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Abstract

Providing feedback is an integral part of teaching. Most open online courses on
programming make use of automated grading systems to support programming
assignments and give real-time feedback. These systems usually rely on test
results to quantify the programs’ functional correctness. They return failing tests
to the students as feedback. However, students may find it difficult to debug their
programs if they receive no hints about where the bug is and how to fix it. In this
work, we present NeuralBugLocator, a deep learning based technique, that can
localize the bugs in a faulty program with respect to a failing test, without even
running the program. At the heart of our technique is a novel tree convolutional
neural network which is trained to predict whether a program passes or fails a given
test. To localize the bugs, we analyze the trained network using a state-of-the-art
neural prediction attribution technique and see which lines of the programs make
it predict the test outcomes. Our experiments show that NeuralBugLocator is
generally more accurate than two state-of-the-art program-spectrum based and one
syntactic difference based bug-localization baselines.

1 Introduction

Automated grading systems for student programs both check the functional correctness of assignment
submissions and provide real-time feedback to students. The feedback helps students learn from
their mistakes, allowing them to revise and resubmit their work. In the current practice, automated
grading systems rely on running the submissions against a test suite. The failing tests are returned
to the students as feedback. However, students may find it difficult to debug their programs if they
receive no hints about where the bug is and how to fix it. Although instructors may inspect the code
and manually provide such hints in a traditional classroom setting, doing this in an online course
with a large number of students is often infeasible. Therefore, our aim in this work is to develop an
automated technique for generating feedback about the error locations corresponding to the failing
tests. Such a technique benefits both instructors and students by allowing instructors to automatically
generate hints for students without giving away the complete solution.

Towards this, we propose a deep learning based semantic bug-localization technique. While running
a program against a test suite can detect the presence of bugs in the program, locating these bugs
requires careful analysis of the program behavior. Our proposed technique can localize the bugs in
a buggy program with respect to a failing test, without even running the program. It works in two
phases. In the first phase, we train a novel tree convolutional neural network to predict whether or
not a program passes a given test. The input to this network is a pair of a program and a test ID. In
the second phase, we query a state-of-the-art neural prediction attribution technique [25] to find out
which lines of a buggy program make the network predict the failure to localize the bugs. We call our
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Figure 1: Overview of NBL. The buggy lines
in the input programs are represented by dashed
lines. We omit test IDs from the input for brevity.
The forward black arrows show the neural net-
work prediction for each input. The thick gray
arrows and ovals show the prediction attribution
back to the buggy input programs leading to bug-
localization.

1. #include <stdio.h>
2. int main(){
3. char c;
4. scanf("%c", &c);
5. if('A'<=c && c<='Z'){
6. printf("%c", c+('a'-'A'));}
7. else if ('a'<=c && c<='z'){
8. printf("%c", c-('a'-'A'));}
9. else if(0<=c && c<=9){
10. printf("%d", 9-'c');}
11. else{               
12. printf("%c", c);}
13. return 0;}

Figure 2: Example to illustrate the NBL ap-
proach. The program shown has bugs at lines
9 and 10 (shown in bold). The top-5 suspi-
cious lines returned by NBL for this program
are marked using a heat-map where darker color
indicates higher suspiciousness score.

technique NeuralBugLocator or NBL in short. Figure 1 shows the overview of NBL. Figure 2 shows
NBL in action on a buggy student submission with respect to a failed test. For a given character c, the
programming task for this submission requires as output the character obtained by reversing its case
if c is a letter of the alphabet, or 9− c if it is a digit, otherwise c itself. The illustrated submission
mishandles the second case in lines 9 and 10 and prints the same digit as the input.

Prediction attribution techniques are employed for attributing the prediction of a deep network to its
input features. For example, for a multi-class image recognition network, a prediction attribution
technique can identify the pixels associated with the given class in the given image, and thus can
be used for object-localization in spite of being trained on image labels only. Our work introduces
prediction attribution for semantic bug-localization in programs.

Bug-localization is an active field of research in software engineering [29]. Spectrum-based bug
localization approach [14, 2] instruments the programs to get program traces corresponding to both
the failing and the passing tests. In order to locate the bugs in a program, it compares the program
statements that are executed in failing test runs against those that are executed in passing test runs.
While spectrum-based bug-localization exploits correlations between executions of the same program
on multiple tests, our technique exploits similarities and differences between the code of multiple
programs with respect to the same test. In this way, the former is a dynamic program analysis
approach, whereas the latter is a static program analysis approach.

