On the number of variables to use in principal component regression

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback Bibtex MetaReview Metadata Paper Reviews Supplemental


Ji Xu, Daniel J. Hsu


We study least squares linear regression over $N$ uncorrelated Gaussian features that are selected in order of decreasing variance. When the number of selected features $p$ is at most the sample size $n$, the estimator under consideration coincides with the principal component regression estimator; when $p>n$, the estimator is the least $\ell_2$ norm solution over the selected features. We give an average-case analysis of the out-of-sample prediction error as $p,n,N \to \infty$ with $p/N \to \alpha$ and $n/N \to \beta$, for some constants $\alpha \in [0,1]$ and $\beta \in (0,1)$. In this average-case setting, the prediction error exhibits a ``double descent'' shape as a function of $p$. We also establish conditions under which the minimum risk is achieved in the interpolating ($p>n$) regime.