Efficient Communication in Multi-Agent Reinforcement Learning via Variance Based Control

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback Bibtex MetaReview Metadata Paper Reviews Supplemental


Sai Qian Zhang, Qi Zhang, Jieyu Lin


Multi-agent reinforcement learning (MARL) has recently received considerable attention due to its applicability to a wide range of real-world applications. However, achieving efficient communication among agents has always been an overarching problem in MARL. In this work, we propose Variance Based Control (VBC), a simple yet efficient technique to improve communication efficiency in MARL. By limiting the variance of the exchanged messages between agents during the training phase, the noisy component in the messages can be eliminated effectively, while the useful part can be preserved and utilized by the agents for better performance. Our evaluation using multiple MARL benchmarks indicates that our method achieves $2-10\times$ lower in communication overhead than state-of-the-art MARL algorithms, while allowing agents to achieve better overall performance.