
A QMIX Architecture

(a) (b) (c)
Figure 8: The overall setup of QMIX, reproduced from the original paper [40] (a) Mixing network structure. In
red are the hypernetworks that produce the weights and biases for mixing network layers shown in blue. (b) The
overall QMIX architecture. (c) Agent network structure. Best viewed in colour.

B Proofs

B.1 Uniform visitation

Theorem 1. For n player, k � 3 action matrix games (|A| = n, |U | = k), under uniform visitation;

Q
qmix

learns a �-suboptimal policy for any time horizon T , for any 0 < �  R
hq

a(b+1)
a+b

� 1

i
for

the payoff matrix given by the template below, where b =
P

k�2
s=1

�
n+s�1

s

�
, a = kn � (b+ 1), R > 0:

2

6664

R+ � 0 . . . R

0

. .
.

... . .
. ...

R . . . R

3

7775

Proof. For single state MDPs, under uniform visitation of the joint state-action space, QMIX can be
seen as minimising the mean squared error between the actual Q-values and the monotonic projection
Q

qmix

. Using the symmetry of the problem and an exchange argument, it can be shown that only the
monotonic projections of the following form need to be considered:

2

6664

x3 x2 . . . x1

x2 . .
.

... . .
. ...

x1 . . . x1

3

7775

where X , (x1, x2, x3). Consequently, there are two cases for the monotonic approximations. We
refer to them as M1 and M2 corresponding to x1 � x2 � x3 and x1  x2  x3 cases respectively.
The optimization problem for M1 is:

M1 :

minimise
X

a(x1 �R)

2
+ bx2

2 + (x3 � (R+ �))2

s.t. x2 � x1  0

x3 � x2  0

13

where b =

P
k�2
s=1

�
n+s�1

s

�
, a = kn � (b + 1) are the coefficients corresponding to the number of

entries for the general n player, k action game (having kn entries). It is thus evident that the above
problem is a quadratic program and is indeed convex [4] as the Hessian of the objective diag(a, b, 1)
is positive definite. The Largrangian is given by:

L(X,�1,�2) = a(x1 �R)

2
+ bx2

2 + (x3 � (R+ �))2 + �1(x2 � x1) + �2(x3 � x2)

where �1,�2 are the dual variables. Moreover, the above problem also satisfies Slater’s conditions
which implies that KKT conditions are necessary and sufficient for finding the primal and dual
optimal. By setting r

X

L = 0, we get:

�1 = 2a(x1 �R)

�2 = 2a(R+ � � x3)

x2 =

�2 � �1

2b

Using primal and dual feasibility constraints along with complementary slackness, we can see that
x1 = R, x2 = x3 =

R+�

1+b

is an optimal solution to M1 for �  bR with the optimal value for

the problem as OPT (M1) =

b(R+�)2

b+1 . By solving M2 in a similar way for the reversed primal
constraints x2 � x1 � 0, x3 � x2 � 0, we see that an optimal assignment is x1 = x2 =

aR

b+a

, x3 =

R+ � with the optimal value given by OPT (M2) =

R

2
ab

a+b

. Note that the solution to M1 corresponds
to the suboptimal policy of picking action corresponding to payoff R, whereas the solution to M2

corresponds to that of picking the optimal action with payoff R + � (as QMIX picks the action
corresponding to the maximal entry of a monotonic projection). For QMIX to learn the suboptimal
policy corresponding to M1, we require that OPT (M1)  OPT (M2). Consequently,

b(R+ �)2

b+ 1

 R2ab

a+ b

=) �  R
hra(b+ 1)

a+ b
� 1

i
(2)

B.2 ✏-greedy visitation

Theorem 2. For n player, k � 3 action matrix games, under ✏-greedy visitation ✏(t); Q
qmix

learns a �-suboptimal policy for any time horizon T with probability � 1�
⇣
exp(�T�

2

2) + (kn �

1) exp(� T�

2

2(kn�1)2)

⌘
, for any 0 < �  R

"r
a
⇣

�b

2(1��/2)(a+b) + 1

⌘
�1

#
for the payoff matrix given

by the template above, where b =
P

k�2
s=1

�
n+s�1

s

�
, a = kn � (b+ 1), R > 0 and � = ✏(T).

Proof. Given the exploration schedule ✏(t), let ✏(T) = � (which is the minimum value since ✏(t) is
decreasing in T). We reuse the machinery introduced in Appendix B.1 and provide an analysis which
is agnostic to the actions actually visited by considering the adversarial case for the maximum possible
� for which Q

qmix

fails. This happens precisely when QMIX is provided with the "best opportunity"
for learning the optimal policy (so that it visits the optimal action with probability 1 � ✏(t), 8t).
Therefore, the visitation frequencies we consider are : T�

k

n�1 for any suboptimal action and T (1� �)
for the optimal action. To compute the upper bound on �, we modify the objective for the quadratic
program in Appendix B.1 as XT diag(a0, b0, 1))X where a0 a�

(1��)(a+b) , b
0 b�

(1��)(a+b) in
accordance with our visitations. Next, using the same reasoning as in Eq. (2), we get that QMIX
learns the suboptimal policy for

0 < �  R

"vuuta

�b

(1� �)(a+ b)
+ 1

!
� 1

#
. (3)

Note that the upper bound of � in Eq. (3) is probabilistic in nature. Therefore, we provide a lower
bound on the probability of this by considering the RHS of Eq. (3) with � �/2 and bounding the

14

probability of deviation from the worst case visitation frequencies. By making use of the Hoeffding’s
lemma, we derive that:

P
h
empirical frequency of optimal� �T � T�

2

i
 exp(�T�2

2

),

P
h
empirical frequency of suboptimal� T�

kn � 1

 � T�

2(kn � 1)

i
 exp(� T�2

2(kn � 1)

2
).

