
Off-Policy Evaluation and Learning
for External Validity under a Covariate Shift

Masatoshi Uehara1∗, Masahiro Kato2∗, Shota Yasui2
1 Cornell University
mu223@cornell.edu

2CyberAgent Inc.
masahiro_kato@cyberagent.co.jp
yasui_shota@cyberagent.co.jp

Abstract

We consider evaluating and training a new policy for the evaluation data by using
the historical data obtained from a different policy. The goal of off-policy evalua-
tion (OPE) is to estimate the expected reward of a new policy over the evaluation
data, and that of off-policy learning (OPL) is to find a new policy that maximizes
the expected reward over the evaluation data. Although the standard OPE and
OPL methods assume the same distribution of covariate between the historical
and evaluation data, a covariate shift often exists in real-world applications, i.e.,
the distribution of the covariate of the historical data is different from that of the
evaluation data. In this paper, we derive the efficiency bound of an OPE estimator
under a covariate shift. Then, we propose doubly robust and efficient estimators
for OPE and OPL under a covariate shift by using a nonparametric estimator of
the density ratio between the historical and evaluation data distributions. We also
discuss other possible estimators and compare their theoretical properties. Finally,
we conduct experiments to confirm the effectiveness of the proposed estimators.

1 Introduction

In various applications, such as the design of advertisement, personalized medicine, search engines,
and recommendation systems, there is a significant interest in evaluating and learning a new policy
from historical data (Beygelzimer & Langford, 2009; Li et al., 2010; Athey & Wager, 2017). To
accomplish this, we use off-policy evaluation (OPE) and off-policy learning (OPL) methods. The
goal of OPE is to evaluate a new policy by estimating the expected reward of the new policy (Dudík
et al., 2011; Wang et al., 2017; Narita et al., 2019; Bibaut et al., 2019; Kallus & Uehara, 2019; Oberst
& Sontag, 2019). In contrast, OPL aims to find a new policy that maximizes the expected reward
(Zhao et al., 2012; Kitagawa & Tetenov, 2018; Zhou et al., 2018; Chernozhukov et al., 2019).

Although the OPE method provides an estimator of the expected reward of a new policy, most ex-
isting studies presume that the distributions of covariates are the same between the historical and
evaluation data. However, in many real-world applications, the expected reward of a new policy
over the distribution of evaluation data is of significant interest, which can be different from that
of historical data. For example, in the medical field, it is known that the results of a randomized
controlled trial (RCT) cannot be directly transported because the covariate distribution in a target
population is different (Cole & Stuart, 2010). This problem is known as a lack of external validity
(Pearl & Bareinboim, 2014). These situations, in which historical and evaluation data follow differ-
ent distributions, are also known as covariate shifts (Shimodaira, 2000; Sugiyama et al., 2008). This
situation is illustrated in Figure 1.
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Under a covariate shift, the standard OPE methods do not yield a consistent estimator of the ex-
pected reward over the evaluation data. Moreover, a covariate shift changes the efficiency bound of
an OPE estimator, which is the lower bound of the asymptotic mean squared error (MSE) among
reasonable

√
n-consistent estimators. Besides, standard theoretical analysis of OPE cannot be ap-

plied to covariate shift cases as in Remark 2. To handle the covariate shift, we apply importance
weighting using the density ratio between the distributions of the covariates of the historical and
evaluation data (Shimodaira, 2000; Reddi et al., 2015).

Contributions: This paper has four main contributions. First, we derive an efficiency bound of
OPE under the covariate shift (Section 3). Second, in Section 4, we propose estimators constructed
by the estimators of the density ratio, behavior policy, and conditional expected reward. In particular,
we employ nonparametric density ratio estimation (Kanamori et al., 2012) to estimate the density ra-
tio. The proposed estimator is an efficient estimator, which achieves the efficiency bound under mild
nonparametric rate conditions of the estimators of nuisance functions. In addition, this estimator is
robust to model-misspecification of estimators in the sense that the resulting estimator is consistent
if either (i) models of the density ratio and the behavior policy or (ii) a model of the conditional
average treatment effect is correct. Importantly, we do not require the Donsker conditions for those
estimators by applying the cross-fitting (Section 4). Third, we propose other possible estimators for
our problem setting and compare them (Section 5). Fourth, an OPL method is proposed based on
the efficient estimators (Section 6). All proofs are shown in Appendix E.

X ∼ p(x) A

Y

πb

Historical data

X ∼ q(x) A

Y

πe

Evaluation data

Figure 1: OPE under a covariate shift. The co-
variate, action, and reward are denoted as X , A,
and Y , respectively. The evaluation and behavior
policies are denoted as πe, πb respectively. Here,
p(x) 6= q(x), and the density ratio q(x)/p(x) is
unknown. The density p(y | a, x) is the same in
historical and evaluation data. For the evaluation
data, A and Y are not observed.

