Park: An Open Platform for Learning-Augmented Computer Systems

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback Bibtex MetaReview Metadata Paper Reviews Supplemental

Authors

Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Jiacheng Yang, Haonan Wang, Ryan Marcus, ravichandra addanki, Mehrdad Khani Shirkoohi, Songtao He, Vikram Nathan, Frank Cangialosi, Shaileshh Venkatakrishnan, Wei-Hung Weng, Song Han, Tim Kraska, Dr.Mohammad Alizadeh

Abstract

We present Park, a platform for researchers to experiment with Reinforcement Learning (RL) for computer systems. Using RL for improving the performance of systems has a lot of potential, but is also in many ways very different from, for example, using RL for games. Thus, in this work we first discuss the unique challenges RL for systems has, and then propose Park an open extensible platform, which makes it easier for ML researchers to work on systems problems. Currently, Park consists of 12 real world system-centric optimization problems with one common easy to use interface. Finally, we present the performance of existing RL approaches over those 12 problems and outline potential areas of future work.