The existing static approaches for bug-localization in student programs compare a buggy program with
a reference implementation [15, 16]. However, the buggy program and the reference implementation
can use different variable names, constant values, and data and control structures, making it extremely
difficult to distinguish bug inducing differences from the benign ones. Doing this requires the
use of sophisticated program analysis techniques along with heuristics, which may not work for a
different programming language. In contrast, NBL does not require any heuristics and therefore, is
programming language agnostic.

Use of machine learning in software engineering research is not new. Several recent works proposed
deep learning based techniques for automated syntactic error repair in student programs [11, 6, 3, 13].
Bugram [28] is a language model based bug-detection technique. Pu et al. [21] propose a deep
learning based technique for both syntactic and semantic error repair in small student programs.
Their technique uses a brute-force, enumerative search for detecting and localizing bugs. Another
recent work [26] proposed a multi-headed LSTM pointer network for joint localization and repair of
variable-misuse bugs. In contrast, ours is a semantic bug-localization technique, which learns to find
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the location of the buggy statements in a program. Unlike these approaches, our technique neither
requires explicit bug-localization information for training nor does it perform a brute-force search.
Instead, it trains a neural network to predict whether or not a program passes a test and analyses
gradients of the trained network for bug-localization. Moreover, our technique is more general and
works for all kinds of semantic bugs. To the best of our knowledge, we are the first to propose a
general deep learning technique for semantic bug-localization in programs w.r.t. failing tests.

We train and evaluate NBL on C programs written by students for 29 different programming tasks in
an introductory programming course. The dataset comes with 231 instructor written tests for these
tasks. Thus, programs for each task are tested against about 8 tests on an average. We compare NBL
with three baselines which include two state-of-the-art, program-spectrum based techniques [14, 2]
and one syntactic difference based technique. Our experiments demonstrate that NBL is more
accurate than them in most cases. The main contributions of this work are as follows:

1. It proposes a novel encoding of program ASTs and a tree convolutional neural network that
allow efficient batch training for arbitrarily shaped trees.

2. It presents the first deep learning based general technique for semantic bug-localization in
programs. It also introduces prediction attribution in the context of programs.

3. The proposed technique is evaluated on thousands of buggy C programs with encourag-
ing results. It successfully localized a wide variety of semantic bugs, including wrong
conditionals, assignments, output formatting and memory allocation, among others.

4. We provide both the dataset and the implementation of NBL online at https://bitbucket.
org/iiscseal/nbl/.

2 Background: prediction attribution

Prediction attribution techniques attribute the prediction of a deep network to its input features.
For our task of bug-localization, we use a state-of-the-art prediction attribution technique called
integrated gradients [25]. This technique has been shown to be effective in domains as diverse as
object recognition, medical imaging, question classification, and neural machine translation among
others. In Section 3.2, we explain how we leverage integrated gradients for bug-localization in
programs. Here we describe this technique briefly. For more details, we refer our readers to the work
of Sundararajan et al. [25].

When assigning credit for a prediction to a certain feature in the input, the absence of the feature is
required as a baseline for comparing outcomes. This absence is modeled as a single baseline input on
which the prediction of the neural network is “neutral" i.e., conveys a complete absence of signal.
For example, in object recognition networks, the black image can be considered as a neutral baseline.
Integrated gradients technique distributes the difference between the two outputs (corresponding to
the input of interest and the baseline) to the individual input features.

More formally, for a deep network representing a function F : Rn → [0, 1], input x ∈ Rn, and
baseline x′ ∈ Rn; integrated gradients are defined as the path integral of the gradients along the
straight-line path from the baseline x′ to the input x. For x and x′, the integrated gradient (IG) along
the ith dimension is defined as follows:

IGi(x) = (xi − x′i) ×
∫ 1

α=0

∂F (x′ + α(x− x′))

∂xi
dα

If F : Rn → R is differentiable almost everywhere, then it can be shown that:
n∑

i=1

IGi(x) = F (x)− F (x′)

If the baseline x′ is chosen in a way such that the prediction at the baseline is near zero (F (x′) ≈ 0),
then resulting attributions have an interpretation that ignores the baseline and amounts to distributing
the output to the individual input features. The integrated gradients can be efficiently approximated
via summing the gradients at points occurring at sufficiently small intervals along the straight-line path
from the baseline x′ to the input x, with m being the number of steps in the Riemman approximation
of the integral of integrated gradients [25].

