Author Response for Submission 8969: Differential Privacy Has Disparate Impact on Model Accuracy

- 2 Related work. Thanks for the pointers to recently released papers, we will acknowledge them. Yeom et al. [5] show
- 3 that models with poor generalization are more vulnerable to inference attacks. They measure how DP bounds the
- 4 leakage of information about training data, not its impact on model accuracy. They do not at all study (1) the accuracy
- of models on subgroups, nor (2) how accuracy on subgroups changes as a result of applying DP-SGD. (2) is our main
- 6 result, which is completely independent and orthogonal to the analysis in Yeom et al.
- 7 We did not have room to discuss [3, 2] but the brief summary is they provide evidence that DP may be combined with
- 8 fairness, but do not give algorithms that could be used to train practical DP neural networks.
- 9 Rényi differential privacy. We use Rényi DP only to estimate privacy loss. This does not change the DPSGD algorithm
- of Abadi et al. but rather provides tighter bounds on privacy loss [4], allowing to reduce the amount of added noise. The
- 11 TF Privacy tool enables estimation of epsilon given the input parameters (dataset size, number of epochs, batch size,
- noise, delta) before starting the training, thus this computation is not part of Algorithm 1. We ensure that our training
- uses the same hyperparameters as used to estimate epsilon.
- 14 General statements about DP. We will clarify in the abstract and intro that our results apply to DPSGD, a popular
- way to train DP neural networks, and not necessarily to DP as a general concept.
- 16 Experiment details. Thanks for the comments about improving presentation (captions and trend lines). We used the
- 17 UTK dataset as an additional source of darker-skinned faces because in the DiF dataset, some individuals with lighter
- skin were labeled as dark-skinned. We set the ratio between lighter- and darker-skinned individuals to measure the
- e effect of DPSGD on underrepresented classes, not to reflect the demographic balance of any country or real-world
- 20 dataset.
- 21 Size of the groups and complex classes. More items per class is indeed usually helpful. That said, our federated
- 22 learning study shows that participants with simpler vocabularies get better accuracy with DPSGD, whereas participants
- 23 with complex vocabularies contribute less to the model (Figure 3b). This is an example of how DPSGD negatively
- 24 affects more complex data.
- 25 Impact of clipping. Clipping alone is responsible for slowing down the learning, similar to decreasing the learning
- 26 rate. Without adding noise, both well- and under-represented classes converge to the same accuracy but much slower.
- 27 Noise, however, prevents the model from converging to the same norm. We find this presentation to be more intuitive
- 28 and perhaps a good starting point for future research on combining differential privacy with fairness.
- 29 Adversarial training. Adversarial training for fairness [1] overweights the loss for underrepresented groups. Sensitivity
- 30 bounds imposed by DPSGD, DPGAN, and similar approaches hold only for specific loss functions and sampling
- strategies; if combined directly with adversarial training, the resulting models will not be DP. It is an open problem how
- to combine DP with censoring techniques such as adversarial training.
- Training models with the same epsilon. Modifying the hyperparameters directly involved in estimating epsilon results
- in a big variance of results. Using TF Privacy, we observed that among all hyperparameters, the noise multiplier z
- has the highest impact on epsilon. Changing hyperparameters that do not affect privacy loss, such as the learning rate,
- model architecture, or optimizer, impacts the accuracy but does not affect fairness, thus we omitted these analyses due
- 37 to lack of space.
- Fairness measure. Equalized odds gives us the most direct way to measure the impact of DPSGD on a popular
- 39 fairness measure. Equal opportunity requires equality on the "advantaged" outcome, but in the multi-label tasks in our
- experiments it is not always clear what outcome should be considered advantaged. Accuracy on each subgroup, on the
- other hand, is straightforward to measure.

42 REFERENCES

- 43 [1] A. Beutel, J. Chen, Z. Zhao, and E. H. Chi. Data decisions and theoretical implications when adversarially learning fair representations. *arXiv:1707.00075*, 2017.
- 45 [2] R. Cummings, V. Gupta, D. Kimpara, and J. Morgenstern. On the compatibility of privacy and fairness. http://pwp.gatech.edu/rachel-cummings/wp-content/uploads/sites/679/2019/03/FairPrivate.pdf, 2019.
- 48 [3] M. Jagielski, M. Kearns, J. Mao, A. Oprea, A. Roth, S. Sharifi-Malvajerdi, and J. Ullman. Differentially private fair learning. *arXiv*:1812.02696, 2018.
- 50 [4] I. Mironov. Rényi differential privacy. In CSF, 2017.
- 51 [5] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha. Privacy risk in machine learning: Analyzing the connection to overfitting. In *CSF*, 2018.