First of all, we would like to thank the reviewers for their valuable feedback. Below we address each reviewer’s
comments and place in General a discussion on the dual gap estimates |¢;|, as it was asked by multiple reviewers.

[General] The duality gap defined in the constrained setting (see, e.g., Jaggi [2013]) provides a good quality bound on
the primal gap and yields important insights for convergence analyses and algorithm design. In our setting, we can
derive a similar inequality as follows. Since D’ is symmetric and 0 € int(conv(D’)), there exists (an unknown) p > 0
such that {z*,z¢,..., 27} C pconv(D’). Define vfV = argmin, 5, (V f(x;),v); note that (Vf(z;),vf") < 0
since D' = —D'. Then ¢ = f(x¢) — f(z*) < (Vf(ze), 7 — %) < max(yv)e(peonv(p))2(Vf(2t),u —v) =
—2p(V f(xy),vEW) (1), which is our desired inequality. The design of BMP strongly relies on this last quantity,
essential to the blending of full steps and constrained steps (see (2)) but unfortunately, it involves the unknown p so it is
not functional here. We remedy this by working with estimations of these quantities: these are the dual gap estimates
|pe|. We set g +— (V f(z0), 05V) /7 < 0 (L2 in Alg. 3) so f(xo) — f(z*) < 27pleo| by (1). Suppose t' is the first
iteration where a dual step is taken. For all ¢ € [0,t'], we have ¢y = ¢ and ¢; < €q, s0 €, < 27p|¢;|. However, this
inequality becomes looser and looser, as the primal gaps €; decrease while the |¢;| stay the same. Thus, when we
detect an improved dual bound via a negative weak-separation oracle call, i.e., (V f(x;),vf™) > ¢, (see L11-12 in
Alg. 3 and the negative call in Oracle 2), the dual step updates the estimate |¢;| accordingly: by (1), this implies that
€r < 2p|oe| so by setting ¢ry1 < ¢ /7 and x4 1 < x4, We obtain €41 < 27p|dry1]|. Therefore, a dual step updates
|¢¢| and tightens the bound on the primal gap (since 7 > 1). Furthermore, dividing by 7 provides a geometric, hence
fast, rescaling of the dual gap estimates, which can also be seen in the proofs: the number of required dual steps is
O(In(1/e)). In addition, note that ¢, is also an estimate for primal progress, roughly O(¢?) by smoothness; see (2).

(2): Assume WLOG that f is L-smooth of order ¢ = 2 and that the atoms have unit norm. It can be shown (see proofs)
that the progress f(z;) — f(2441) is at least (V f(2¢), v¢)? /2L for a full step, (V f(z¢), vf*5)2 /2L for a constrained
step, and (V f(x;),vf")? /2L in GMP. Since ¢, is a (scaled) estimation of (V f(z;),vi™), the criterion L5 in Alg. 3
tests whether a constrained step would yield progress within a multiplicative factor to that of a GMP step, and this
without adding a new atom (hence preserving sparsity). The second test at L11-12 for deciding between a full step
(which is a GMP step with a weak-separation oracle) and a dual step is discussed above.

[Reviewer #1] 1. for loops: Indeed these are the typical example of poor Python performance. However, we compare
all methods using the same code framework and we suspect the results to differ only by a constant factor from those
using numba. We will provide evidence of this and modify the code to adapt to numba.

2. Data generation: We reproduced the CoGEnT experiments for comparison purposes, where the data is generated
using i.i.d. Gaussians and the design can be near orthogonal indeed. However we are in the process of conducting
additional experiments with more complex structures. These will be added in the revised version once all is finalized.
3. L15: Sparsity of the solution is indeed what is important however, in some applications, it is not necessarily the last
iterate: an earlier iterate might be selected as solution as it might provide better test error and avoid overfitting (early
stopping). Note that the lasso regularization or the ¢;-ball constrained method also maintain sparsity at each iterate.
4. L35: Agreed, we mean that BMP does not require RIP or incoherence properties for its convergence to be analyzed.
5. Fact 2.1: Yes the cited paper [Nemirovskii and Nesterov, 1985] mentions such a result, we will provide the reference.
6. L83: Indeed, we will specify that we assume the function to be smooth.

7. About ¢;: Please see General.

8. Code not working: We used underscores in the case where some values can be ignored when unpacking, e.g., a,
_, ¢ = (1, 2, 3), and this raised an error on your machine. We prepared an online version at https://colab.
research.google.com/drive/1VpVET2_lw6kEXttRabIfpHdFiwo4Hp1V. Apart from Figure 2, each experiment
takes an average total ~15 minutes to run. The time limit can be reduced by setting time_tol (in seconds) to a lower
value; time_tol is set at the beginning of each experiment.

9. L97: Indeed the correct spelling is Lojasiewicz. L152: Yes we could use \;; since the correction option L.22 is never
used in our experiments. L66: We will remove the H* notation and simply use argmin,, f.

[Reviewer #2] 1. The coordinate-like steps correspond to the full steps x¢y1 < x4 + yv; (L17), where a step is taken
in the direction of an atom. This reduces to a coordinate step if the atoms are the canonical vectors (in finite dimension)

+es,...,xe,. The gradient descent steps are the constrained steps xi11 < x¢ — 7V f(x¢) (L7).

2. Actually span(D) = H by definition of D. There is no need to address the case span(D) C H as a simple reduction
‘H < span(D) would yield the same analyses.

3. Yes we will remove the H* notation and simply use argming, f.

4. We have no evidence of this and it is an open problem we are interested in.

5. Indeed we could comment, e.g., that the rate derived is the same as that of the sharp case, up to a constant factor.
Note however that the sharp case subsumes the strongly convex case as mentioned L83-85, L.95-96, and L221-223.

6. The term “lazified” comes from the cited paper [Braun et al., 2017].

[Reviewer #3] Please see General.

https://colab.research.google.com/drive/1VpVET2_lw6kEXttRabIfpHdFiwo4Hp1V
https://colab.research.google.com/drive/1VpVET2_lw6kEXttRabIfpHdFiwo4Hp1V
https://colab.research.google.com/drive/1VpVET2_lw6kEXttRabIfpHdFiwo4Hp1V