IGapprox
i (x) = (xi − x′i)×

m∑
k=1

∂F (x′ + k
m
(x− x′)))

∂xi
× 1

m
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Figure 3: 3a: AST of the code snippet: int even = !(num%2). For each node, its visiting order is
also shown in the breadth-first traversal of the AST. 3b: 2D matrix representation of the AST shown
in Figure 3a. The matrix shows node positions instead of the nodes themselves to avoid clutter. For
example, the last row corresponds to the highlighted subtree from Figure 3a.

3 Technical details

We divide our bug-localization approach into two phases. In the first phase, we train a neural network
to predict whether or not a program passes the test corresponding to a given test ID. This is essentially
a classification problem with two inputs: program text and a test ID, where we have multiple passing
and failing programs (which map to different class labels) for each test ID. Though different programs
are used at the time of evaluation, they share test IDs with the training examples. Alternatively, this
can be thought of as task-conditional multi-task learning with test IDs identifying the tasks. In the
second phase, we perform bug-localization by identifying patterns that help the neural network in
correct classification. Note that the neural network is only given the test ID along with the program as
input. It is not provided with the actual inputs and the corresponding outputs of the tests as it does not
know how to execute programs. The learning is based only on the presence or absence of syntactic
patterns in the programs.

3.1 Phase 1: tree convolutional neural network for test failure prediction

Use of machine learning in software engineering research is not new [4]. Many existing works which
use machine learning algorithms on programs use recurrent neural networks (RNNs) [11, 26] and
convolutional neural networks (CNNs) [18]. Our initial experiments with multiple variants of both
RNNs and CNNs suggested the latter to be better suited for our task. CNNs are designed to capture
spatial neighborhood information in data, and are generally used with inputs having a grid-like
structure, such as images [9]. On their own, they may fail to capture the hierarchical structures
present in programs. To address this, Mou et al. [18] proposed tree based CNNs. However, the design
of their custom filter is difficult to implement and train as it does not allow batch computation over
variable-sized programs and trees. Therefore, we propose a novel tree convolutional network which
uses specialized program encoding and convolution filters to capture the tree structural information
present in programs, allowing us to not only batch variable-sized programs but also leverage the
well-optimized CNN implementations provided by popular deep learning frameworks.

Program encoding Programs have rich structural information, which is explicitly represented by
their abstract syntax trees (ASTs), e.g., see the AST shown in Figure 3a. Each node in an AST
represents an abstract construct in the program source code. We encode programs in such a way
that their explicit tree structural information is captured by CNNs easily. To do this, we convert the
AST of a program into an adjacency list-like representation as follows. First, we flatten the tree by
performing breadth-first traversal. In the second step, each non-terminal node in this flattened tree is
replaced by a list, with the first element in the list being the node itself, and the rest of the elements
being its direct children, the nodes being ordered from left to right. As terminal nodes do not hold
any structure by themselves, we discard them at this step.

Next, we convert this representation into a 2-dimensional matrix for feeding it to a CNN. We do this
by padding subtrees with dummy nodes to make them equisized across all programs in our dataset.
We also pad the programs with dummy subtrees to make each program have the same number of
subtrees. This way, each program is encoded into a 2D matrix of size max_subtrees × max_nodes,
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Figure 4: Tree convolution over the encoded program AST input. The input dimensions are s× t,
where s = max_subtrees and t = max_nodes. All three convolutional layers use ‘valid’ padding.

where max_subtrees and max_nodes denote the maximum number of subtrees, and the maximum
number of nodes in a depth-1 subtree across all programs in our dataset, respectively. Figure 3b
shows the 2D matrix representation for the AST shown in Figure 3a where 0 indicates padding. In
this representation, each row of the encoded matrix corresponds to a depth-1 subtree in the program
AST. Moreover, contiguous subsets of rows of an encoded matrix correspond to larger subtrees in the
program AST. Note that this encoding ensures that the tree structural information of a program is
captured by the spatial neighborhood of elements within a row of its encoded matrix; allowing us to
use CNNs with simple convolution filters to extract features from complete subtrees, and not just
from any random subset of nodes.

