
Appendix: Differentially private anonymized histograms

A Geometric mechanism

The mostly popular mechanism for ✏-DP is the Laplace mechanism, which is defined as follows.

Definition 2 (Laplace mechanism (L(b)) [32]). When the true query result is f , the mechanism

outputs f + Z where Z is a random variable distributed as a Laplace distribution distribution:

Pr(Z = z) = 1
2b exp

⇣
� |x|

b

⌘
for every z 2 R. If output of f has sensitivity �, then to achieve ✏-DP

add Z ⇠ L(�/✏).

Since, we have integer inputs, we use the geometric mechanism:

Definition 3 (Geometric mechanism (G(↵)) [46]). When the true query result is f , the mechanism

outputs f + Z where Z is a random variable distributed as a two-sided geometric distribution:

Pr(Z = z) = 1�↵

1+↵
· ↵|z|

for every integer z. If output of f is integers and has sensitivity � (an

integer), then to achieve ✏-DP add Z ⇠ G(e✏/�).

[46] showed that geometric mechanism is universally optimal for a general class of functions under a
Bayesian framework. Geometric mechanism is beneficial over Laplace mechanism in two ways: the
output space of the mechanism is discrete. Since we have integer inputs, this removes the necessity
of adding rounding off the outputs. For ✏-DP, the expected `1 noise added by the Laplace mechanism
is 1/✏, which strictly larger than that of the geometric mechanism (2e�✏

/(1 � e
�2✏)) (see below).

For moderate values of ✏, this difference is a constant. We now state few properties of the geometric
distribution which are used in the rest of the paper.

We find the following set of equations useful in the rest of the paper. In the following let ZG ⇠ G(e�✏)
be a geometric random variable and ZL ⇠ L(1/✏) be a Laplace random variable.

E[ZG] = 0 = E[ZL].

E[|ZG|] =
2e�✏

1� e�2✏
 1

✏
= E[|ZL|].

E[Z2
G
] =

2e�✏

(1� e�✏)2
 2

✏2
= E[Z2

L
].

The next lemma bounds moments of max(n+ Z, 0) when Z is a zero mean random variable.

Lemma 2. Let Z be a random variable and n � 0. If Y = max(n+ Z, 0), then

E[|Y � n|]  E|Z|,

and

E

1Y >0

Y

�
 1

n
+

E[Z2]

2n2
.

Proof. To prove the first inequality, observe that

|Y � n| = |max(Z,�n)|  |Z|.

Taking expectation yields the first equation. For the second term,

1

Y
=

1

n
+

n� Y

Y n
=

1

n
+

n� Y

n2
+

(n� Y )2

n2Y
 1

n
+

n� Y

n2
+

(n� Y )2

2n2
. (4)

Furthermore,
(n� Y )1Y >0 = �Z1Y >0 = �Z1�Z<n  �Z.

Combining the above two equations and using the fact that |Y � n|  |Z| yields the second equation
in the lemma.
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B Properties of the distance metric

Proof of Lemma 1. Recall that the distance between to histograms is given by

`1(h1, h2)
def
= min

D1,D2:h(D1)=h1,h(D2)=h2

`1(D1, D2)

= min
D1,D2:h(D1)=h1,h(D2)=h2

X

x2X

|nx(D1)� nx(D2)|.

Let D⇤

1 and D
⇤

2 be the datasets that achieve the minimum above. Consider any two labels x, y

such that nx(D⇤

1) � ny(D⇤

1). Let D0

2 be the dataset obtained as follows: ny(D0

2) = nx(D⇤

2) and
nx(D0

2) = ny(D⇤

2) and for all other z /2 {x, y}, nz(D0

2) = nz(D⇤

2). Since D
⇤

2 is the optimum,

`1(D
⇤

1 , D
⇤

2)  `1(D
⇤

1 , D
0

2).

Expanding both sides and canceling common terms, we get,

|nx(D
⇤

1)� nx(D
⇤

2)|+ |ny(D
⇤

1)� ny(D
⇤

2)|  |nx(D
⇤

1)� nx(D
0

2)|+ |ny(D
⇤

1)� ny(D
0

2)|
 |nx(D

⇤

1)� ny(D
⇤

2)|+ |ny(D
⇤

1)� nx(D
⇤

2)|,

and thus if nx(D⇤

1) � ny(D⇤

1), then nx(D⇤

2) � ny(D⇤

2). Hence, the label of the i
th highest count in

both the datasets should be the same and

`1(D
⇤

1 , D
⇤

2) =
X

x2X

|nx(D
⇤

1)� nx(D
⇤

2)| =
X

i�1

|n(i)(h1)� n(i)(h2)|.

The distance measure satisfies triangle inequality, i.e., for any three histograms h1, h2, and h3,

`1(h1, h2)  `1(h1, h3) + `1(h2, h3).

