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1 Model architecture

The specific implementation details of our model are now described. We describe the two baseline
models, LSTMP-L and KFP-LG, and the best-performing LSTMP-LG model.

LSTMP-L. Our proposed baseline model LSTMP-L contains only local latent variables zt (the
global state f is omitted). This model is introduced to study the efficiency of the global state for
removing temporal redundancy. The local state for each frame zt is inferred from each frame xt.
LSTMP-L employs similar encoder and decoder architectures as Ballé et al. (2016). The encoder
µφ(xt) infers each zt independently by a five-layer convolutional network. For layer ` = 1, the
stride is 4, while a stride of 2 is used for layer ` = 2, 3, 4, 5. The padding is 1 and the kernel size
is 4× 4 for all layers. The number of filters used for the Sprites video, for ` = 1, 2, 3, 4, 5, are 192,
256, 512, 512 and 1024, respectively. For the more realistic video (BAIR and Kinetics video), the
number of filters used at layer ` = 1, 2, 3, 4, 5 are 192, 256, 512, 1024 and 2048, respectively. The
decoder µθ(zt) is symmetrical to the encoder µφ(xt). With this architecture, the dimension of the
latent state zt is 1024 for Sprites and 2048 for BAIR and Kinetics video. The prior for the latent
state corresponding to the first frame, pθ(z1), is parametrized by the same density model defined
on Appendix 6.1 of Ballé et al. (2018). The conditional prior pθ(zt | z<t) is parameterized by
a normal distribution convolved with uniform noise. The means and (diagonal) covariance of the
normal distribution are predicted by an LSTM with hidden state dimension equal to the dimension of
the latent state zt.

LSTMP-LG. LSTMP-LG is our proposed model in this paper which uses an efficient latent repre-
sentation by splitting latent states into both global states and local states as well as the use of an
effective LSTM predictive model for entropy coding. Now we describe the inference network. The
two encoders µφ(x1:T ) and µφ(xt) begin with a convolutional architecture to extract feature infor-
mation. The global state f is inferred from all frames by processing the output of the convolutional
layers over x1:T with a bi-directional LSTM architecture (note this LSTM is used for inference not
entropy coding). This allows f to depend on features from the entire segment. For the local state,
the individual frame xt is passed through the convolutional layers of µφ(xt) and a two-layer MLP
infers zt from the feature information of the individual frame. The decoder µθ(zt,f) first combines
(zt,f) with a multilayer perceptron (MLP) and then upsamples with a deconvolutional network. The
prior models pθ(f) and pθ(z1) are parametrized by the density model defined in Appendix 6.1 of
Ballé et al. (2018). The conditional prior pθ(zt | z<t) in the LSTMP-LG architecture is modeled
by a normal distribution which is convolved with uniform noise. The means and covariance of the
normal distribution are predicted by an additional LSTM.
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Figure 1: Empirical distributions of the posterior of inference model and ground truth prior model in
one specific rate-distortion BAIR example.

Both encoders µφ(·) have 5 convolutional (downsampling) layers. For layer ` = 1, 2, 3, 4, the stride
and padding are 2 and 1, respectively, and the convolutional kernel size is 4×4. The number of
channels for layer ` = 1, 2, 3, 4 are 192, 256, 512, 1024. Layer 5 has kernel size 4, stride 1, padding
0, and 3072 channels. The decoder architecture µθ is chosen to be asymmetric to the encoder with
convolutional layers replaced with deconvolutional (upsampling) layers. For the Sprites toy video,
the dimensions of z, f , and hidden state h are 64, 512 and 1024, respectively. For less sparse videos
(BAIR and Kinetics600), the dimensions of z, f , and LSTM hidden state h are 256, 2048 and 3072,
respectively.

KFP-LG. KFP-LG is also a proposed baseline model which incorporates both the global state f
and local latent zt but uses a weaker deep Kalman filter predictive model pθ(zt | zt−1) for entropy
coding. The main purpose of the KFP-LG model is to compare to the LSTMP-LG model which has a
longer memory. The conditional prior pθ(zt | zt−1) in KFP-LG is described by a normal distribution
with mean and variance that are parametrized by a three-layer MLP. The dimension at each layer of
MLP is the same as the dimension of the latent state zt. KFP-LG has the same encoder and decoder
structures as the proposed LSTMP-LG model aforementioned. The only difference between KFP-LG
and LSTMP-LG is that they employ different prior models for conditional entropy coding.

2 Latent variable distribution visualization

In this section, we visualize the distribution of our prior model and compare to the empirical
distribution of the posterior of the inference model estimated from data. In Fig. 1, we show the
learned priors and the empirically observed posterior over two dimensions of the global latent state
f and local latent state z in order to demonstrate that the prior is capturing the correct empirical
distribution. From Fig. 1, we can see that the learned priors pθ(f) and pθ(z1) match the empirical
data distributions well, which leads to low bit rate encoding of the latent variables. As the conditional
probability model pθ(zt | z<t) is high-dimensional, we do not display this distribution.

3 Additional performance evaluation

MS-SSIM metric. In the main paper, we evaluated performance in terms of PSNR distortion. Here,
we also plot the MS-SSIM with respect to the bit rate to quantitatively compare our models to
traditional codecs with respect to a perceptual metric. From Fig. 2, we can see that our LSTMP-LG
saves significantly more bits when trained on specialized content videos and achieves competitive
result when trained on general content videos.

Longer videos. We trained and evaluated our method on short video segments of T = 10 frames and
evaluated classical codec performance on the same segments. However, for typical videos, somewhat
longer segments tend to have less information per pixel than T = 10 segments, and standard video
codecs are designed to take advantage of this fact. For this reason, we have presented video codec
performances, evaluated on T = 10, 30, and 100 frame segments for the Kinetics data in Fig. 3.
While existing codec performance improves for longer segments, we note that our method (trained
and evaluated on 10 frames) is still comparable to modern codec performance evaluated on longer
segments. Additionally, with proper design and training on longer video segments, our method could
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be scaled to achieve similar temporal performance scaling since longer segments typically have less
information per pixel.

(a) Sprites (b) BAIR (c) Kinetics
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Figure 2: Rate-distortion curves on three datasets measured in MS-SSIM (higher corresponds to
lower distortion). Legend shared. Solid lines correspond to our models, with LSTMP-LG proposed.
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Figure 3: Rate-distortion curves on the Kinetics dataset measured in PSNR. Codec performance is
evaluated on video segments of T = 10, 30, and 100 frames. Our best performing method (trained
and evaluated on T = 10 frames) is shown in red for comparison.
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