Next, we create a shared vocabulary across all program ASTs in our dataset. The vocabulary retains
all AST nodes such as non-terminals, keywords, and literals except for the identifiers (variable
and function names) without any modification. Identifiers are included in the vocabulary after
normalization. This is done by creating a small set of placeholders, and mapping each distinct
identifier in a program to a unique placeholder in our set. The size of the placeholder set is kept large
enough to allow this normalization for every program in our dataset. This transformation prevents the
identifiers from introducing rarely used tokens in the vocabulary.

Neural network architecture Given a pair of a program and a test ID as input, our learning
task is to predict the binary test result i.e., failure or success of the input program on the test
corresponding to the given test ID. To do this, we first encode the input program into its 2D matrix
representation as discussed above. Each element (node) of the matrix is then replaced by its index
in the shared vocabulary which is then embedded into a 32-dimensional dense vector using an
embedding layer. The output 3D tensor is then passed through a convolutional neural network to
compute a dense representation of the input program, as shown in Figure 4. The first convolutional
layer of our network applies filters over a single node at a time. The output is then passed through
two independent convolutional layers. The first of these two layers applies filters over one row with a
stride of one row. The filters for second one operate on three adjacent rows with a stride of three rows.
As discussed earlier, each row of the program encoding matrix represents a depth-1 subtree of the
program AST. This makes the last two convolutional layers detect features for one subtree, and three
subtrees at a time, respectively. The resulting features from both these layers are then concatenated to
get the program embedding. Next, we embed the test ID into a 5-dimensional dense vector using
another embedding layer. It is then concatenated with the program embedding and passed through
three fully connected non-linear layers to generate the binary result prediction. We call our model
tree convolutional neural network (TCNN).

3.2 Phase 2: prediction attribution for bug-localization

For a pair of a buggy program and a test ID, such that the program fails the test, our aim is to localize
the buggy line(s) in the program that are responsible for this failure. If our trained model predicts
the failure for such a pair correctly, then we can query a prediction attribution technique to assign
the blame for the prediction to the input program features to find these buggy line(s). As discussed
earlier, we use the integrated gradients [25] technique for this purpose.

In order to attribute the prediction of a network to its input, this technique requires a neutral baseline
which conveys the complete absence of signal. Sundararajan et al. [25] suggest black images for
object recognition networks and all-zero input embedding vectors for text based networks as baselines.
However, using an all-zero input embedding vector as a baseline for all the buggy programs does
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not work for our task. Instead, we propose to use a correct program similar to the input buggy
program (both syntactically and semantically) as a baseline for attribution. This works because
the correct program does not have any patterns which cause bugs and hence, conveys the complete
absence of the signal required for the network to predict the failure. Furthermore, we are interested in
capturing only those changes which introduce bugs in the input program and not the benign changes
which do not introduce any bugs. This justifies the use of a similar program as a baseline. Using a
very different correct program as a baseline would unnecessarily distribute the output difference to
benign changes which would lead to the undesirable outcome of localizing them as bugs.

For a buggy submission by a student, we find the baseline from the set of correct submissions by other
students, as follows. First, we compute the embeddings of all the correct programs using our tree
CNN. Then we compute the cosine distance of these embeddings from the buggy program embedding.
The correct program with the minimum cosine distance is used as the baseline for attribution.

The integrated gradient technique assigns credit values to each element of an embedded AST node,
which are then max-pooled to get the credit value for that node. As bug-localization techniques
usually localize bugs to the program lines, we further average the credit values for nodes to get the
credit values for each line in the program. The nodes corresponding to a line are identified using the
parser used to generate the ASTs. We interpret the credit value for a line as the suspiciousness scores
for that line to be buggy. Finally, we return a ranked list of program lines, sorted in decreasing order
of their suspiciousness scores.

4 Experiments

4.1 Dataset

For training and evaluation, we use student-written C programs for 29 different programming tasks
in an introductory programming course. The problem statements of these tasks are quite diverse,
requiring students to implement concepts such as simple integer arithmetic, array and string operations,
backtracking, and dynamic programming. Solving these require various language constructs such
as scalar and multi-dimensional array variables, conditionals, nested loops, recursion and functions.
Our dataset comes with the instructor provided test suite for each programming task. The dataset
contains a total of 231 tests across these 29 programming tasks. Note that we work only with the
tests written by the instructors of this course and do not write or generate any additional tests. Each
program in our dataset contains about 25 lines of code, on average. See Section 1 in the supplement
to this paper [12] for more details. A program is tested only against tests from the same programming
task it is written for. This is assumed in the discussion henceforth.