The proof of the above equation is a simple consequence of Lemma 1 and is omitted. We now show
that dividing histograms only increases the distance.
Lemma 3. If h = h1 + h2 and h

0 = h
0

1 + h
0

2, then

`1(h, h
0)  `1(h1, h

0

1) + `1(h2, h
0

2).

Proof. Since the elements in h1 + h2 are same as elements in h and elements in h
0

1 + h
0

2 are same as
elements in h2, there exists a permutation � such that

`1(h1, h
0

1) + `1(h2, h
0

2) =
X

i�1

|n(i)(h1)� n(i)(h
0

1)|+
X

i�1

|n(i)(h2)� n(i)(h
0

2)|

=
X

i�1

|n(i)(h)� n(�i)(h
0)|.

Similar to proof of Lemma 1, it can be shown that the � that minimizes the above sum is the one that
matches ith highest count in h to i

th highest count in h
0 and hence

`1(h, h
0) =

X

i�1

|n(i)(h)� n(i)(h
0)| 

X

i�1

|n(i)(h)� n(�i)|.

It is useful to have few upper bounds on the `1 distance over histograms.
Lemma 4. For any two histograms h1, h2,

`1(h1, h2) 
rmax(h1,h2)X

r�1

|'r+(h1)� 'r+(h2)| 
X

r�1

r|'r(h1)� 'r(h2)|, (5)

where rmax(h1, h2) is the maximum r such that 'r(h1) + 'r(h2) > 0.
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Proof. We prove the first inequality by induction on rmax(h1, h2). Suppose rmax(h1, h2) = 1, then
the inequality holds trivially as

X

i

|n(i)(h1)� n(i)(h2)| = |'1(h1)� '1(h2)| =
rmax(h1,h2)X

r=1

|'r+(h1)� 'r+(h2)|.

Now suppose it holds for all rmax(h1, h2) < r0. For r0
def
= rmax(h1, h2). Let h0

1 and h
0

2 be two
datasets obtained as follows:

h
0

i
= max(nx, r0 � 1) : nx 2 hi}.

This mapping preserves the ordering of n(i)s up to ties and rmax(h0

1, h
0

2) = r0 � 1. Thus,

`1(h
0

1, h
0

2) 
rmax(h

0
1,h

0
2)X

r=1

|'r+(h
0

1)� 'r+(h
0

2)| =
rmax(h1,h2)�1X

r=1

|'r+(h1)� 'r+(h2)|. (6)

Hence,
X

i

|n(i)(h1)� n(i)(h2)|

=
X

i:max(n(i)(h1),n(i)(h2))<r0

|n(i)(h1)� n(i)(h2)|+
X

i:max(n(i)(h1),n(i)(h2))�r0

|n(i)(h1)� n(i)(h2)|

=
X

i:max(n(i)(h1),n(i)(h2))<r0

|n(i)(h
0

1)� n(i)(h
0

2)|

+
X

i:max(n(i)(h1),n(i)(h2))�r0

|n(i)(h
0

1)� n(i)(h
0

2) + 1n(i)(h1)=r0
� 1n(i)(h

0
2)=r0

|


X

i:max(n(i)(h1),n(i)(h2))<r0

|n(i)(h
0

1)� n(i)(h
0

2)|+
X

i:max(n(i)(h1),n(i)(h2))�r0

|n(i)(h
0

1)� n(i)(h
0

2)|

+
X

i:max(n(i)(h1),n(i)(h2))�r0

|1n(i)(h1)=r0
� 1n(i)(h

0
2)=r0

|

= `1(h
0

1, h
0

2) + |'r0(h1)� 'r0(h2)|
Combining the above equation with Equation (6) yields the first inequality. For the second inequality,
observe that

rmax(h1,h2)X

r�1

|'r+(h1)� 'r+(h2)| =
rmax(h1,h2)X

r�1

|
X

s�r

's(h1)� 's(h2)|


rmax(h1,h2)X

r�1

X

s�r

|'s(h1)� 's(h2)|

=
X

s�1

s|'s(h1)� 's(h2)|,

where the inequality follows by triangle inequality and the last equality follows by observing that
each term corresponding to index s appears exactly s times.

We now show a simple property of rounding off integers.
Lemma 5. Let x1, x2, . . . , xn be integers. Let y1, y2, . . . , yn be real numbers. Let ŷi be the nearest

integer to yi. Then,
nX

i=1

|xi � ŷi|  2
nX

i=1

|xi � yi|.

Proof. For any i,
|xi � ŷi|  |xi � yi|+ |yi � ŷi|  2|xi � yi|,

where the second inequality follows from the observation that ŷi is the nearest integer to yi. Summing
over all indices i yields the lemma.
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We need the next auxilllary lemma, which we use in the proofs.
Lemma 6. For a histogram h1, let h

0

1 be the histogram obtained by adding k elements of value t to h.

Let h
0

2 be another histogram and let h2 is obtained by removing k elements that are closest to t. Then

`1(h1, h2)  2`1(h
0

1, h
0

2).