Related work: The difference between dis-
tributions of covariates conditioned on a cho-
sen action is known as a covariate shift (Zhang
et al., 2013b; Johansson et al., 2016). In this pa-
per, a covariate shift refers to the different dis-
tributions of covariates between historical and
evaluation data. Dahabreh et al. (2019), Jo-
hansson et al. (2018), and Sondhi et al. (2020)
analyzed the treatment effect estimation under
a covariate shift; however, our perspective and
analysis are completely different from theirs.
Besides, there are many studies regarding the
external validity on a causal directed acyclic
graph (Pearl & Bareinboim, 2011, 2014). This
paper focuses on statistical inference and learn-
ing instead of an identification strategy.

2 Problem Formulation

In this section, we introduce our problem setting and review the relevant literature.

2.1 Data-Generating Process with Evaluation Data

For an individual i ∈ N, let Ai be an action taking variable in A and Yi ∈ R be a reward. Let Xi

and Zi be the covariate observed by the decision maker when choosing an action, and X be the
space of the covariate. Let a policy π : X ×A → [0, 1] be a function of a covariate x and action a,
which can be considered as the probability of choosing an action a given x. In this paper, we have
access to historical and evaluation data. For the historical data, we can observe a dataset Dhst =

{(Xi, Ai, Yi)}n
hst

i=1 , which are independent and identically distributed (i.i.d.) for the evaluation data,
we can observe an i.i.d. dataset Devl = {Zi}n

evl

i=1 , where nhst and nevl denote the sample sizes of
historical and evaluation data, respectively. We assume Dhst and Devl are independent. Then, we
assume the data-generating process (DGP) as Dhst = {(Xi, Ai, Yi)}n

hst

i=1 ∼ p(x)πb(a | x)p(y |
x, a) and Devl = {Zi}n

evl

i=1 ∼ q(z), where nhst = ρn, nevl = (1− ρ)n, p(x) and q(x) are densities2

2We use x and z exchangeably noting that the spaces of X and Z are the same such as q(x), q(z) and
p(x), p(z). On the other hand, we strictly distinguishXi andZi noting that these are different random variables.
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over X , and ρ ∈ (0, 1) is a constant. The policy πb(a | x) of the historical data is called a behavior
policy. We generally assume p(x), q(x) and πb(a | x) to be unknown. In comparison to the usual
OPE, the density of historical data, p(x), can differ from that of the evaluation data, q(x).

Notation: This paper distinguishes the covariates between the historical and evaluation data
as Xi and Zi, respectively. In addition, for a function µ : X → R, E[µ(X)] and E[µ(Z)]
imply taking expectation over historical and evaluation data, respectively. Likewise, the em-
pirical approximation is denoted as Enhst [µ(X)] = 1/nhst

∑
i µ(Xi) and Enevl [µ(X)] =

1/nevl
∑
i µ(Zi). Additionally, let ‖µ(X,A, Y )‖2 be E[µ2(X,A, Y )]1/2 for the function µ,

Ep(x,a,y)[µ(x, a, y)] be
∫
µ(x, a, y)p(x, a, y)d(x, a, y), the asymptotic MSE of estimator R̂ be

Asmse[R̂] = limn→∞ nE[(R̂ − R)2], and N (0, A) be a normal distribution with mean 0 and vari-
ance A. In addition, we use functions r(x) = q(x)/p(x), w(a, x) = πe(a | x)/πb(a | x), and
f(a, x) = E[Y | X = x,A = a]. Let us denote the estimators of r(x), w(a, x), and f(a, x) as r̂(x),
ŵ(a, x), and f̂(a, x), respectively. Other notations are summarized in Appendix A.

Remark 1. Although we do not explicitly use counter-factual notation (Rubin, 1987), if we assume
the usual conditions, our results immediately apply (Appendix B).

2.2 Off-Policy Evaluation and Learning

We are interested in estimating the expected reward of an evaluation policy πe(a | x), which is
prespecified for the evaluation data. Here, we assume a covariate shift, which is a common situation
in the literature of external validity. Under a covariate shift, the conditional distribution of y is
the same between the historical and evaluation data, whereas the distribution of evaluation data is
different from that of historical data, i.e., the distribution of evaluation data with evaluation policy
πe follows q(z)πe(a | z)p(y | a, z). Then, we define the expected reward of the evaluation policy as

R(πe) := Eq(z)πe(a|z)p(y|a,z) [y] . (1)

The first goal is OPE; i.e., estimating R(πe) using the historical data {Xi, Ai, Yi}n
hst

i=1 and evalua-
tion data {Zi}n

evl

i=1 . The second goal is OPL; i.e., training a new policy that maximizes the expected
reward as π∗ = arg maxπ∈ΠR(π), where Π is the policy class. In some cases, to construct an esti-
mator R(π), we use r(x), w(a, x), and f(a, x). These functions are known as nuisance functions.
Let r̂(x), ŵ(a, x), and f̂(a, x) be their estimators.

