Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)
Anna Wigren, Riccardo Sven Risuleo, Lawrence Murray, Fredrik Lindsten
Bayesian inference in state-space models is challenging due to high-dimensional state trajectories. A viable approach is particle Markov chain Monte Carlo (PMCMC), combining MCMC and sequential Monte Carlo to form ``exact approximations'' to otherwise-intractable MCMC methods. The performance of the approximation is limited to that of the exact method. We focus on particle Gibbs (PG) and particle Gibbs with ancestor sampling (PGAS), improving their performance beyond that of the ideal Gibbs sampler (which they approximate) by marginalizing out one or more parameters. This is possible when the parameter(s) has a conjugate prior relationship with the complete data likelihood. Marginalization yields a non-Markov model for inference, but we show that, in contrast to the general case, the methods still scale linearly in time. While marginalization can be cumbersome to implement, recent advances in probabilistic programming have enabled its automation. We demonstrate how the marginalized methods are viable as efficient inference backends in probabilistic programming, and demonstrate with examples in ecology and epidemiology.