Proof. Let h00

2 be the histogram obtained by adding k elements of value t to h2. Since adding same
number of elements to two datasets do not decrease the `1 distance,

`1(h1, h2) = `1(h
0

1, h
00

2)  `1(h
0

1, h
0

2) + `1(h
0

2, h
00

2),
where the second inequality follows by triangle inequality. Consider the set of all histograms that
have 't � k. Both h

00

2 and h
0

1 belong to this set. It can be shown that of all histograms in that set h00

2
is closest to h

0

2 and hence
`1(h

0

2, h
00

2)  `1(h
0

2, h
0

1),
and hence the lemma.

C Privacy analysis of PRIVHIST

C.1 Overview of privacy analysis

We break the analysis of PRIVHIST step by step. We will show that release of N (step (1)) is ✏1-DP.
Then, we show that Hcs and H

c` are ✏2-DP. Observe that PRIVHIST-LOWPRIVACY is just a post-
processing step and by the post processing lemma does not need any differentialy privacy analysis.
Finally we show that PRIVHIST-HIGHPRIVACY is ✏3 differentially private. By the composition
theorem [32], it follows that the total privacy cost is ✏1 + ✏2 + ✏3 = ✏ and hence the privacy cost in
Theorem 1. Of the above steps, proving N is ✏1-DP is straightforward and a sketch is in Lemma 7.
Proving H

cs and H
c` is ✏2-DP is more involved and is in Lemma 8. The main intuition behind

Lemma 8 is a sensitivity preserving histogram split, which we describe below.

C.2 Sensitivity preserving histogram split

Any two neighboring datasets h1 and h2 can fall into one of three categories:

1. They differ in 'T and 'T+1.
2. They differ in 'r and 'r+1 for some 0  r < T � 1.
3. They differ in 'r and 'r+1 for some r > T .

For cases 2 and 3 above, it suffices to add noise to cumulative prevalences and counts as in (3) and
(4). However, if they differ in 'T and 'T+1, the analysis is more involved. For example, consider the
following simple example. h1 = {'T = 1,'n�T = 1} and h2 = {'T+1 = 1,'n�T�1 = 1}. h1

and h2 have `1 distance of one and are neighbors. If we divide h1 in to two parts based on threshold
T , say h

s

1 = {'T = 1} and h
`

1 = {'n�T = 1} and h
s

2 = {} and h
`

2 = {'T+1 = 1,'n�T�1 = 1},
then `1(h`

1, h
`

2) = T + 2. Thus, if we naively add noise to cumulative prevalences for r  T and
to counts r > T , then we need to add noise L(O(T/✏)), which makes the utility of the algorithm
much worse. To overcome this, we preprocess h by moving Z

b counts from 'T to 'T+1, where
Zb is a geometric random variable. This provides the required privacy without increasing the utility
considerably. Finally, moving mass Zb can make the histogram to have negative prevalences. To
overcome this, we add M fake counts to 'T and 'T+1.

C.3 Technical details

We first prove a dataset depending composition theorem that helps us decompose differential privacy
analysis depending on the dataset.
Theorem 3 (Dataset dependent composition theorem). Let Z1, Z2, . . . , Zn be a set of independent

random variables. Let X1 = f1(x, Z1) be a deterministic function. Similarly let Xi = fi(Xi�1, Zi)
be deterministic functions for 2  i  n. If for any two neighboring data sets x and x

0
,

min
i�1

max
z1,z2,...,zi�1,xi

Pr(Xi = xi|x, z1, z2, . . . , zi�1)

Pr(Xi = xi|x0, z1, z2, . . . , zi�1)
 e

✏
,

3 (7)

3For notational simplicity, let z01 = ;.
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then Xn is an ✏-DP output.

Proof. For any two datasets, since x ! X1 ! Xn is a Markov chain,

Pr(Xn = xn|x) =
X

xi

Pr(Xn = xn|Xi = xi) · Pr(Xi = xi|x).

Hence for any two datasets x, x0 any xn, and for all i,

Pr(Xn = xn|x)
Pr(Xn = xn|x0)

=

P
x1

Pr(Xn = xn|Xi = xi) · Pr(Xi = xi|x)P
xi
Pr(Xn = xn|Xi = xi) · Pr(Xi = xi|x0)

 max
xi

Pr(Xi = xi|x0)

Pr(Xi = xi|x)
.

Similarly for any i,

Pr(Xi = xi|x) =
X

z1,z2,...,zi�1

Pr(Xi = xi|x, z1, z2, . . . , zi�1) · Pr(z1, z2, . . . , zi�1).