Assumptions: We assume strong overlaps for r(x),w(a, x) and theirs estimators and boundedness
for Yi and f̂ using a constant Rmax > 0.

Assumption 1. 0 ≤ r(x) ≤ C1, 0 ≤ w(a, x) ≤ C2, 0 ≤ Yi ≤ Rmax.

Assumption 2. 0 ≤ r̂(x) ≤ C1, 0 ≤ ŵ(a, x) ≤ C2, 0 ≤ f̂(a, x) ≤ Rmax.

2.3 Preliminaries

Here, we review existing work of OPE, OPL, and the density ratio estimation.

Standard OPE and OPL: We review three types of standard estimators of Ep(x)πe(a|x)p(y|x,a)[y]
for the case where q(x) = p(x) in (1). The first estimator is an inverse probability weighting (IPW)
estimator given by Enhst [ŵ(A,X)Y ] (Horvitz & Thompson, 1952; Rubin, 1987; Cheng, 1994; Hi-
rano et al., 2003b; Swaminathan & Joachims, 2015b). Even though this estimator is unbiased when
the behavior policy is known, it often suffers from high variance. The second estimator is a direct
method (DM) estimator Enhst [f̂(A,X)] (Hahn, 1998), which is weak against model misspecification
for f(a, x). The third estimator is a doubly robust estimator (Robins et al., 1994) defined as

Enhst [ŵ(A,X){Y − f̂(A,X)}+ Eπe(a|X)[f̂(a,X) | X]]. (2)

Under certain conditions, this estimator is known to achieve the efficiency bound (a.k.a semipara-
metric lower bound), which is the lower bound of the asymptotic MSE of OPE, among regular
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√
n-consistent estimators (van der Vaart, 1998, Theorem 25.20) 3. This efficiency bound is

E[w2(A,X)var[Y | A,X]] + var[v(X)], (3)

where v(x) = Eπe(a|x)[f(a, x) | x] (Narita et al., 2019). Such an estimator is called an efficient
estimator. These estimators are also used for OPL (Zhang et al., 2013a; Athey & Wager, 2017).
Remark 2 (Difference from standard OPE problems). Our current problem, i.e., policy evaluation
under a shift in domain and policy, differs from a standard policy evaluation problem only under
a shift in the policy. For our domain and policy shift problem, we assume a stratified sampling,
i.e, fixed ρ w.r.t n. Instead, in the literature of a policy shift, people assume a sampling scheme is
i.i.d. As indicated by Wooldridge (2001), the difference of these two sampling schemes results in
the analysis being different.

With respect to our problem, we can also assume that samples are i.i.d. by considering ρ to be a
random variable and by assuming each replication follows a mixture distribution (Dahabreh et al.,
2019). However, under this assumption, the efficiency bound cannot be calculated explicitly. In
addition, ρ is often defined as a constant value by some design (Qin, 1998).

Density Ratio Estimation: To estimate R(πe), we apply importance weighting using the density
ratio between the distributions of historical and evaluation covariates. For example, if we know r(x)
and w(a, x), we can construct an estimator of R(πe) as Enhst [r(X)w(A,X)Y ]. If we know the
behavior policy as in an RCT, we can exactly know w(a, x). However, because we do not know
the density ratio r(x) directly even in an RCT, we have to estimate r(x) using the covariate data
{Xi}n

hst

i=1 and {Zi}n
evl

i=1 . To estimate the density ratio r(x), we use a nonparametric one-step loss
based estimator. For example, we employ Least-Squares Importance Fitting (LSIF), which uses the
squared loss to fit the density-ratio function (Kanamori et al., 2012). We show details in Appendix C.

3 Efficiency Bound under a Covariate Shift

We discuss the efficiency bound of OPE under a covariate shift. An efficiency bound is defined for
an estimand under some posited models of the DGP (Bickel et al., 1998). If this posited model is
a parametric model, it is equal to the Cramér-Rao lower bound. When this posited model is non or
semiparametric model, we can still define a corresponding Cramér-Rao lower bound. In this paper,
we modify the standard theory under i.i.d. sampling to the current problem assuming a stratified
sampling scheme. The formal definition is shown in Appendix D.

Here, we show the efficiency bound of OPE under a covariate shift.
Theorem 1. The efficiency bound of R(πe) under fully nonparametric models is

Υ(πe) = ρ−1E[r2(X)w2(A,X)var[Y | A,X]] + (1− ρ)−1var[v(Z)], (4)

where v(z) = Eπe(a|z)[f(a, z) | z]. The efficiency bound under a nonparametric model with fixed
p(x) and πb(a | x) is the same.

Three things are remarked. First, knowledge of the densities of the historical data p(x) and the
behavior policy πb(a | x) does not change the efficiency bound (3). This is because the target
functional does not include these two densities. Second, the efficiency bound under a covariate shift
(4) reduces to the bound without a covariate shift (3) in a special case, r(x) = 1 and ρ = 0.5. Then,
we can see (4)= 2×(3). The factor 2 originates from the scaling of the asymptotic MSE. Third, we
need to calculate the efficient influence function, which is a key function for deriving the efficiency
bound. This function is useful for constructing an efficient estimator.

