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1 Proofs

Proof of Theorem 3.2. For notational simplicity, we assume that the base measure, p, is Lebesgue.
The density of the KNG mechanism can then be expressed as

fn(0) = ¢, exp {WW”V&L(@HK} ;

where ¢,, is the normalizing constant. Define the random variable Z = n(f — é), then its density is
given by
—€

fu(z)=c,'n” eXp{mWHVKn(@—i—Z/n)HK}.

Using a one term Taylor expansion, we have by Assumption (2) and (3) that
V(0 + z/n) = Vi, (0) + H,(0)2/n + 0,(1)
= H'rt(é)z/n + 0p(1),

where H,,(0) is the Hessian matrix of ¢,, evaluated at 6. Recall that

can = /exp{m(éiz/n) (—|V€n(é+z/n)|K)} dz.

By Assumption (1), ¢,, is strongly convex and thus
1

- - ) z/n) — ) z/n ne 2/nl|2.
XG5 o (V4 2/m) = Vea(@).2/m) 2 T/l

Combining the Cauchy-Schwartz inequality with the fact that V(n(é) = 0 implies

1 - no
—— ||Vl (0 + z/n)||2 > —||z/n]|2.
s VO 2/l = e/l
By the equivalence of norms on R, we have that
-1 A —Ca
— ||V, (0 + 2/ < Z|l2;
A(9+z/n)” (0 +z/n)lx 1]l

for some constant C'. Since exp{—||z||2} is integrable, we can apply the dominated convergence
theorem to conclude that the constants converge to a nonzero and finite quantity. Since A(0) is
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continuous in @, we also have that A(f + z/n) — A(0*). Putting everything together, we can
conclude that

Ful2) = f(2) x exp {QA(Z*)WI’Z”K} ,

which is the density of the K-norm mechanism. Applying Scheffe’s Theorem, we thus have both
convergence in distribution as well as convergence in total variation to a K -norm mechanism O

2 Linear Regression

2.1 Exponential Mechanism

Our objective function is £(6; D) = Y"1 | (y; — .} 8). For the exponential mechanism, we need to
bound the sensitivity of £(6):
[62(05 D) = £,(6; D")| = |(y1 — 21 ) = (y2 — 25 0)?|

< sup (y1 — 1 0)°
y1,21,0
< sup(1 + [z 0])

Z179

< stalp(l +116]11)?
= (1+ B)?,

where we used the assumptions that ||z1||cc < 1, |y1] < 1, and ||#*||; < B. The exponential
mechanism with objective function £(6) draws 6 from

Fn(0) x exp (2(1—_|—EB)2 Z(yZ - m:6)2> 7

i=1

with respect to the uniform measure on {6 | ||0]; < B}.

2.2 Objective Perturbation

For objective perturbation, we use the version stated in|Awan and Slavkovic| [2018]], which allows us
to use the same bound on the gradient as developed in subsection 4.2. Objective perturbation also
requires a bound on the eigenvalues of the hessian for one datapoint:

max eigenvalue(2z, 2, ) < trace(2z1z )

= 2trace(z] 1)

d
<2) Jayyl
j=1

< 2d.

Objective perturbation then draws a random vector b from the density f(b) o exp (— EeEnz) ||b\|oo>

(a simple sampling algorithm for f(b) is stated in/Awan and Slavkovic| [2018]]), and then finds the
optimum of the modified objective:

: YT T
-D s
argl‘gllrlllugllén(& )+29 0+0'0,

where v = ﬁ. Since ¢ is convex, this new objective is also convex. We restrict the search

space of 6 to {0 | ||0]|1 < B}, since we assume that ||6*|| < B for our bounds.



3 Quantile Regression

3.1 Exponential Mechanism

Our objective function is £,,(6; D) = >_i"_ | p;(y; — x; B). For the exponential mechanism we need
to assume additional bounds on the data as well as on §*. As in the linear regression case, we assume
that —1 <y; <1,—-1 < z; <1, and ||#]|; < B. We bound the sensitivity of ¢, as

|€,,(0; D) — £,(0; D")| < 26,(0; D)|

< sup 2max{r,1—7}|y — x] 0
y1,21,0

< 2max{r,1—7}(1+ B).
The exponential mechanism then samples from the density

—€

4max{r,1—7}(1+ B)

fn(0) o< exp { £,(6; D)} .
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