Hence for any two datasets x, x0,

Pr(Xi = xi|x)
Pr(Xi = xi|x0)

=

P
z1,z2,...,zi�1

Pr(Xi = xi|x, z1, z2, . . . , zi�1) · Pr(z1, z2, . . . , zi�1)P
z1,z2,...,zi�1

Pr(Xi = xi|x0, z1, z2, . . . , zi�1) · Pr(z1, z2, . . . , zi�1)

 max
z1,z2,...,zi�1

Pr(Xi = xi|x, z1, z2, . . . , zi�1)

Pr(Xi = xi|x0, z1, z2, . . . , zi�1)
.

Hence,

max
xn

Pr(Xn = xn|x)
Pr(Xn = xn|x0)

 min
i�1

max
xi

Pr(Xi = xi|x0)

Pr(Xi = xi|x)

 min
i�1

max
xi

max
z1,z2,...,zi�1

Pr(Xi = xi|x, z1, z2, . . . , zi�1)

Pr(Xi = xi|x0, z1, z2, . . . , zi�1)
,

and hence for every pair of datasets if the right hand side is smaller than e
✏, then Xn is diffferentially

private.

C.4 Privacy analysis

We start with proving N is ✏1-DP.
Lemma 7. N is ✏1-DP.

Proof sketch. The proof follows from Definition 3 and the fact that for any two neighboring datasets
h1, h2, n(h1)� n(h2) = |

P
nx2h1

nx �
P

nx2h2
nx|  `1(h1, h2) = 1, and hence the sensitivity

of this query is 1.

We now show that the release of Hcs and H
c` is DP.

Lemma 8. Release of H
cs

and H
c`

is ✏2-DP.

Proof. h ! H
b ! (Hbs

, H
b`) ! (Hcs

, H
b`) ! (Hcs

, H
c`) is a Markov chain. We use Theorem 3

to show that the output of this Markov chain is DP for all datasets. For any two neighboring datasets
h1 and h2 can fall into one of three categories:

1. They differ in 'T and 'T+1.

2. They differ in 'r and 'r+1 for some 0  r < T � 1.

3. They differ in 'r and 'r+1 for some r > T .

We prove that (Hcs
, H

c`) release is ✏2-DP for each of the above three cases.
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Case 1: We show that the process h ! H
b satisfies (7). Observe that

max
hb

Pr(Hb = h
b|h2)

Pr(Hb = bb|h1)

(a)
=

Pr('̄(Hb) = '̄
b|'̄(h2))

Pr('̄(Hb) = '̄b|'̄(h1))

(b)
=

Pr('T (Hb) = '
b

T
,'T+1(Hb) = '

b

T+1|'T (h2))

Pr('T (Hb) = '
b

T
,'T+1(Hb) = '

b

T+1|'̄T (h1))

(c)
=

Pr(Zb = '
b

T
� 'T (h2))

Pr(Zb = '
b

T
� 'T (h1))

=
e
�✏2|'

b
T�'T (h2)|

e
�✏2|'

b
T�'T (h1)|

 e
✏2|'T (h2)�'T (h1)|

 e
✏2 .

(a) follows by observing that there is a one to one correspondence between the histogram and the
prevalences, (b) follows from the fact that noise is added only to 'T and 'T+1, and (c) follows
from the fact that the noise added to 'T+1 is a deterministic function of noise added to 'T , and
'
b

T
+ '

b

T+1 = '
a

T
+ '

a

T+1 always.

Case 2: We show that (Hbs
, H

b`) ! (Hcs
, H

b`) satisfies (7). Let Hbs

1 and H
bs

2 be the values of
H

bs for inputs h1 and h2 respectively. For any Zb = zb, since difference of maximums is at most
maximum of differences,

X

r

|'r+(H
bs

2 )� 'r+(H
bs

1 )| 
X

r

|'r+(h2)� zb � 'r+(h1) + zb|

=
X

r

|'r+(h2)� 'r+(h1)|  1.

Hence,

Pr((Hcs
, H

b`) = (hcs
, h

b`)|Hbs

2 , H
b`)

Pr(Hcs, Hb`) = (hcs, hb`)|Hbs

1 , Hb`)
=

Pr(Hcs = h
cs|Hbs

2 )

Pr(Hcs = hcs|Hbs

1 )

=
Pr('̄r+(H

cs) = '̄r+(h
cs)|'̄r+(H

bs

2 ))

Pr('̄r+(Hcs) = '̄r+(hcs)|'̄r+(H
bs

1 ))

=
Y

r�1

Pr('r+(H
cs) = 'r+(h

cs)|'̄r+(H
bs

2 ))

Pr('r+(Hcs) = 'r+(hcs)|'̄r+(H
bs

1 ))

=
Y

r�1

e
�✏2|'r+ (hcs)�'r+ (Hbs

2 )|

e
�✏2|'r+ (hcs)�'r+ (Hbs

1 )|


Y

r�1

e
✏2|'r+ (Hbs

2 )�'r+ (Hbs
1 )|  e

✏2 .

The first equality follows from the observation that there is a one to one correspondence between
'rs and 'r+s. The second equation follows from the fact that noise added to various 'r+s are
independent of each other. The rest of the proof follows from the definition of the geometric
mechanism and the fact that h1 and h2 are neighbors.