4 OPE under a Covariate Shift

For OPE under a covariate shift, we propose an estimator constructed from the following basic form:

Enhst [r̂(X)ŵ(A,X){Y − f̂(A,X)}] + Enevl [v̂(Z)], (5)

3Formally, regular estimators means estimators of which the limiting distribution is insensitive to local
changes of the DGP. Refer to van der Vaart (1998, Chapter 7)
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Algorithm 1 Doubly Robust Estimator under a Covariate Shift

Input: The evaluation policy πe.
Take a ξ-fold random partition (Ik)ξk=1 of observation indices [nhst] = {1, . . . , nhst} such that
the size of each fold Ik is nhst

k = nhst/ξ.
Take a ξ-fold random partition (Jk)ξk=1 of observation indices [nevl] = {1, . . . , nevl} such that
the size of each fold Jk is nevl

k = nevl/ξ.
For each k ∈ [ξ] = {1, . . . , ξ}, define Ick := {1, . . . , nhst} \ Ik and Jck := {1, . . . , nevl} \ Jk.
Define (Sk)ξk=1 with Sk = {{(Xi, Ai, Yi)}i∈Ick , {Zj}j∈Jck}.
for k ∈ [ξ] do

Construct estimators ŵk(a, x), r̂k(x), and f̂k(a, x) using Sk.
Construct an estimator R̂k defined as (6).

end for
Construct an estimator R̂ of R by taking the average of R̂k for k ∈ [ξ], i.e., R̂ = 1

ξ

∑ξ
k=1 R̂k.

where r̂(x), ŵ(a, x), and f̂(a, x) are nuisance estimators of r(x), w(a, x), and f(a, x), and v̂(z) =

Eπe(a|z)[f̂(a, z) | z]. As well as the standard doubly robust estimator (2), the above form is designed
to have the double robust structure regarding the model specifications of r(x)w(a, x) and f(a, x).
First, we consider the case where r̂(x) = r(x) and ŵ(a, x) = w(a, x), but f̂(a, x) is equal to
f†(a, x) and different from f(a, x), i.e., we have correct models for r(x) and w(a, x), but not for
f(a, x). Then, (5) is a consistent estimator of R(πe) because

Enhst [r(X)w(A,X)Y ] + Enevl [Eπe(a|Z)[f
†(a, Z) | Z]]− Enhst [r(X)w(A,X)f†(A,X)]

≈ Enhst [r(X)w(A,X)Y ] + 0 ≈ R(πe).

Second, we consider the case where f̂(a, x) = f(a, x), but r̂(x) and ŵ(a, x) are equal to functions
r†(x) and w†(a, x), which are different from r(x) and w(a, x), respectively, i.e, we have correct
models for f(a, x), but not for r(x) and w(a, x). Then, (5) is a consistent estimator for R(πe)
because

Enhst [r†(X)w†(a, x){Y − f(A,X)}] + Enevl [Eπe(a|Z)[f(a, Z) | Z]]

≈ Enevl [Eπe(a|Z)[f(a, Z) | Z]] + 0 ≈ R(πe).

The formal result is given later in Theorem 3.

Next, we consider estimating r(x), w(a, x), and f(a, x). For example, for f(a, x) and w(a, x), we
can apply complex and data-adaptive regression and density estimation methods such as random
forests, neural networks, and highly adaptive Lasso (Díaz, 2019). Note that ŵ(a, x) is estimated as
πe/π̂b because πe is known, where π̂b is an estimator of πb. For r(x), we can use the data-adaptive
density ratio method in Section 2.3. Although such complex estimators approximate the true values
well, it is pointed out that such estimators often violate the Donsker condition (van der Vaart, 1998;
Chernozhukov et al., 2018). 4, which is required to obtain the asymptotic distribution of an estimator
of interest, such as (5).

To derive the asymptotic distributions of an estimator ofR(πe) using estimators without the Donsker
condition, we apply cross-fitting (Klaassen, 1987; Zheng & van der Laan, 2011; Chernozhukov et al.,
2018) based on (5). The procedure is as follows. First, we separate dataDhst andDevl into ξ groups.
Next, using samples in each group, we estimate the nuisance functions nonparametrically. Then, we
construct an estimator of R(πe) using the nuisance estimators. For each group k ∈ {1, 2, . . . , ξ},
we define

R̂k =Enhst
k

[r̂(k)(X)ŵ(k)(A,X){Y − f̂ (k)(A,X)}] + Enevl
k

[Eπe [f̂ (k)(a, Z)|Z]], (6)

where Enhst
k

is the sample average over the k-th partitioned historical data with nhst
k samples and

Enevl
k

is the sample average over the k-th partitioned evaluation data with nevl
k samples. Finally, we

4When the square integrable envelope function exists and the metric entropy of the function class is con-
trolled at some rates, the Donsker condition is satisfied (van der Vaart, 1998, Chapter 19).
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construct an estimator of R(πe) by taking the average of the the K estimators, {R̂k}Kk=1. We call
the estimator doubly robust estimator under a covariate shift (DRCS) and denote it as R̂DRCS(πe).
The entire procedure is given in Algorithm 1.

