Linear Stochastic Bandits Under Safety Constraints

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback Bibtex MetaReview Metadata Paper Reviews Supplemental


Sanae Amani, Mahnoosh Alizadeh, Christos Thrampoulidis


Bandit algorithms have various application in safety-critical systems, where it is important to respect the system constraints that rely on the bandit's unknown parameters at every round. In this paper, we formulate a linear stochastic multi-armed bandit problem with safety constraints that depend (linearly) on an unknown parameter vector. As such, the learner is unable to identify all safe actions and must act conservatively in ensuring that her actions satisfy the safety constraint at all rounds (at least with high probability). For these bandits, we propose a new UCB-based algorithm called Safe-LUCB, which includes necessary modifications to respect safety constraints. The algorithm has two phases. During the pure exploration phase the learner chooses her actions at random from a restricted set of safe actions with the goal of learning a good approximation of the entire unknown safe set. Once this goal is achieved, the algorithm begins a safe exploration-exploitation phase where the learner gradually expands their estimate of the set of safe actions while controlling the growth of regret. We provide a general regret bound for the algorithm, as well as a problem dependent bound that is connected to the location of the optimal action within the safe set. We then propose a modified heuristic that exploits our problem dependent analysis to improve the regret.