Case 3: We show that (Hcs
, H

b`) ! (Hcs
, H

c`) satisfies (7). Let Hb`

1 and H
b`

2 are the H
b`’s

corresponding to h1 and h2 respectively. Conditioned on the value of Zb, for any two neighboring
histograms that differ in two consecutive r’s that are larger than T ,

X

r>T

'r(H
b`

2 )�
X

r>T

'r(H
b`

2 ) =
X

r>T

'r(h2)� 'r(h1) = 0.

Since their sums are equal, conditioned on the value of Zb, it can be shown that Hb`

1 , H
b`

2 are proper
histograms and both contain max(0,M + Z

b +
P

r>T
'r(h1)) elements and they differ in at most

two consecutive values of r. Thus H
b`

1 and H
b`

2 contain same number of counts and differ in at
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most one count denoted by i
⇤. With these observations we now bound the ratio of probabilities for

differential privacy.

Since there is a one to one correspondence between sorted counts and the histograms, we get
Pr((Hcs

, H
c`) = (hcs

, h
c`)|Hb`

2 , H
cs)

Pr(Hcs, Hc`) = (hcs, hc`)|Hb`

1 , Hcs)
=

Pr(Hc` = h
c`|Hb`

2 )

Pr(Hc` = hc`|Hb`

1 )

=

Q
i
Pr(Ni = ni|n(i)(H

b`

2 ))
Q

i
Pr(Ni = ni|n(i)(Hb`

2 ))

=
Pr(Ni⇤ = ni⇤ |n(i⇤)(H

b`

2 ))

Pr(Ni⇤ = ni⇤ |n(i⇤)(Hb`

1 ))

=
e
�✏2|ni⇤�n(i⇤)(H

b`
2 )|

e
�✏2|ni⇤�n(i⇤)(H

b`
1 )|

 e
✏2|n(i⇤)(H

b`
2 )�n(i⇤)(H

b`
1 )|  e

✏2 ,

where the last set of inequalities follow from the definition of geometric mechanism and the fact that
the noise added to N(i)s are independent of each other, and n(i⇤) is the only count in which the two
histograms differ.

We now show that PRIVHIST-HIGPRIVACY is ✏3-DP.
Lemma 9. The output of PRIVHIST-HIGPRIVACY is ✏3-DP.

Proof. Observe that h ! H
v ! H

w ! H
x ! H

y is a Markov chain, hence it suffices to prove
H

v ! H
w is ✏3-DP.

Let h1 and h2 are two neighboring datasets. Without loss of generality, let they differ in 'k and 'k+1.
Let hv

1 and h
v

2 be the two histograms obtained after quanitzation step (3). Since h1 and h2 differ only
at k and k + 1, hv

1 and h
v

2 differ only in '
v

si�1
and '

v

si
for some i. Furthermore,

|'v

si�1
(hv

1)� '
v

si�1
(hv

2)| = |'v

si
(hv

1)� '
v

si
(hv

2)| 
1

si � si�1
.

For all j /2 {si�1, si}, 'v

j
(hv

1) = '
v

j
(hv

2). Hence '
v

si+(h
v

1) 6= '
v

si+(h
v

2) for only one value of i, let
i
⇤ be this value.

Pr(Hw = hw|hv

1)

Pr(Hw = hw|hv

2)
=
Y

i

Pr('si+(H
w) = 'si+(h

w)|'si+(h
v

1))

Pr('si+(H
w) = 'si+(h

w)|'si+(h
v

2))

=
Pr('s

⇤
i +

(Hw) = 's
⇤
i +

(hw)|'s
⇤
i +

(hv

1))

Pr('s
⇤
i +

(Hw) = 's
⇤
i +

(hw)|'s
⇤
i +

(hv

2))

=
Pr(Zsi⇤ = 's

⇤
i +

(hw)� 'si⇤+
(hv

1))

Pr(Zsi⇤ = 's
⇤
i +

(hw)� 'si⇤+
(hv

2))

 exp

✓
✏3(si⇤ � si⇤�1)

si⇤ � si⇤�1

◆
 e

✏3 .

D Utility analysis of PRIVHIST

Let Ho be the output of either PRIVHIST-LOWPRIVACY or PRIVHIST-HIGHPRIVACY. In both the
low and high privacy regimes, the output error can be bounded as

`1(h,H
o)1N>0 + n1N0.

Furthermore,
E[n1N0]  ne

�n✏1 . e
�✏1/2, 4

where the last inequality, follows by breaking it in to cases n = 0 and n > 0. The bound on
E[|N�n|] follows from the fact that N = n+G(e�✏1), Lemma 2, and the moments of the geometric
distribution. In the next two sections, we bound `1(h,Ho)1N>0 for both low privacy and high
privacy regimes.