In the following, we show the asymptotic property of R̂DRCS(πe). First, R̂DRCS(πe) is efficient.

Theorem 2 (Efficiency). For k ∈ {1, · · · , ξ}, assume αβ = op(n
−1/2), α = op(1), β = op(1)

where ‖r̂(k)(X)ŵ(k)(A,X) − r(X)w(A,X)‖2 = α, ‖f̂ (k)(A,X) − f(A,X)‖2 = β. Then,
√
n(R̂DRCS(πe)−R(πe))

d→ N (0,Υ(πe)), where Υ(πe) is the efficiency bound in Theorem 1.

Importantly, the Donsker condition is not needed for nuisance estimators owing to the cross-fitting
and the doubly robust form of R̂DRCS. In this regard, our only requirement is the rate conditions,
which are mild because these are nonparametric rates smaller than 1/2. For example, this is satisfied
when α = β = op(n

−1/4). With some smoothness conditions, the nonparametric estimator f̂(a, x)
can achieve this convergence rate (Wainwright, 2019). Regarding r(x)w(a, x), we can show that if
r̂(x) and ŵ(a, x) similarly satisfy certain nonparametirc rates, r̂(x)ŵ(a, x) satisfies it as well.
Lemma 1. Assume ‖r̂(X) − r(X)‖2 = op(n

−p) and ‖ŵ(A,X) − w(A,X)‖2 = op(n
−p). Then,

‖r̂(X)ŵ(A,X)− r(X)w(A,X)‖2 = op(n
−p).

Next, we formally show the double robustness of the estimator, i.e., the estimator is consistent if
either r(x)w(a, x) or f(a, x) is correct.

Theorem 3 (Double robustness). For k ∈ {1, · · · , ξ}, assume that ∃ f†, r†, w†, ‖f̂ (k)(A,X) −
f†(A,X)‖2 = op(1) and ‖r̂(k)(X)ŵ(k)(A,X) − r†(X)w†(A,X)‖2 = op(1). If r†(x)w†(a, x) =

r(x)w(a, x) or q†(a, x) = q(a, x) holds, the estimator R̂DRCS(πe) is consistent.

In a standard OPE, the DR type estimator is consistent when we know the behavior policy. In
contrast, under a covariate shift, even when the behavior policy is known, we cannot claim that
R̂DRCS(πe) is consistent because r(x) is unknown. This result suggests the estimation of r(x) is
crucial.
Remark 3 (OPE with Known Distribution of Evaluation Data). As a special case of OPE under a
covariate shift, we consider a case where q(x) is known. This case can be regarded as a standard OPE
situation by regarding p(x)πe(a | x) as the behavior policy, the evaluation policy as q(x)πe(a | x),
and (A,X) as the action. The details of this setting is shown in Appendix F
Remark 4 (Relation with Pearl & Bareinboim (2014)). A transport formula (Pearl & Bareinboim,
2014, (3.1)) essentially leads to the DM estimator Enevl [v̂(Z)]. Though they propose a general
identification strategy, they do not discuss how to conduct efficient estimation given finite samples.

Remark 5 (Construction of R̂DRCS(πe)). We construct R̂DRCS(πe) so that it has a doubly robust
structure. The construction is also motivated by the efficient influence function. More specifically,
this estimator is introduced by plugging the nuisance estimators into the efficient influence function.

5 Other Candidates of Estimators

We have discussed the doubly robust estimator in the previous section. Next, we propose other
estimators under a covariate shift based on the IPW and DM estimators. We analyze the prop-
erty of each estimator with the nuisance estimators obtained from the classical kernel regression
(Nadaraya, 1964; Watson, 1964). We show regularity conditions and formal results of Theorems 4–
6 in Appendix E.

5.1 IPW Estimators and DM Estimator

We consider IPW and DM type estimators under a covariate shift for each case where we have an or-
acle of πb(a | x) and we do not have any oracles of nuisance functions, respectively. In comparison
to a standard OPE case, we can consider two fundamentally different IPW type estimators.

IPW estimator with oracle πb(x): This is a natural setting in an RCT and and A/B testing be-
cause we assign actions following a certain probability in theses cases. Let us define an IPW esti-
mator under a covariate shift with the true behavior policy πb(a | x) (IPWCSB) as R̂IPWCSB(πe) =

6



Table 1: Comparison of estimators. The parentheses means that efficiency is ensured when using
specific estimators for nuisances, such as kernel estimators. Non-Donsker means whether any non-
Donsker type complex estimators can be allowed to plug-in with a valid theoretical guarantee. All
of the estimators here do not require any parametric model assumptions.

