
7 Supplementary Material

7.1 Proof of Proposition 2

Proof. The proof is a simpler, two-step variation of that of [5], which we refer to for additional details.
For all " � 0, let ⇡" be the optimal plan for d2P"

, and suppose there exists ⇡ such that ⇡" * ⇡ (which
is possible up to subsequences). By definition of ⇡", we have that

8" � 0,

Z
d2P"

d⇡" 
Z

d2P"
d⇡MK.

Since d2P"
converges locally uniformly to d2VE

def
=(x, y) ! (x � y)>VEV>

E(x � y), we get
R
d2VE

d⇡ 
R
d2VE

d⇡MK. But by definition of ⇡MK, (⇡MK)E
def
=(pE , pE)]⇡MK is the optimal transport

plan on E, therefore the last inequality implies ⇡E = (⇡MK)E .

Next, notice that the ⇡"’s all have the same marginals µE , ⌫E on E and hence cannot perform better
on E than ⇡MK. Therefore,Z

E⇥E
d2VE

d(⇡MK) + "

Z
d2VE?

d⇡" 
Z

d2P"
d⇡"


Z

d2P"
d⇡MK

=

Z

E⇥E
d2VE

d(⇡MK)E + "

Z
d2VE?

d⇡MK.

Hence, passing to the limit,
R
d2VE?

d⇡ 
R
d2VE?

d⇡MK. Let us now disintegrate this inequality on
E ⇥ E (using the equality ⇡E = (⇡MK)E):Z Z

E?⇥E?
d2VE?

d⇡(xE ,yE)d(⇡MK)E 
Z Z

E?⇥E?
d2VE?

d(⇡MK)(xE ,yE)d(⇡MK)E .

Again, by definition, for (xE , yE) in the support of (⇡MK)E , (⇡MK)(xE ,yE) is the optimal transporta-
tion plan between µxE and ⌫yE , and the previous inequality implies ⇡(xE ,yE) = (⇡MK)(xE ,yE) for
(⇡MK)E-a.e.(xE , yE), and finally ⇡ = ⇡MK. Finally, by the a.c. hypothesis, all transport plans ⇡"

come from transport maps T", which implies T" ! TMK in L2(µ). ⌅

7.2 Proof of Proposition 3

Proof. Let X ⇢ Rd be a compact, µ, ⌫ 2 P(X) be two a.c. measures, E a k-dimensional subspace
which we identify w.l.o.g. with Rk and ⇡MI 2 P(Rd ⇥ Rd) as in Definition 2. For n 2 N, let
µn = 1

n

Pn
i=1 �xi , ⌫n = 1

n

Pn
i=1 �yi where the xi (resp. yi) are i.i.d. samples from µ (resp. ⌫).

Let tn : Rk ! Rk be the Monge map from the projection on E (pE)]µn of µn to that of ⌫n, and
⇡n

def
=(Id, tn)][(pE)]µn].

Up to points having the same projections on E (which under the a.c. assumption is a 0 probability
event), tn can be extended to a transport between µn and ⌫n , whose transport plan we will denote
�n.

Let f 2 Cb(X⇥X). Since we are on a compact, by density (given by the Stone-Weierstrass theorem)
it is sufficient to consider functions of the form

f(x1, ..., xd; y1, ..., yd) = g(x1, ..., xk; y1, ..., yk)h(xk+1, ..., xd; yk+1, ..., yd).