4We use . instead of O notation and & instead of ⌦ notation for compactness.
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D.1 Low privacy regime

In the following analysis, let Z be a geometric random variable distributed as G(e�✏2). Let Hb
0
=

H
bs +H

b`. For the bounds on the histogram, by Lemma 6 and triangle inequality,

`1(h,H
e)  4`1(H

a
, H

d)  4`1(H
b
0
, H

d) + 4`1(H
b
0
, H

a). (8)

For the second term, observe that since H
b
0

is obtained by moving Z
b terms between T and T + 1

and then majorizing it. If |Zb|  M , then majorization does not change the histogram. Hence,

`1(H
b
0
, H

a) = `1(H
b
0
, H

a)1|Zb|M + `1(H
b
0
, H

a)1|Zb|>M  |Zb|+(n+2M(T +1))1|Zb|>M .

Taking expectation on both sides

EN [`1(H
b
0
, H

a)]  E[|Zb|+ (n+ 2M(T + 1))1|Zb|>M ] . E[Z] +
n+N

N2
e
�2✏2 .5 (9)

For the first term, by Lemma 3,

`1(H
b
0
, H

d)  `1(H
bs
, H

ds) + `1(H
b`
, H

d`). (10)

We now bound both the terms above. For the large counts, let ij be the index of the noisy count
N(i)(H

b`).

`1(H
b`
, H

d`) 
X

i

|N(i)(H
b`)�N(i)(H

d`)|


X

i

|N(i)(H
b`)�Nij (H

d`)|


X

i

|N(i)(H
b`)�Nij (H

c`)|.

Since the number of terms above T is at most n/T +M + Z
b, in expectation,

EN [`1(H
b`
, H

d`)]  E
"
X

i

|Zc`

i
|
#
.
⇣
n

T
+M + E|Z|

⌘
· E[|Z|]. (11)

For the smaller counts observe that

`1(H
bs
, H

ds) 
X

r�0

|'bs

r+ � '
ds

r+|

(a)
 2

X

r�0

|'bs

r+ � '
mon
r+ |

(b)
 2

p
T ·
sX

r�0

('bs
r+ � '

mon
r+ )2

(c)
 2

p
T ·
sX

r�0

('bs
r+ � '

cs
r+)

2

 2
p
T ·
sX

r�0

(Zcs
r

� Zb)2, (12)

where (a) follows from the fact that rounding off increases the error at most by 2 (Lemma 5), (b)
follows by the Cauchy-Schwarz inequality, and (c) follows from the fact that 'bs

r+ are monotonic and
hence monotonic projection only decreases the error. Hence in expectation,

EN [`1(H
bs
, H

ds)] . T

p
E[Z2]. (13)

5EN denotes conditional expectation w.r.t. N
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Combining (8), (9), (10), (11), (12), and (13),

EN [`1(h,H
e)] . |Z|+ 4T

p
E[Z2] + 2

⇣
n

T
+M + E|Z|

⌘
· E[|Z|] + n+N

N2
e
�2✏2 .

Substituting T = d
p
Ne and M = d 2 logNe

✏2

✏2
e, yields

EN [`1(h,H
e)] . |Z|+

p
N

p
E[Z2] + 2

✓
1 +

np
N

+
logN✏2

✏2
+ E|Z|

◆
·E[|Z|] + n+N

N
e
�2✏2 .

Taking expectation w.r.t. N and using Lemma 2 yields

E[`1(h,He)1N>0] .
p

nE[Z2] + e
�2✏2 .

p
ne

�✏/6
,

where the last inequality follows from moments of geometric distribution.

D.2 High privacy utility

For the high privacy regime, by the triangle inequality,

`1(h,H
y)  `1(h,H

u) + `1(H
u
, H

y). (14)

For the first term, since we are only reducing counts of certain elements,

E[`1(h,Hu)]  E[1N<n/2n]  e
�n✏1/2n . 1

✏1
. (15)

The second term can be bounded as

E[`1(Hu
, H

y)] 
X

r>0

|'r+(H
u)� 'r+(H

y)|

(a)
 2

X

r>0

|'r+(H
u)� 'r+(H

x)|

2
X

r>0

|'r+(H
u)� 'r+(H

v)|+ |'r+(H
x)� 'r+(H

v)|, (16)

where (a) follows by Lemma 5 and the last inequality follows by the triangle inequality. The first
term in the last equation corresponds to the smoothing error and we analyze it now.

'
v

si+1+ =

si+1X

r=si

'
u

r

(r � si)

si+1 � si
+
X

r>si+1

'
u

r
.

Since '
v

j
= 0 for j /2 S,

si+1�1X

j=si

|'v

j+ � '
u

j+| =
si+1�1X

j=si

������

si+1X

r=si

'
u

r

(r � si)

si+1 � si
�

si+1X

r=j

'
u

r

������


si+1X

j=si

si+1X

r=si

'
u

r

����
(r � si)

si+1 � si
� 1r�j

����

=

si+1X

r=si

2'u

r

(r � si)(si+1 � r)

si+1 � si

 2

si+1X

r=si

'
u

r
min(si+1 � r, r � si).