Estimator Efficiency Double Robustness Nuisance Functions Without Oracle of πb(x) Non-Donsker
R̂IPWCSB(πe) r

R̂IPWCS(πe) ( ) r, w

R̂DM(πe) ( ) f

R̂DRCS(πe) r, w, f

Enhst

[
q̂(X)
p̂(X)

πe(A|X)Y
πb(A|X)

]
. For example, we use a classical kernel density estimators of q(x) and p(x)

defined as q̂h(x) = 1
nevl

∑nevl

i=1 h
−dK

(
Zi−x
hd

)
and p̂h(x) = 1

nhst

∑nhst

i=1 h
−dK

(
Xi−x
hd

)
, where K(·)

is a kernel function, h is the bandwidth of K(·), and d is a dimension of x. When using a kernel
estimator, we obtain the following theorem.

Theorem 4 (Informal). When q̂(x) = q̂h(x), p̂(x) = p̂h(x), the asymptotic MSE of R̂IPWCSB(πe)
is ρ−1var[r(X){w(A,X)Y − v(X)}] + (1− ρ)−1var[v(Z)].

Fully nonparametric IPW estimator: Next, for the case without the oracle πb, let us define an
IPW estimator under a covariate shift (IPWCS) as R̂IPWCS(πe) = Enhst

[
q̂(X)πe(A|X)Y
p̂(X)π̂b(A|X)

]
. This

estimator achieves the efficiency bound.

Theorem 5 (Informal). When q̂(x) = q̂h(x), p̂(x) = p̂h(x) and π̂b(a | x) = π̂bh(a | x), where
π̂b
h(a | x) is a kernel estimator based on Dhst, the asymptotic MSE of R̂IPWCS(πe) is Υ(πe).

DM Estimator: Finally, we define a nonparametric DM estimator R̂DM(πe) as
Enevl [Eπe(a|Z)[f̂(a, Z) | Z]]. This estimator achieves the efficiency bound.

Theorem 6 (Informal). When f̂h(a, x) is a kernel estimator based on Dhst, the asymptotic MSE of
R̂DM(πe) is Υ(πe).

5.2 Comparison of Estimators

We compare the estimators discussed so far. This discussion is summarized in Table 1. First, the esti-
mator R̂DRCS allows any non-Donsker type complex estimators with lax convergence rate conditions
of the nuisance estimators. However, the analyses of R̂IPWCS and R̂DM are specific to the kernel es-
timators though the asymptotic MSE of R̂IPWCS, R̂DM, and R̂DRCS are the same in this special case.
When the kernel estimators are replaced with any non-Donsker type complex estimators, the rate
condition ‖r̂(X)ŵ(A,X)−r(X)w(A,X)‖2 = op(n

−1/4) or ‖f̂(A,X)−f(A,X)‖2 = op(n
−1/4)

cannot guarantee the
√
n-consistency and efficiency even if we use cross-fitting. Therefore, we can-

not show asymptotic normality for IPW and DM type estimators, even if applying cross-fitting. The
fact that the bias of DR type estimator is reduced to the product term of two convergence rates has
a critical role. Second, the only R̂DRCS has double robustness; however, R̂IPWCS and R̂DM do not
have this property.

Comparison among IPW estimators: We observe that the asymptotic MSE of R̂IPWCS
5 is

smaller than that of R̂IPWCSB. This result looks unusual because R̂IPWCSB uses more knowledge
than R̂IPWCS. The intuitive reason for this fact is that R̂IPWCS is considered to be using control
variate. The same paradox is known in other works of causal inference (Robins et al., 1992). Note
that this fact does not imply R̂IPWCS is superior to R̂IPWCSB because smoothness conditions are
required in R̂IPWCS, and this can be violated in practice (Robins & Ritov, 1997).

5In this paragraph, we omit πe from the estimator R̂(πe).
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6 OPL under a Covariate Shift

In this section, we propose an OPL method based on the doubly robust estimator R̂DRCS(πe) to es-
timate the optimal policy that maximizes the expected reward over the evaluation data. Note that the
optimal policy π∗ is defined as π∗ = arg maxπ∈ΠR(π). By applying each OPE estimator, we can
define the following estimators: π̂DRCS = arg maxπ∈Π R̂DRCS(π), π̂DM = arg maxπ∈Π R̂DM(π),
and π̂IPWCS = arg maxπ∈Π R̂IPWCS(π). To obtain a theoretical implication, for simplicity, we
assume A is a finite state space, and the policy class Π is fixed. Then, for the ε-Hamming covering
number NH(ε,Π) and its entropy integral κ(Π) :=

∫∞
0

√
logNH(ε2,Π)dε (Zhou et al., 2018), the

regret bound of π̂DRCS is obtained.