We have two classes of programs in our dataset, (1) programs which pass all the tests (henceforth,
correct programs), and (2) programs which fail and pass at least one test each (henceforth, buggy
programs). We observed that programs which do not pass even a single test to be almost entirely
incorrect. Such program do not benefit from bug-localization and hence we discard them. Now for
each test, we take a maximum of 700 programs that pass it (including buggy programs that fail on
other tests) and a maximum of 700 programs that fail it. Next, we generate subtrees for each of
these programs using pycparser [5]. To remove unusually bigger programs, we discard the last one
percentile of these programs arranged in the increasing order of their size. Across all the remaining
programs, max_nodes and max_subtrees come out to be 21 and 149, respectively. Pairing these
programs with their corresponding test IDs results in a dataset with around 270K examples. We set
aside 5% of this dataset for validation, and use the rest for training.

Evaluation dataset Evaluating bug-localization accuracy on a program requires the ground truth in
the form of bug locations in that program. As the programs in our dataset come without this ground
truth, we try to find that automatically by comparing the buggy programs to their corrected versions.
For this, we use Python’s difflib to find line-wise differences, colloquially referred to as the ‘diff’,
between buggy and correct programs. We do this for every pair of buggy and correct programs that
are solutions to the same programming task, and are written by the same student. Note that this is
only done to find the ground truth for evaluation. Our technique does not use the corrected version of
an incorrect program written by the same student. We include a buggy program in our evaluation
set only if we can find a correct program with respect to which its diff is smaller than five lines.
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Table 1: Comparison of NBL with three baseline techniques. Top-k denotes the number of buggy
lines reported in the decreasing order of their suspiciousness score.

Technique & Evaluation Localization Bug-localization result
Configuration metric queries Top-10 Top-5 Top-1

NBL
〈P, t〉 pairs 4117 3134 (76.12%) 2032 (49.36%) 561 (13.63%)
Lines 2071 1518 (73.30%) 1020 (49.25%) 301 (14.53%)
Programs 1449 1164 (80.33%) 833 (57.49%) 294 (20.29%)

Tarantula-1 Programs 1449
964 (66.53%) 456 (31.47%) 6 (0.41%)

Ochiai-1 1130 (77.98%) 796 (54.93%) 227 (15.67%)
Tarantula-* Programs 1449

1141 (78.74%) 791 (54.59%) 311 (21.46%)
Ochiai-* 1151 (79.43%) 835 (57.63%) 385 (26.57%)
Diff-based Programs 1449 623 (43.00%) 122 (8.42%) 0 (0.00%)

This gives us 2136 buggy programs containing 3022 buggy lines in our evaluation set. Pairing these
programs with their corresponding failing test IDs results in 7557 pairs.

In order to identify the buggy lines from the diff, we first categorize each patch appearing in the diff
into one of three categories: (1) insertion of correct line(s), (2) deletion of buggy line(s), and (3)
replacement of buggy line(s) with correct line(s). Next, we mark all the lines appearing in the deletion
and replacement categories as buggy. For the lines in the first category, we mark their preceding line
as buggy. For a program with a single buggy line, it is obvious that all the failing tests are caused
by that line. However, for the programs with multiple buggy lines, we need to figure out the buggy
line(s) corresponding to each failing test. We do this as follows.

For a buggy program and its diff with the correct implementation, first we create all possible partially
corrected versions of the buggy program by applying all non-trivial subsets of the diff generated
patches. Next, we run partially corrected program versions against the test suite, and for each
program, mark the buggy line(s) excluded from the partial fix as potential causes for all the tests
that the program fails. Next, we go over these partially fixed programs in the increasing order of the
number of buggy lines they still contain. For each program, we mark the buggy lines in that program
as a cause for a failing test if all other programs having a strict subset of those buggy lines pass that
test. This procedure is similar in spirit to delta debugging approach [31], which uses unit tests to
narrow down bug causing lines while removing lines that are not responsible for reproducing the bug.