We will use this along with the disintegrations of �n on E ⇥ E (denoted (�n)x1:k,y1:k , (x1:k, y1:k) 2
E ⇥ E) to prove convergence:Z

X⇥X
fd�n =

Z

X⇥X
g(x1:k, y1:k)h(xk+1:d, yk+1:d)d�n

=

Z

E⇥E
g(x1:k, y1:k)d⇡n

Z
h(xk+1:d, yk+1:d)d(�n)x1:k,y1:k

=

Z

E⇥E
g(x1:k, y1:k)d⇡n

Z
h(xk+1:d, yk+1:d)d(µn)x1:kd(⌫n)tn(x1:k).
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Then, we use (i) the Arzela-Ascoli theorem to get uniform convergence of tn to TE to get
d(⌫n)tn(x1:k) * d(⌫)TE(x1:k) and (ii) the convergence ⇡n * (pE , pE)](⇡MI) to get

Z

E⇥E
g(x1:k, y1:k)d⇡n

Z
h(xk+1:d, yk+1:d)d(µn)x1:kd(⌫n)tn(x1:k)

!
Z

E⇥E
g(x1:k, y1:k)d(pE , pE)](⇡MI)

Z
h(xk+1:d, yk+1:d)d(µ)x1:kd(⌫)TE(x1:k)

=

Z

X⇥X
fd⇡MI,

which concludes the proof in the compact case. ⌅

7.3 Proof of Proposition 4

Proof. Let TE : A
� 1

2
E (A

1
2
EBEA

1
2
E)

1
2A

� 1
2

E be the Monge map from µE
def
=(pE)]µ and ⌫E

def
=(pE)]⌫.

Let

V =

 | | | |
v1 . . . vk vk+1 . . . vd
| | | |

!
= (VE VE?) 2 Rd⇥d,

where (v1 . . . vk) is an orthonormal basis of E and (vk+1 . . . vd) an orthonormal basis of E?. Let
us denote XE

def
= pE(X) 2 Rk and mutatis mutandis for Y,E?. Denote AE = pEAp>E ,AE? =

pE?Ap>E? ,AEE? = pEAp>E? . With these notations, we decompose the derivation of E[XY >]
along E and E?:

E[XY >] = E[VEXE(VEYE)
>] + E[VE?XE?(VE?YE?)>]

+ E[VE?XE?(VEYE)
>]

+ E[VEXE(VE?YE?)>].

We can condition all four terms on XE , and use point independence given coordinates on E which
implies (YE |XE) = XE . The constraint YE = TEXE allows us to derive E [YE? |XE ]: indeed, it
holds that

✓
YE

YE?

◆
⇠ N

✓
0d,

✓
BE BEE?

B>
EE? BE?

◆◆
,

which, using standard Gaussian conditioning properties, implies that

E [YE? |YE = TEXE ] = B>
EE?B�1

E TEXE ,

and therefore

E [YE? |PE(Y ) = TEXE ] = VE?B>
EE?B�1

E V>
ETEXE .

Likewise,

E [XE? |PE(X)] = VE?A>
EE?A�1

E V>
EXE .

We now have all the ingredients necessary to the derivation of the four terms of E[XY >]:
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E[VEXEY
>
E V>

E ] = VEEXE

⇥
E
⇥
XEY

>
E |XE

⇤⇤
V>

E

= VEEXE

⇥
XEE

⇥
Y >
E |XE

⇤⇤
V>

E

= VEEXE

⇥
XEX

>
ET>

E

⇤
V>

E

= VEEXE

⇥
XEX

>
E

⇤
T>

EV
>
E

= VEAETEV
>
E

E[VEXEY
>
E?V>

E? ] = VEEXE

⇥
E[XEY

>
E? |XE

⇤
V>

E?

= VEEXE

⇥
XEE

⇥
Y >
E? |XE = TEXE

⇤⇤
V>

E?

= VEEXE

h
XE

�
VE?B>

EE?B�1
E V>

ETEXE)
�>i

V>
E?

= VEEXE

⇥
XEX

>
E

⇤
T>

EVEB
�>
VE

BVEE?V>
E?

= VEAETEVEB
�1
E BVEE?V>

E?

= VEAETEVEB
�1
E V>

EBEE?V>
E?