Theorem 7 (Regret bound of π̂DRCS). Assume that for any 0 < ε < 1, there exists ω such that
NH(ε,Π) = O(exp(1/ε)ω), 0 < ω < 0.5. Also suppose that for k ∈ {1, · · · , ξ}, ‖r̂(k)(X) −
r(X)‖2 = op(n

−1/4), ‖1/π̂(k)b(A,X) − 1/πb(A,X)‖2 = op(n
−1/4), and ‖f̂ (k)(A,X) −

f(A,X)‖2 = op(n
−1/4). Then, by defining Υ∗ = supπ∈Π Υ(π), there exists an integer Nδ such

that with probability at least 1− 2δ, for all n ≥ Nδ ,

R(π∗)−R(π̂DRCS) = O((κ(Π) +
√

log(1/δ))
√

Υ∗
n ).

In comparison to the standard regret results in Swaminathan & Joachims (2015b) and Kitagawa &
Tetenov (2018), we do not assume we know the true behavior policy. Because R̂DRCS(π) has a
double robust structure, we can obtain the regret bound under weak nonparametric rate conditions
without assuming the behavior policy is known. Besides, this theorem shows that the variance term
is related to attain the low regret. This is achieved by using the efficient estimator R̂DRCS(π).

7 Experiments

In this section, we demonstrate the effectiveness of the proposed estimators using data obtained
with bandit feedback. Following previous work (Dudík et al., 2011; Farajtabar et al., 2018), we
evaluate the proposed estimators using the standard classification datasets from the UCI repository
by transforming the classification data into contextual bandit data. From the UCI repository, we use
the satimage, vehicle, and pendigits datasets 6. The results of the pendigits dataset is shown
in Appendix H. For each dataset, we randomly choose 800 samples (the results with other sample
sizes are reported in Appendix H). First, we classify data into historical and evaluation data with
probability defined as p(hist = +1|Xi) =

Cprob

1+exp(−τ(Xi)+0.1ε) , where hist = +1 denotes that the
sample i belongs to the historical data, Cprob is a constant, ε is a random variable that follows the
standard normal distribution,Xk,i is the k-th element of the vectorXi, and τ(Xi) =

∑5
j=1Xj,i. By

adjusting Cprob, we classify 70% samples as the historical data and 30% samples as the evaluation
data. Thus, we generate historical and evaluation data under a covariate shift. Then, we make a
deterministic policy πd by training a logistic regression classifier on the historical data. We construct
three different behavior policies as mixtures of πd and the uniform random policy πu by changing
a mixture parameter α, i.e., πb = απd + (1 − α)πu. The candidates of the mixture parameter α
are {0.7, 0.4, 0.0} as Kallus & Uehara (2019). In Section 7.1, we show the experimental results of
OPE. In Section 7.2, we show the experimental results of OPL. In both sections, the historical p(x)
and evaluation distributions q(x) are unknown, and the behavior policy πb is also unknown. More
details, such as the description of the data and choice of hyperparameters, are in Appendix H.

7.1 Experiments of Off-Policy Evaluation

For OPE, we use an evaluation policy πe defined as 0.9πd + 0.1πu. Here, we compare the MSEs
of five estimators, DRCS, DM, DM-R, IPWCS, and IPWCS-R. DRCS is the proposed estimator
R̂DRCS where we use kernel Ridge regression for estimating f(a, x) and w(a, x) and use KuLISF
(Kanamori et al., 2012) for r(x). For this estimator, we use 2-fold cross-fitting. DM denotes the
direct method estimator R̂DM(πe) with f(a, x) estimated by Nadaraya-Watson regression defined in

6https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
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Table 2: OPE results. Each (a),(b),(c) refers to the cases where the behavior policies are (a) 0.7πd +
0.3πu, (b) 0.4πd+0.6πu, (c) 0.0πd+1.0πu, respectively. The notation – means each value is larger
than 1.0.

OPE with the satimage dataset
DRCS IPWCS DM IPWCS-R DM-R

MSE SD MSE SD MSE SD MSE SD MSE SD
(a) 0.107 0.032 – – 0.042 0.043 0.045 0.049 0.073 0.023
(b) 0.096 0.025 – – 0.134 0.052 0.093 0.069 0.177 0.033
(c) 0.154 0.051 – – 0.336 0.079 0.022 0.026 0.372 0.050

OPE with the vehicle dataset
DRCS IPWCS DM IPWCS-R DM-R

MSE SD MSE SD MSE SD MSE SD MSE SD
(a) 0.029 0.019 – – 0.038 0.035 0.568 0.319 0.040 0.014
(b) 0.019 0.024 – – 0.095 0.062 0.576 0.357 0.089 0.019
(c) 0.037 0.030 – – 0.213 0.049 0.233 0.193 0.210 0.031

Table 3: OPL results. The alphabets (a),(b), and (c) refer to the cases where the behavior policies
are (a) 0.7πd + 0.3πu, (b) 0.4πd + 0.6πu, (c) 0.0πd + 1.0πu, respectively.

