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Related work. Thanks for the pointers to recently released papers, we will acknowledge them. Yeom et al. [5] show2

that models with poor generalization are more vulnerable to inference attacks. They measure how DP bounds the3

leakage of information about training data, not its impact on model accuracy. They do not at all study (1) the accuracy4

of models on subgroups, nor (2) how accuracy on subgroups changes as a result of applying DP-SGD. (2) is our main5

result, which is completely independent and orthogonal to the analysis in Yeom et al.6

We did not have room to discuss [3, 2] but the brief summary is they provide evidence that DP may be combined with7

fairness, but do not give algorithms that could be used to train practical DP neural networks.8

Rényi differential privacy. We use Rényi DP only to estimate privacy loss. This does not change the DPSGD algorithm9

of Abadi et al. but rather provides tighter bounds on privacy loss [4], allowing to reduce the amount of added noise. The10

TF Privacy tool enables estimation of epsilon given the input parameters (dataset size, number of epochs, batch size,11

noise, delta) before starting the training, thus this computation is not part of Algorithm 1. We ensure that our training12

uses the same hyperparameters as used to estimate epsilon.13

General statements about DP. We will clarify in the abstract and intro that our results apply to DPSGD, a popular14

way to train DP neural networks, and not necessarily to DP as a general concept.15

Experiment details. Thanks for the comments about improving presentation (captions and trend lines). We used the16

UTK dataset as an additional source of darker-skinned faces because in the DiF dataset, some individuals with lighter17

skin were labeled as dark-skinned. We set the ratio between lighter- and darker-skinned individuals to measure the18

effect of DPSGD on underrepresented classes, not to reflect the demographic balance of any country or real-world19

dataset.20

Size of the groups and complex classes. More items per class is indeed usually helpful. That said, our federated21

learning study shows that participants with simpler vocabularies get better accuracy with DPSGD, whereas participants22

with complex vocabularies contribute less to the model (Figure 3b). This is an example of how DPSGD negatively23

affects more complex data.24

Impact of clipping. Clipping alone is responsible for slowing down the learning, similar to decreasing the learning25

rate. Without adding noise, both well- and under-represented classes converge to the same accuracy but much slower.26

Noise, however, prevents the model from converging to the same norm. We find this presentation to be more intuitive27

and perhaps a good starting point for future research on combining differential privacy with fairness.28

Adversarial training. Adversarial training for fairness [1] overweights the loss for underrepresented groups. Sensitivity29

bounds imposed by DPSGD, DPGAN, and similar approaches hold only for specific loss functions and sampling30

strategies; if combined directly with adversarial training, the resulting models will not be DP. It is an open problem how31

to combine DP with censoring techniques such as adversarial training.32

Training models with the same epsilon. Modifying the hyperparameters directly involved in estimating epsilon results33

in a big variance of results. Using TF Privacy, we observed that among all hyperparameters, the noise multiplier z34

has the highest impact on epsilon. Changing hyperparameters that do not affect privacy loss, such as the learning rate,35

model architecture, or optimizer, impacts the accuracy but does not affect fairness, thus we omitted these analyses due36

to lack of space.37

Fairness measure. Equalized odds gives us the most direct way to measure the impact of DPSGD on a popular38

fairness measure. Equal opportunity requires equality on the "advantaged" outcome, but in the multi-label tasks in our39

experiments it is not always clear what outcome should be considered advantaged. Accuracy on each subgroup, on the40

other hand, is straightforward to measure.41
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