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1 Proofs

Proof of Theorem 3.2. For notational simplicity, we assume that the base measure, µ, is Lebesgue.
The density of the KNG mechanism can then be expressed as

fn(θ) = c−1n exp

{
−ε

2∆(θ̂ + z/n)
‖∇`n(θ)‖K

}
,

where cn is the normalizing constant. Define the random variable Z = n(θ̃ − θ̂), then its density is
given by

fn(z) = c−1n n−1 exp

{
−ε

2∆(θ̂ + z/n)
‖∇`n(θ̂ + z/n)‖K

}
.

Using a one term Taylor expansion, we have by Assumption (2) and (3) that

∇`n(θ̂ + z/n) = ∇`n(θ̂) + Hn(θ̂)z/n+ op(1)

= Hn(θ̂)z/n+ op(1),

where Hn(θ) is the Hessian matrix of `n evaluated at θ. Recall that

cnn =

∫
exp

{
ε

2∆(θ̂ + z/n)

(
−‖∇`n(θ̂ + z/n)‖K

)}
dz.

By Assumption (1), `n is strongly convex and thus

1

∆(θ̂ + z/n)

〈
∇`n(θ̂ + z/n)−∇`n(θ̂), z/n

〉
≥ nα

∆
‖z/n‖22.

Combining the Cauchy-Schwartz inequality with the fact that∇`n(θ̂) = 0 implies

1

∆(θ̂ + z/n)
‖∇`n(θ̂ + z/n)‖2 ≥

nα

∆
‖z/n‖2.

By the equivalence of norms on Rd, we have that

−1

∆(θ̂ + z/n)
‖∇`n(θ̂ + z/n)‖K ≤

−Cα
∆
‖z‖2,

for some constant C. Since exp{−‖z‖2} is integrable, we can apply the dominated convergence
theorem to conclude that the constants converge to a nonzero and finite quantity. Since ∆(θ) is
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continuous in θ, we also have that ∆(θ̂ + z/n) → ∆(θ∗). Putting everything together, we can
conclude that

fn(z)→ f(z) ∝ exp

{
−ε

2∆(θ∗)
‖Σ−1z‖K

}
,

which is the density of the K-norm mechanism. Applying Scheffe’s Theorem, we thus have both
convergence in distribution as well as convergence in total variation to a K-norm mechanism

2 Linear Regression

2.1 Exponential Mechanism

Our objective function is `(θ;D) =
∑n
i=1(yi − x>i θ)2. For the exponential mechanism, we need to

bound the sensitivity of `(θ):

|`n(θ;D)− `n(θ;D′)| = |(y1 − x>1 θ)2 − (y2 − x>2 θ)2|
≤ sup
y1,x1,θ

(y1 − x>1 θ)2

≤ sup
x1,θ

(1 + |x>1 θ|)2

≤ sup
θ

(1 + ‖θ‖1)2

= (1 +B)2,

where we used the assumptions that ‖x1‖∞ ≤ 1, |y1| ≤ 1, and ‖θ∗‖1 ≤ B. The exponential
mechanism with objective function `(θ) draws θ from

fn(θ) ∝ exp

(
−ε

2(1 +B)2

n∑
i=1

(yi − x>i θ)2
)
,

with respect to the uniform measure on {θ | ‖θ‖1 ≤ B}.

2.2 Objective Perturbation

For objective perturbation, we use the version stated in Awan and Slavković [2018], which allows us
to use the same bound on the gradient as developed in subsection 4.2. Objective perturbation also
requires a bound on the eigenvalues of the hessian for one datapoint:

max eigenvalue(2x1x
>
1 ) ≤ trace(2x1x

>
1 )

= 2 trace(x>1 x1)

≤ 2

d∑
j=1

|x1j |2

≤ 2d.

Objective perturbation then draws a random vector b from the density f(b) ∝ exp
(
− ε

8(1+B)‖b‖∞
)

(a simple sampling algorithm for f(b) is stated in Awan and Slavković [2018]), and then finds the
optimum of the modified objective:

arg min
‖θ‖1≤1

`n(θ;D) +
γ

2
θ>θ + θ>b,

where γ = 2d
exp(ε/2)−1 . Since ` is convex, this new objective is also convex. We restrict the search

space of θ to {θ | ‖θ‖1 ≤ B}, since we assume that ‖θ∗‖ ≤ B for our bounds.
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3 Quantile Regression

3.1 Exponential Mechanism

Our objective function is `n(θ;D) =
∑n
i=1 ρτ (yi − x>i β). For the exponential mechanism we need

to assume additional bounds on the data as well as on θ∗. As in the linear regression case, we assume
that −1 ≤ yi ≤ 1, −1 ≤ xi ≤ 1, and ‖θ‖1 ≤ B. We bound the sensitivity of `n as

|`n(θ;D)− `n(θ;D′)| ≤ 2 |`n(θ;D)|
≤ sup
y1,x1,θ

2 max{τ, 1− τ}
∣∣y1 − x>1 θ∣∣

≤ 2 max{τ, 1− τ}(1 +B).

The exponential mechanism then samples from the density

fn(θ) ∝ exp

{
−ε

4 max{τ, 1− τ}(1 +B)
`n(θ;D)

}
.
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