OPL with the satimage dataset
DRCS IPWCS DM

RWD SD RWD SD RWD SD
(a) 0.723 0.035 0.423 0.063 0.658 0.045
(b) 0.710 0.035 0.482 0.096 0.641 0.048
(c) 0.652 0.046 0.460 0.131 0.465 0.070

OPL with the vehicle dataset
DRCS IPWCS DM

RWD SD RWD SD RWD SD
(a) 0.496 0.017 0.310 0.030 0.411 0.040
(b) 0.510 0.029 0.290 0.051 0.393 0.052
(c) 0.480 0.044 0.280 0.041 0.313 0.065

Section 5. DM-R is the same estimator, but we use the kernel Ridge regression for f(a, x). IPWCS
is the IPW estimator R̂IPWCS(πe), where we use kernel regression defined in Section 5 to estimate
r(x) and w(a, x). IPWCS-R is the same estimator, but we use KuLISF to estimate r(x). Note that
nuisance estimators in DM-R and IPWCS-R do not satisfy the Donsker condition.

The resulting MSE and the standard deviation (SD) over 20 replications of each experiment are
shown in Tables 2, where we highlight in bold the best two estimators in each case. DRCS gener-
ally outperforms the other estimators. This result shows that the efficiency and double robustness
of DRCS translate to satisfactory performance. IPW based estimators have unstable performance.
While IPWCS-R shows the best performance in satimage dataset, it has severely low performance
for vehicle dataset. IPWCS has a poor performance in both datasets. The larger instability of
IPWCS-R is mainly due to the nuisance estimators in IPWCS-R do not satisfy the Donsker con-
dition. When the behavior policy is similar to the evaluation policy, the DM estimators (DM and
DM-R) also work well.

7.2 Experiments of Off-Policy Learning

For OPL, we compare the performances of three estimators of the optimal policy maximizing ex-
pected reward over the evaluation data: π̂DRCS with f(a, x) and w(a, x) estimated by kernel Ridge
regression and r(x) estimated by KuLISF (DRCS), π̂DM with f(a, x) estimated by kernel regres-
sion defined in Section 5 (DM), and π̂IPWCS with r(x) and w(a, x) estimated by kernel regression
defined in Section 5 (IPWCS). For the policy class Π, we use a model with the Gaussian kernel
defined in Appendix G. For DRCS, we use 2-fold cross-fitting and add a regularization term.

We conduct 10 trials for each experiment. The resulting expected reward over the evaluation data
(RWD) and the standard deviation (SD) of estimators for OPL are shown in Table 3, where we high-
light in bold the best estimator in each case. For all cases, the estimator π̂DRCS outperforms the other
estimators. We can find that, when an estimator of OPE shows high performance, a corresponding
estimator of OPL also shows high performance. The results show that the statistical efficiency of the
OPE estimator translates into better regret performance, as in Theorem 7.

8 Conclusion and Future Direction

We calculated the efficiency bound for OPE under a covariate shift and proposed OPE and OPL
methods for the situation. In particular, DRCS has doubly robustness and achieves the efficiency
bound under weak nonparametric rate conditions. The proposed OPE estimator is efficient under
a simple setting in a transportability problem (Bareinboim & Pearl, 2016). Complete identification
algorithms have been developed in a more complex setting (Bareinboim & Pearl, 2014); however,
statistical efficient estimation methods have not been considered. Our work opens the door to this
new direction. How to conduct efficient estimation in such a complex setting is an interesting future
work.
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Broader Impact

Because the policies in sequential decision-making problems are critical in various real-world appli-
cations, the OPE methods are employed to evaluate the new policy and reduce the risk of deploying
a poor policy. We focus on the OPE under a covariate shift between a historical and evaluation
data. This setting has many practical applications. For example, in the advertising applications, we
usually deliver advertisements only in the particular region to test the market in the beginning of the
planned advertising campaign, then expand to other regions that have different feature distribution.
Thus, we face the covariate shift in the evaluation and training a new policy for the new region.

Despite its practical importance, the OPE methods under the covariate shift have not been researched
well, and people apply standard OPE methods to cases under the covariate shift. For instance,
Hirano et al. (2003a) briefly discuss such a setting in Section 4.2, but did not discuss estimation of
the density ratio, i.e., simply considered a case where the density ratio is known. As we explained,
the standard methods are not robust against the covariate shift. Among the standard methods, the
IPW estimator is not consistent, and the DM and DR estimator has consistency when the model of
conditional outcome is correct. In particular, under a covariate shift, the standard DR estimator is
not doubly robust; i.e., it is consistent only when the model of conditional outcome is correct. Thus,
the standard estimator has a potential risk to mislead the user’s decision making and might cause
serious problems in the industry because many decision makings such as ad-optimization rely on the
result of the evaluation. On the other hand, the proposed estimator is doubly robust. This robustness
helps to avert the potential consequences of incorrect decision-making.
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