4.2 Training

We implement our technique in Keras [7] using TensorFlow [1] as back-end. We find a suitable
configuration of our TCNN model through experimentation Our vocabulary has 1213 tokens after
identifier-name normalization. We train our model using the Adam optimizer [17], with a learning rate
of 0.0001. We train our model for 50 epochs, which takes about one hour on an Intel(R) Xeon(R) Gold
6126 machine, clocked at 2.60GHz with 64GB of RAM and equipped with an NVIDIA Tesla P100
GPU. Our model achieves the training and validation accuracies of 99.9% and 96%, respectively.

4.3 Evaluation

Classification accuracy of TCNN In the first phase, we use the trained model to predict the success
or failure of each example pair of a buggy program and a test ID, 〈P, t〉 from the evaluation dataset
as input. On these pairs, the classification accuracy of the trained model is only 54.48%. This is
much lower than its validation accuracy of 96%. The explanation for such a big difference lies in
the way the two datasets are constructed. The pairs in the validation set are chosen randomly from
the complete dataset, and therefore, their distribution is similar to the pairs in the training dataset.
Also, both training and validation datasets consist of pairs associated with both success and failure
classes. On the other hand, recall that the evaluation set contains pairs associated only with the
failure class. Furthermore, the buggy programs in these pairs are chosen because we could find their
corrected versions with a reasonably small syntactic difference between them. Thus, the relatively
lower accuracy of our model on the evaluation set stems from the fact that its distribution is different
from that of training and validation sets, and is not actually a limitation of the model. This is also
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evident from the fact that the test accuracy increases to about 72% if the evaluation set includes pairs
associated with both success and failure classes, instead of just failure class (taken for the same set of
programs as in the original evaluation set).

Bug-localization accuracy In the second phase, we query the attribution technique for bug-
localization of those pairs of programs and tests for which the model prediction in the earlier
phase is correct. Towards this, we first find the baseline programs corresponding to the input buggy
programs using the method described earlier (in Section 3.2). We use a baseline program only after
verifying that the trained network correctly classifies it with respect to the input test ID. If not, we
remove it from the set of candidate baseline programs and repeat the procedure until we find a verified
baseline program. In our experiments, we could find verified baselines in just one attempt for 97.2%
of the pairs, and in two attempts for most of the remaining pairs.

We evaluate the bug-localization performance of NBL on the following three metrics: (1) the number
of pairs for which at least one of the lines responsible for the program failing the test is localized, (2)
the number of buggy lines localized across all programs, and (3) the number of programs for which
at least one buggy line is localized. As shown in Table 1, out of the 1449 programs for which the
localization query is made, NBL is able to localize at least one bug for more than 80% of them, when
reporting the top-10 suspicious lines per program. NBL also proves to be effective in bug-localization
for programs having multiple bugs. Out of 756 such programs in the evaluation set, NBL correctly
classified 522 of them as buggy and localized more than one bug for 314 of them, when reporting the
top-10 suspicious lines. NBL is also efficient and takes only less than a second to localize bugs in a
program, on average.

Comparison with baselines Given a program, the actual class (success or failure) for a test can
be obtained by executing the program. If the classifier predicts success for a test that actually fails,
querying the gradients in that case is unlikely to give a meaningful result. Thus, our approach is to
be used when the classification is correct and under this setting, we demonstrate that our approach
is competitive with (or even better than several configurations of) human-designed state-of-the-art
techniques. In particular, we compare NBL with three baselines including two state-of-the-art
program-spectrum based approaches, namely Tarantula [14] and Ochiai [2], and one syntactic
difference based approach. The metric used for this comparison is the number of programs for which
at least one bug is localized. The other two metrics also yield similar results.

A program-spectrum records which components of a program are covered (and which are not) during
an execution. Tarantula and Ochiai compare the program-spectra corresponding to all the failing tests
to that of all the passing tests. The only difference between them is that they use different formulae to
calculate the suspiciousness scores of program statements. As NBL performs bug-localization with
respect to one failing test at a time, we restrict these techniques to use only one failing test at a time
for a fair comparison. We use them in two configurations. In the first, they are restricted to just one
passing test, chosen randomly; in the second, they use all the passing tests. These configurations are
denoted by suffixing ‘-1’ and ‘-*’ to the names of the techniques, respectively.