For r  T
0, that lies between si and si+1 in S,

|r � si|  min(bT (1 + q)i+1c � r, r � bT (1 + q)ic) . rq.
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If r � T
0, the analysis depends on the value of Zb. If Zb � �M , r � T

0, and '
u

r
> 0, then there

exists a si that is at most Zcl

i
away for from r. If not, then the error is at most 2n. Hence, the

smoothing error in expectation can be bounded by

.
T

0X

r�T

'
u

r
qr +

X

r�T 0

'
u

r
EN [|Z|1Zb��M ] + EN [2n1Zb<�M ] . nq +

nE[|Z|]
T 0

+
n

N
. (17)

For the second part,

X

r�1

|'v

r+ � '
x

r+|
(a)

X

si2S

|'v

si+ � '
x

si+|(si � si�1)

(b)

p
|S| ·

sX

si2S

('v
si+ � '

x
si+)

2(si � si�1)2

(c)

p
|S| ·

sX

si2S

('w
si+ � '

x
si+)

2(si � si�1)2,

where (a) follows by observing that 'x

r
= 0 for r /2 S, (b) follows from the Cauchy-Schwarz

inequality. (c) follows from the fact that projecting on to the simplex only increases the error. By the
second moments of Zs

i
, taking expectation on both sides yields

X

r�1

EN |'v

r+ � '
x

r+| . |S| · 1
✏
.

We now bound the size of the set S. By step (2) of the algorithm, number of elements in S can be
bounded by

. T + 1 + log1+q

T
0

T
+

10n

T 0
+ U,

where U is the number of elements less than T
0
/10 in H

b`, that upon adding noise increases to T
0.

Expectation of U conditioned on N is

EN [U ] .
⇣
n

T
+M + E[|Z|]

⌘
e
�9T 0

✏2/10 .
✓

np
N✏

+ 1 +
logN

✏

◆
e
�3

p
N/✏ . n✏

N
+ 1, (18)

where the second inequality follows by substituting T
0 = 10

p
N/✏

3
3 and third inequality follows

by algebraic manipulation. Combining (14), (15), (16), (17), and (18), and using the fact that
quantization error is at most O(n) yields

. min(nq, n) +
nE[|Z|]

T 0
+

✓
T + 1 + log1+q

T
0

T
+

n

T 0
+

n✏

N

◆
1

✏
+

n

N

. min(nq, n) +

 
p
N✏+

1

q
log

2

✏
+

n

p
✏3p
N

+
n✏

N

!
1

✏
+

n

N

. nmin

 
1p
N

r
1

✏
log

2

✏
, 1

!
+
⇣p

N + 1
⌘r1

✏
log

2

✏
+

n
p
✏p

N
+

n

N
,

where the last equation follows by substituting the value of q =
q

1
N✏3

log 1
✏3

. Taking expectation
with respect to N and using Lemma 2, (4) and the fact that n✏ & 1 yields,

E[`1(h,Hz)1N>0] .
r

n

✏
· log 2

✏
+

1

✏
.

D.3 Time complexity

In this section, we provide a proof sketch of the time complexity. Suppose ✏ > 1. The number of
prevalences in H

bs is T .
p
N . Similarly, the number of counts in H

b` is n/T ⇡ n/
p
N . Further,
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the number of additional fake counts added is M . logN and the isotonic regression using PAVA
takes linear in the size of the input. Hence, the expected run time, conditioned on N is at mostp
N + n

p
N

+M , which upon taking expectation w.r.t. N yields an expected run time of
p
n.

If ✏  1, steps (1)-(4) in PRIVHIST takes time .
p
N/✏ + logN/✏. The time complexity to find

boundaries, smooth prevalences, add noise, and perform isotonic regression is |S| +
p
n. By the

utility analysis, |S| .
q
N log 1

✏
+ n

p
✏

p
N

. Summing all the time complexities and taking expectation

w.r.t. N similar to the utility analysis, yields a total time complexity of Õ
⇣p

n

✏
+ logn

✏

⌘
.

E Lower bound in the low privacy regime

Lemma 10. Let x 2 {0, 1}k. Suppose two vectors x, y are neighbors if ||x�y||1  1. If X̂ = M(x)
be an ✏-DP estimate of x, then

max
x2{0,1}k

E[||x� X̂||1] & ke
�✏

.