Finally, by using the union bound, we conclude that with probability � 1�
⇣
exp(�T�

2

2) + (kn �

1) exp(� T�

2

2(kn�1)2)

⌘
, QMIX fails to learn the optimal policy for

0 < �  R

"vuuta

�b

2(1� �/2)(a+ b)
+ 1

!
� 1

#

B.3 Variational Mutual Information lower bound

Let the posterior over z be given by log(p(z|�(u, s))) and the variational approximation by
q
�

(z|�(u, s)))
J
MI

= H(�(u, s))�H(�(u, s)|z)
= H(z)�H(z|�(u, s)) {MI is symmetric}
= H(z) + E

�(u,s)[Ez

[log(p(z|�(u, s)))]] {Def. conditional entropy}
= H(z) + E

�(u,s)[Ez

[log(p(z|�(u, s)))� log(q
�

(z|�(u, s)) + log(q
�

(z|�(u, s))]]
= H(z) + E

�(u,s)[Ez

[log(q
�

(z|�(u, s))]] + E
�(u,s)[KL(p(z|�(u, s))||q

�

(z|�(u, s))]
� H(z) + E

�(u,s),z[log(q�(z|�(u, s)))] {KL is non negative}

C Experimental Setup

C.1 Architecture and Training

All agent are designed as Deep Recurrent Q-Networks [19]. At each time step, each agent network
receives a local observation as input, which is fed to a 64-dimensional fully-connected hidden layer,
followed by a GRU recurrent layer and a fully-connected layer with |U | outputs. To speed up
the learning, all agent networks share the same set of parameters. A one-hot encoded agent id is
concatenated to agent observations. The architectures for mixing and utility networks are the same as
in [40].

For all experiments we update the target networks after every 200 episodes. We set � = 0.99. The
optimisation is conducted using RMSprop with a learning rate of 5⇥ 10

�4 and ↵ = 0.99 with no
weight decay or momentum.

C.1.1 SMAC

Exploration for QMIX is performed during training during which each agent executes ✏-greedy policy
over its own actions. ✏ is annealed from 1.0 to 0.05 or 0.005 over 50k time steps and is kept constant
afterwards.

We utilise a replay buffer of the most recent 5000 environment steps. A single training step for a
batch of size 32 entire episodes is performed after every episodes.

We set Z = 16 for all the experiments. We set �
MI

= 0.001 and �
QL

= 1. Unless otherwise men-
tioned, all MAVEN experiments use the trajectory-based MI loss. We use an entropy regularisation
term with a coefficient of 0.001 for the hierarchical policy. We set the final value of ✏ to 0.05 for
MAVEN ans QMIX.

15

(a) Varying the values for Z (b) Policy returns for different Z

Figure 9: Performance with varying the number of latent variable categories

All SMAC experiments use the default reward and observation settings of the SMAC benchmark
[43].

We run all methods for 10 million environmental steps. This takes approximately 36 hours on a
NVIDIA GTX 1080Ti GPU for 12 random initializations.

C.1.2 m-step matrix games

All methods anneal ✏ from 1 to 0.01 over 100 timesteps and keep it constant afterwards.

A single training step for a batch of size 32 is conducted after every episode.

All methods are run for 100k timesteps.

For MAVEN we set Z = 16,�
MI

= 1,�
QL

= 1 and use an entropy regularisation term with a
coefficient of 0.001 for the hierarchical policy.

C.2 Additional plots & ablations

We also consider varying the number of categories for the discrete latent variable Fig. 9(a). While
the number of categories loosely correlates with performance, it was not always the case. For
micro_corridor, the results are inconclusive because they all use the same budget of gradient
updates, yielding two opposing factors that cancel out (more z’s vs. less training per z). Fig. 9(b)
gives the returns of the corresponding policies learnt.

(a) 2-corridors (b) 2s3z

(c) micro_corridor (d) micro_focus

Figure 10: Median test returns on SMAC scenarios.

16

	Introduction
	Background
	Analysis
	Methodology
	Experimental Results
	m-step matrix games
	StarCraft II

	Related Work
	Conclusion and Future work
	Acknowledgements
	QMIX Architecture
	Proofs
	Uniform visitation
	-greedy visitation
	Variational Mutual Information lower bound

	Experimental Setup
	Architecture and Training
	SMAC
	m-step matrix games

	Additional plots & ablations