The syntactic difference based approach is the same as the one used for finding the actual bug
locations (ground truth) for the programs in the evaluation set with the exception that the reference
implementation for a buggy program submitted by a student is now searched within the set of correct
programs submitted by other students. This is done both for this approach, and our technique.

As can be seen in Table 1, NBL outperforms both Tarantula-1 and Ochiai-1 (when they use only
one passing test) in top-k results for all values of k. However, with the extra benefit of using all
passing tests, they both outperform NBL in the top-1 results. Nevertheless, even in this scenario,
NBL outperforms both of them in the top-10 results. In the top-5 results, NBL outperforms Tarantula-
*, while matching the performance of Ochiai-*. NBL also completely outperforms the syntactic
difference based technique with a high margin, demonstrating the effectiveness of learning over a
naive syntactic difference based solution.

Qualitative evaluation In our analysis, we found that NBL localized almost all kinds of bugs
appearing in the evaluation set programs. Some of these include wrong assignments, conditions,
for-loops, memory allocations, input reading, output formatting, and missing code among others. This
gives credence to our claim that ours is a general semantic bug-localization technique. We provide
several concrete examples illustrating our bug-localization results in Section 2 of the supplement [12].
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Faster search for baseline programs through clustering As discussed in Section 3.2, we cal-
culate the cosine distance between the embeddings of a given buggy program with all the correct
programs solving the same programming task. When the number of correct programs is large, it can
be expensive to search through all of them for each buggy program. To mitigate this, we cluster all
the programs first using the k-means clustering algorithm on their embeddings. Now for each buggy
program, we search for the baseline only within the set of correct programs present in its cluster. Note
that both clustering and search are performed on programs from the same programming task. We set
the number of clusters to 5. Our results show that clustering affects the bug-localization accuracy by
less than 0.5% in every metric, while reducing the cost of baseline search by a factor of 5.

5 Related work

Program repair techniques are extensively used for feedback generation for logical errors in student
programs. AutoGrader [24] takes as input a buggy student program, along with a reference solution
and a set of potential corrections in the form of expression rewrite rules and searches for a set of
minimal corrections using program synthesis. Refazer [22] learns programs transformations from
example code edits made by students using a hand designed domain specific language, and then uses
these transformations to repair buggy student submissions. Unlike these approaches, our approach is
completely automatic and requires no inputs from the instructor. Most program repair techniques
first use an off-the-shelf bug-localization technique to get a list of potential buggy statements. On
these statements, the actual repair is performed. We believe that our technique can also be fruitfully
integrated into such program repair techniques.

Another common approach to feedback generation is program clustering where student submissions
having similar features are grouped together in clusters. The clusters are typically used in the
following two ways: (1) the feedback is generated manually for a representative program in each
cluster and then customized to other members of the cluster automatically [19, 20, 8], and (2) for a
buggy program, a correct program is selected from the same cluster as a reference implementation,
which is then compared to the buggy program to generate a repair hint [15, 10, 27, 23]. The clusters
are created either using heuristics based on program analysis techniques [8, 15, 10, 27, 23] or using
program execution on a set of inputs [19, 20]. Unlike these approaches, we cluster programs using
k-means clustering algorithm on program embeddings learned on program ASTs, which does not
require any heuristics and therefore, is programming language agnostic.

6 Conclusions and future work

We present the first deep learning based general technique for semantic bug-localization in student
programs with respect to failing tests. At the heart of our technique is a novel tree convolution neural
network which is trained to predict whether or not a program passes a given test. Once trained, we use
a state-of-the-art neural prediction attribution technique to find out which lines of the programs make
the network predict the failures to localize the bugs. We compared our technique with three baseline
including one static and two dynamic bug-localization techniques. Our experiments demonstrate that
our technique outperforms all three baselines in most of the cases.

We evaluate our technique only on student programs. It will be an interesting future work to use it for
arbitrary programs in the context of regression testing [30], i.e., to localize bugs in a program w.r.t.
the failing tests which were passing with the earlier version(s) of that program. NBL is programming
language agnostic and has been evaluated on C programs. In future, we will experiment with other
programming languages as well. We also plan to extend this work to achieve neural program repair.
While our bug-localization technique required only a discriminative network, a neural program repair
technique would require a generative model to predict the patches for fixing bugs. It will be interesting
to see if our tree CNN can be adapted to do generative modeling of patches as well.
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