MonoForest framework for tree ensemble analysis

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback Bibtex MetaReview Metadata Paper Reviews Supplemental


Igor Kuralenok, Vasilii Ershov, Igor Labutin


In this work, we introduce a new decision tree ensemble representation framework: instead of using a graph model we transform each tree into a well-known polynomial form. We apply the new representation to three tasks: theoretical analysis, model reduction, and interpretation. The polynomial form of a tree ensemble allows a straightforward interpretation of the original model. In our experiments, it shows comparable results with state-of-the-art interpretation techniques. Another application of the framework is the ensemble-wise pruning: we can drop monomials from the polynomial, based on train data statistics. This way we reduce the model size up to 3 times without loss of its quality. It is possible to show the equivalence of tree shape classes that share the same polynomial. This fact gives us the ability to train a model in one tree's shape and exploit it in another, which is easier for computation or interpretation. We formulate a problem statement for optimal tree ensemble translation from one form to another and build a greedy solution to this problem.