E[VE?XE?Y >
E V>

E ] = VE?EXE

⇥
E[XE?Y >

E |XE

⇤
V>

E

= VE?EXE

⇥
E [XE? |XE ]X

>
ET>

E

⇤
V>

E

= VE?EXE

⇥
A>

EE?A�1
E XEX

>
ET>

E

⇤
V>

E

= VE?VE?A>
EE?A�1

E V>
EATEV

>
E

= VE?VE?A>
EE?TEV

>
E

= VE?A>
EE?TEV

>
E

E[VE?XE?Y >
E?V>

E? ] = VE?EEXE [E[XE? |XE ]E
⇥
Y >
E? |XE

⇤
V>

E?

= VE?EXE

⇥
VE?A>

EE?A�1
E V>

EXEX
>
ET>

EVEB
�>
VE

BEE?
⇤
V>

E?

= VE?A>
EE?A�1

E V>
EAETEVEB

�1
E BEE?V>

E?

= VE?A>
EE?TEB

�1
E BEE?V>

E?

= VE?A>
EE?TEVEB

�1
VE

V>
EBEE? ,

Let � def
= N (02d,⌃⇡E ). �, is well defined, since ⌃⇡E is the covariance matrix of ⇡E and is thus PSD.

From then, � clearly has marginals N (0d,A) and N (0d,B), and is such that (pE , pE)]� is a centered
Gaussian distribution with covariance matrix

✓
pE 0d⇥d

0d⇥d pE

◆✓
A E⇡[XY >]

E⇡[Y X>] B

◆✓
pE 0d⇥d

0d⇥d pE

◆
=

✓
AE AETE

TEAE BE

◆
,

where we use that pEpE = pE and pEpE? = 0. From the k = d case, we recognise the covariance
matrix of the optimal transport between centered Gaussians with covariance matrices AE and BE ,
which proves that the marginal of � over E ⇥ E is the optimal transport between µE and ⌫E .

To complete the proof, there remains to show that the disintegration of � on E ⇥E is the product law.
Denote

C
def
= E[XY >]

= VEAETE

�
V>

E + (BE)
�1V>

EBEE?
�
+VE?AE?ETVE

�
V>

E + (BVE )
�1V>

EBEE?
�

= (VEAE +VE?AE?E)TE

�
V>

E + (BE)
�1BEE?V>

E?

�
,
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and let ⌃⇡MI =

✓
A E[XY >]

E[Y X>] B

◆
as in Prop. 4. It holds that

CE
def
= V>

ECVE = AETE

CE?
def
= V>

E?CVE = AE?ETE(BE)
�1BEE?

CEE?
def
= V>

ECVE? = AETE(BE)
�1BEE?

CE?E
def
= V>

E?CVE = AE?ETE .

Therefore, if (X,Y ) ⇠ �, then

Cov

0

B@

XE?

YE?

XE

YE

1

CA =

0

B@

AE? CE? AE?E CE?E

CE? BE? C>
EE? BE?E

AEE? CEE? AE CE

C>
E?E BEE? CE BE

1

CA ,

and therefore

Cov

✓
XE? |XE

YE? |YE

◆
=

✓
AE? CE?

CE? BE?

◆
�
✓
AE?E CE?E

C>
EE? BE?E

◆✓
AE CE

CE BE

◆†✓
AEE? CEE?

C>
E?E BEE?

◆
,

where M† denotes the Moore-Penrose pseudo-inverse of M. In the present case, one can check that

✓
AE CE

CE BE

◆†
=

1

4

✓
A�1

E A�1
E T�1

E
T�1

E A�1
E B�1

E

◆
,

which gives, after simplification

✓
AE?E CE?E

C>
EE? BE?E

◆✓
AE CE

CE BE

◆†✓
AEE? CEE?

C>
E?E BEE?

◆
=

✓
AE?EA

�1
E AEE? CE?

CE? BE?EB
�1
E BEE?

◆
,

and thus

Cov

✓
XE? |XE

YE? |YE

◆
=

✓
AE? �AE?E(AE)�1AEE? 0d

0d BE? �BE?E(BE)�1BEE?

◆

=

✓
Cov(XE? |XE) 0d

0d Cov(YE? |YE)

◆
,

that is, the conditional laws of XE? given XE and YE? given YE are independent under �.

⌅
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