Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)
Satoshi Tsutsui, Yanwei Fu, David Crandall
This paper studies the task of one-shot fine-grained recognition, which suffers from the problem of data scarcity of novel fine-grained classes. To alleviate this problem, a off-the-shelf image generator can be applied to synthesize additional images to help one-shot learning. However, such synthesized images may not be helpful in one-shot fine-grained recognition, due to a large domain discrepancy between synthesized and original images. To this end, this paper proposes a meta-learning framework to reinforce the generated images by original images so that these images can facilitate one-shot learning. Specifically, the generic image generator is updated by few training instances of novel classes; and a Meta Image Reinforcing Network (MetaIRNet) is proposed to conduct one-shot fine-grained recognition as well as image reinforcement. The model is trained in an end-to-end manner, and our experiments demonstrate consistent improvement over baseline on one-shot fine-grained image classification benchmarks.