε = 0.1, 0.08, 0.05, 0.04, and 0.03 as in the main body of our paper [2, 5, 4], and some others
use ε = 16/255, 8/255, and 4/255, et cetera [8, 7]. Here we also report the performance of our
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method under ε = 16/255, 8/255, and 4/255 for easier comparison with contemporary methods and
other comparable methods. We also considered more source architectures for comparison, including
ResNet-18 on CIFAR-10 and Inception v3 on ImageNet. The results are shown in Table 10, Table 11,
Table 12, and Table 13, in which PGD is used as the baseline, since it is more powerful than I-FGSM,
and other methods were performed on the basis of PGD, just like in Table 9. Here we give results
in both the untargeted and the targeted settings. Results on the basis of other back-end attacks are
similar, and the superiority of our LinBP holds in most test cases.

Table 10: Success rates of transfer-based attacks on CIFAR-10 using PGD with `∞ constraints. The
source model is a VGG-19. Average is obtained from models different from the source.

Attack Method ε
VGG-19*

(2015)
WRN

(2016)
ResNeXt
(2017)

DenseNet
(2017)

PyramidNet†
(2019)

GDAS
(2019) Average

Untargeted
(VGG-19)

PGD
16/255 99.98% 95.78% 94.86% 93.44% 60.64% 87.96% 86.54%

8/255 99.92% 74.94% 75.22% 71.44% 22.66% 60.66% 60.98%
4/255 99.42% 36.20% 37.16% 34.40% 6.36% 25.38% 27.90%

ILA+PGD
16/255 100.00% 99.46% 99.64% 99.18% 80.54% 94.92% 94.75%

8/255 99.96% 90.06% 91.04% 88.44% 36.84% 75.44% 76.36%
4/255 99.20% 53.18% 53.88% 50.22% 10.12% 36.34% 40.75%

LinBP+PGD
16/255 100.00% 99.90% 99.94% 99.86% 91.54% 98.44% 97.94%

8/255 100.00% 95.42% 95.76% 94.16% 50.46% 84.50% 84.06%
4/255 99.80% 58.64% 61.28% 56.42% 12.94% 42.80% 46.42%

Targeted
(VGG-19)

PGD
16/255 98.82% 84.34% 78.00% 74.28% 30.34% 52.30% 63.85%

8/255 96.12% 54.40% 49.90% 46.94% 8.44% 29.72% 37.88%
4/255 93.62% 17.22% 15.08% 14.98% 1.34% 9.36% 11.60%

ILA+PGD
16/255 97.70% 96.62% 96.08% 96.16% 70.36% 81.70% 88.18%

8/255 97.46% 80.30% 79.40% 77.52% 24.32% 56.10% 63.53%
4/255 88.18% 32.16% 30.14% 29.50% 4.00% 17.98% 22.76%

LinBP+PGD
16/255 99.98% 98.38% 98.30% 97.86% 71.60% 85.98% 90.42%

8/255 99.92% 80.60% 80.38% 79.28% 26.04% 58.32% 64.92%
4/255 96.44% 33.04% 30.18% 29.94% 4.68% 19.20% 23.41%

Table 11: Success rates of transfer-based attacks on CIFAR-10 using PGD with `∞ constraints. The
source model is a ResNet-18. Average is obtained from models different from the source.

Attack Method ε
VGG-19
(2015)

WRN
(2016)

ResNeXt
(2017)

DenseNet
(2017)

PyramidNet†
(2019)

GDAS
(2019) Average

Untargeted
(ResNet-18)

PGD
16/255 91.48% 97.76% 97.16% 94.32% 54.28% 90.48% 87.58%

8/255 59.00% 81.14% 81.58% 76.00% 21.60% 63.22% 63.76%
4/255 25.20% 45.52% 46.12% 41.46% 6.60% 29.60% 32.42%

ILA+PGD
16/255 94.20% 98.08% 97.76% 95.88% 72.82% 91.20% 91.66%

8/255 72.90% 88.68% 88.88% 86.44% 36.88% 74.20% 74.66%
4/255 32.88% 54.54% 56.02% 51.52% 11.02% 37.34% 40.55%

LinBP+PGD
16/255 94.54% 96.54% 95.42% 93.98% 78.48% 93.10% 92.01%

8/255 76.24% 89.76% 89.24% 87.28% 46.48% 78.62% 77.94%
4/255 37.74% 57.14% 62.66% 57.04% 15.18% 44.10% 45.64%

Targeted
(ResNet-18)

PGD
16/255 62.32% 84.34% 78.90% 68.52% 21.52% 49.34% 60.82%

8/255 25.34% 57.84% 47.82% 46.84% 7.40% 30.34% 35.93%
4/255 7.20% 22.10% 18.42% 19.34% 2.10% 11.36% 13.42%

ILA+PGD
16/255 51.48% 66.36% 54.32% 50.80% 29.98% 27.06% 46.67%

8/255 34.06% 60.20% 49.98% 46.92% 12.82% 31.98% 39.33%
4/255 9.98% 25.88% 21.04% 21.12% 3.60% 13.64% 15.88%

LinBP+PGD
16/255 75.06% 73.14% 70.32% 62.98% 46.64% 63.66% 65.30%

8/255 47.22% 64.66% 62.92% 62.00% 21.38% 49.94% 51.35%
4/255 12.04% 27.50% 27.08% 28.22% 4.98% 18.24% 19.68%

Table 12: Success rates of transfer-based attacks on ImageNet using PGD with `∞ constraints. The
source model is a ResNet-50. Average is obtained from models different from the source.

