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[R3] “... larger networks provide better generalization": We not only show that larger networks provide better2

generalization capacity per se, but also provide rigorous studies about (1) the minimal inductive bias necessary to3

achieve high quality video prediction, (2) quantifying the gains resulting from each architectural component, and (3)4

quantifying the gains resulting from gradual increase in capacity. We show the progression and performance increase5

going from an encoder/decoder CNN (CNN); to adding a recurrent component (LSTM); to adding a recurrent stochastic6

component in the architecture (SVG). In addition, our study progressively increases the difficulty of the datasets to7

highlight how each of the models being studied perform at each level of difficulty (i.e., action conditioned prediction,8

action-free with static background, action-free with moving background). As highlighted by R1 and R4, although the9

idea that increasing capacity can be beneficial for model performance may not be a surprise, our paper is the first to10

successfully and comprehensively demonstrate and quantify this for video prediction over five different metrics. A lot11

of effort goes into discovering domain-specific architectures (e.g. using optical flow, segmentation masks, and other12

forms of inductive bias) – and we hope our work encourages the field to rethink about these aspects of scalability.13

[R3] “Datasets are relatively causality-explicit, and thus, not much uncertainty in prediction": While we agree14

that action conditioning limits the uncertainty for the BAIR experiments, there is still partial observability in the object15

interactions. The model has to hallucinate the unseen parts of the objects and also any stochasticity in the interaction16

which cannot be fully determined by observing the pixels (e.g., table friction). On the other hand, Human 3.6M and17

KITTI contain larger amounts of stochasticity. First, the actions in the Human 3.6M dataset are highly stochastic, that18

is, the human randomly decides to do different actions regardless of the label (e.g., "sitting" action randomly goes from19

sitting to getting up to walking). This makes the prediction not fully determined by the observations so the model has to20

choose one of the possible futures and predict it. Second, the driving data from KITTI is also highly stochastic due to21

strong partial observability. Given input frames from the driving scene, models need to be able to hallucinate the road22

and vehicles that are hidden by the horizon line caused. Having said that, we also agree that it is interesting to evaluate23

on datasets with higher uncertainties (though not as well established in the video prediction literature) and will try to24

include such results in the final version.25

[R3] Prediction accuracy depending on the context length: We ran experiments with history length of 5 and 1026

frames. We evaluated with the same data as in the submission (30 frames total), thus, we evaluate by predicting 2027

frames into the future so we can align the future frames for comparison. Due to space limitations, we cannot provide28

full sequence plots for the frame-wise evaluation, and so, we provide the average over all time steps. Also, due to time29

constraints, we trained the baseline (smallest) model with M=1 and K=1. We will add results for the biggest models in30

the final version. For similar reasons, we couldn’t run experiments on the robot dataset. However, since there is action31

conditioning on the robot dataset, context frames may be less influential. Overall, we observe that most of the metrics32

improve with more context frames—i.e., 7 out of 8 evaluation settings except for the case of FVD on Human3.6M (each33

row in the table corresponds to a combination of evaluation metric and dataset). We further expect that larger-sized34

models will perform better with longer context size and will report more comprehensive results in the final version.35

CNN models LSTM models SVG’ models
Dataset Metric history=5 history=10 history=5 history=10 history=5 history=10

Human 3.6M

PSNR (higher/better)
SSIM (higher/better)
Cos. Sim. (higher/better)
FVD (lower/better)

22.351
0.873
0.882

848.714

22.522
0.877
0.881

890.270

22.927
0.886
0.898

616.474

23.108
0.894
0.903

572.628

22.841
0.887
0.899

565.952

23.399
0.891
0.902

693.561

KITTI driving

PSNR (higher/better)
SSIM (higher/better)
Cos. Sim. (higher/better)
FVD (lower/better)

11.325
0.261
0.465

2921.798

11.585
0.263
0.475

2871.245

13.988
0.37

0.597
2063.228

14.522
0.405
0.617

2127.124

14.262
0.389
0.600

2151.003

14.516
0.408
0.621

2021.726

[R1, R4] Comparison with SOTA Architectures: SAVP is a competitive video prediction model that combines36

many of the previously proposed methods (optical flow, adversarial losses, masks) but it also requires significant37

hyperparameter tuning. Although SAVP achieved strong results on (relative easy) BAIR Robot Pushing and KTH38

datasets, it has not been demonstrated on more complex datasets (e.g., BAIR Towel-Pick and Human3.6M are much39

more challenging than BAIR Robot Pushing and KTH, respectively). In our initial experiments based on the authors’40

implementation of SAVP, our large-scale models outperformed SAVP. We will further verify this with additional41

hyperparameter tuning for SAVP and report the results, but as of now, there is no evidence that SAVP (without scaling42

up) can be competitive to our best performing large-scale models on these challenging datasets. Scaling up SAVP could43

be interesting future work, but it may be nontrivial due to the complexity of the architecture and hyperparameter tuning.44

[R1] Model capacity comparisons in main text: Thanks, we will fit the primary capacity results in the main paper.45


