Slice-based Learning: A Programming Model for Residual Learning in Critical Data Slices

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback Bibtex MetaReview Metadata Paper Reviews Supplemental


Vincent Chen, Sen Wu, Alexander J. Ratner, Jen Weng, Christopher Ré


In real-world machine learning applications, data subsets correspond to especially critical outcomes: vulnerable cyclist detections are safety-critical in an autonomous driving task, and "question" sentences might be important to a dialogue agent's language understanding for product purposes. While machine learning models can achieve quality performance on coarse-grained metrics like F1-score and overall accuracy, they may underperform on these critical subsets---we define these as slices, the key abstraction in our approach. To address slice-level performance, practitioners often train separate "expert" models on slice subsets or use multi-task hard parameter sharing. We propose Slice-based Learning, a new programming model in which the slicing function (SF), a programmer abstraction, is used to specify additional model capacity for each slice. Any model can leverage SFs to learn slice-specific representations, which are combined with an attention mechanism to make slice-aware predictions. We show that our approach improves over baselines in terms of computational complexity and slice-specific performance by up to 19.0 points, and overall performance by up to 4.6 F1 points on applications spanning natural language understanding and computer vision benchmarks as well as production-scale industrial systems.