Attack Method ε
ResNet*
(2016)

Inception
v3 (2016)

DenseNet
(2017)

MobileNet
v2 (2018)

PNASNet
(2018)

SENet
(2018) Average

Untargeted
(ResNet-50)

PGD
16/255 100.00% 48.46% 75.22% 74.18% 46.24% 53.22% 59.46%

8/255 100.00% 21.10% 43.38% 44.92% 17.64% 22.56% 29.92%
4/255 100.00% 8.94% 19.40% 21.40% 5.52% 7.98% 12.65%

ILA+PGD
16/255 100.00% 58.76% 83.90% 86.28% 58.50% 74.70% 72.43%

8/255 100.00% 28.94% 54.86% 58.02% 27.12% 38.96% 41.58%
4/255 100.00% 10.90% 25.46% 29.40% 8.38% 13.72% 17.57%

LinBP+PGD
16/255 100.00% 83.66% 97.10% 96.80% 81.52% 89.66% 89.75%

8/255 99.98% 42.12% 74.38% 74.22% 37.18% 51.72% 55.92%
4/255 99.92% 13.74% 34.90% 36.02% 11.30% 17.34% 22.66%

Targeted
(ResNet-50)

PGD
16/255 100.00% 0.04% 0.44% 0.28% 0.16% 0.24% 0.23%

8/255 100.00% 0.02% 0.08% 0.00% 0.00% 0.02% 0.02%
4/255 99.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00%

ILA+PGD
16/255 27.98% 0.26% 0.86% 0.42% 0.40% 0.40% 0.47%

8/255 68.02% 0.08% 0.20% 0.14% 0.12% 0.12% 0.13%
4/255 83.46% 0.00% 0.08% 0.02% 0.00% 0.02% 0.02%

LinBP+PGD
16/255 99.16% 2.66% 13.42% 7.18% 4.84% 5.58% 6.74%

8/255 99.32% 0.16% 2.08% 1.20% 0.48% 0.96% 0.98%
4/255 96.24% 0.00% 0.14% 0.12% 0.00% 0.06% 0.06%
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Table 13: Success rates of transfer-based attacks on ImageNet using PGD with `∞ constraints. The
source model is an Inception v3. Average is obtained from models different from the source.

Attack Method ε
ResNet
(2016)

Inception
v3* (2016)

DenseNet
(2017)

MobileNet
v2 (2018)

PNASNet
(2018)

SENet
(2018) Average

Untargeted
(Inception)

PGD
16/255 47.46% 100.00% 48.22% 53.72% 34.66% 36.50% 44.11%

8/255 27.38% 100.00% 27.26% 33.56% 15.70% 17.00% 24.18%
4/255 13.64% 99.96% 14.28% 18.62% 6.70% 7.12% 12.07%

ILA+PGD
16/255 84.94% 99.80% 80.26% 89.28% 65.60% 74.70% 78.96%

8/255 55.42% 99.68% 50.06% 64.12% 33.82% 42.16% 49.12%
4/255 25.96% 99.76% 24.08% 34.44% 13.14% 17.16% 22.96%

LinBP+PGD
16/255 90.82% 99.98% 89.24% 92.68% 78.02% 85.82% 87.32%

8/255 56.22% 99.76% 55.46% 65.08% 34.78% 45.44% 51.40%
4/255 22.08% 96.28% 22.92% 29.80% 10.04% 14.64% 19.90%

Targeted
(Inception)

PGD
16/255 0.12% 99.98% 0.20% 0.08% 0.16% 0.12% 0.14%

8/255 0.02% 99.96% 0.04% 0.02% 0.06% 0.06% 0.04%
4/255 0.00% 98.42% 0.02% 0.00% 0.00% 0.00% 0.00%

ILA+PGD
16/255 0.52% 2.02% 0.64% 0.18% 0.56% 0.26% 0.43%

8/255 0.22% 14.54% 0.30% 0.22% 0.28% 0.14% 0.23%
4/255 0.06% 52.48% 0.04% 0.06% 0.04% 0.06% 0.05%

LinBP+PGD
16/255 0.34% 4.26% 0.44% 0.26% 0.32% 0.28% 0.33%

8/255 0.10% 6.08% 0.12% 0.14% 0.06% 0.20% 0.12%
4/255 0.02% 4.04% 0.00% 0.00% 0.00% 0.04% 0.01%
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