Proof. Let p(x) be the uniform distribution over {0, 1}k. For a vector v 2 {0, 1}k�1, let X i

v
denote

the two vectors such that xi�1
1 = v

i�1
1 and x

k

i+1 = v
k�1
i

. Then

max
x2{0,1}k

E[||x� X̂||1] �
1

2k

X

x2{0,1}k

E[||x� X̂||1]

=
1

2k

X

x2{0,1}k

kX

i=1

E|xi � X̂i|

=
kX

i=1

1

2k

X

x2{0,1}k

E|xi � X̂i|

=
kX

i=1

1

2k�1

X

v2{0,1}k�1

1

2

X

x2X i
v

E|xi � X̂i|. (19)

For any v and i, vectors in X i

v
are neighbors and hence by the definition of DP,

X

x2X i
v

E|xi � X̂i| =
X

x̂i

Pr(X̂i = x̂i|xi = 1)|1� x̂i|+ Pr(X̂i = x̂i|xi = 0)|0� x̂i|

�
X

x̂i

Pr(X̂i = x̂i|xi = 1)|1� x̂i|+ e
�✏ Pr(X̂i = x̂i|xi = 1)|0� x̂i|

� e
�✏
X

x̂i

Pr(X̂i = x̂i|xi = 1)

� e
�✏

.

Substituting the above lower bound in (19) yields the lemma.

We now use the above bound to prove Theorem 2. We first define a of histograms to show the
lower bound. Let k =

p
n/10. For a given vector x 2 {0, 1}k, let '4i = '4i+3 = xi�1 and

'4i+1 = '4i+2 = 1 � xi�1, 'r = 1 for r = n �
P4k

i=1 'rr, and 'r = 0 otherwise. Observe thatP
r�1 'rr = n and are valid histograms. If two vectors x and y have hamming distance d, then the

corresponding distance between anonymized histograms is 2d.

Consider a slightly different definition of neighboring datasets over histograms, where two datasets
are neighboring if the neighboring datasets are distance 2 apart. If a mechanism is ✏-DP in the previous
definition of neighboring datasets, then the mechanism is 2✏-DP in the new notion of neighbors.

One mechanism for releasing the vectors x 2 {0, 1}k with 2✏-DP is to encode it as the histograms as
mentioned above and release them. Since such a mechanism has hamming distance & ke

�2✏, the
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anonymized histograms cannot be estimated with accuracy & ke
�2✏ with 2✏-DP under new definition

of neighbors and hence it cannot be estimated with accuracy & ke
�2✏ with ✏-DP under the old

definition of neighbors.

F Proof of Corollary 1

Recall that N is the DP estimate of n and H is the DP estimate of h. In the following Let Xn be the
initial set of n samples. Let XN be N samples obtained from p,X

n as follows. If N < n, obtain
X

N by removing n�N samples uniformly from X
n. If N � n, add N � n samples from p to X

n.
Note that XN are N i.i.d. samples from p. We bound the error of the estimator as follows.

f(p)� f̂
p = (f(p)� f̂

p)1N>0 + (f(p)� f̂
p)1N=0.

Taking expectation on the second term,

E[(f(p)� f̂
p)1N=0] = E[f(p)1N=0]  f(p)e�nc✏

,

for some constant c. For the case N > 0, we bound as follows.

f(p)� f̂
p

= f(p)�
X

r�1

f(r,N)'r(H)

= f(p)�
X

r�1

f(r,N)'r(h(X
N )) +

X

r�1

f(r,N)'r(h(X
N ))�

X

r�1

f(r,N)'r(h(X
n))

+
X

r�1

f(r,N)'r(h(X
n))�

X

r�1

f(r,N)'r(H).

We bound each of the three (difference) terms above. First observe that by the assumptions in the
theorem:

EN

h���f(p)�
X

r�1

f(r,N)'r(h(X
N ))
���
i
 E(f̂ , N)  E(f̂ , n) + |N � n|N

�

N
.

Since X
N and X

n differ in at most N � n terms, by the properties of sorted `1 distance,
X

r�1

f(r,N)'r(h(X
N ))�

X

r�1

f(r,N)'r(h(X
n))  |N � n|max

r

|f(r,N)|  |N � n| · N
�

N
.

Further by the properties of sorted `1 distance,

EN [|
X

r�1

f(r,N)'r(h(X
n))�

X

r�1

f(r,N)'r(H)|]  max
r

|f(r,N)|EN [`1(h,H)]

. N
�

N
· EN [`1(h,H)].

Summing all the three terms, we get that the error is at most

. E(f̂ , n) + |N � n| · N
�

N
+

N
�

N
· EN [`1(h,H)]. (20)

For ✏ > 1, difference between the expected error and E(f̂ , n) is

. E

N

�

N
|N � n|1N>0 +

N
�

N

✓p
N +

np
N

◆
1N>0

�
e
�c✏

. E

N

�

N
|N � n|1N>n/2 +

N
�

N

✓p
N +

np
N

◆
1N>n/2

�
e
�c✏ + E

⇥
n1n/2�N>0

⇤
e
�c✏

. E

n
�

n
|N � n|+ n

�

p
n

�
e
�c✏ + E

⇥
n1n/2�N>0

⇤
e
�c✏

. n
��1/2

e
�c✏ + ne

�nc
0
✏

. n
��1/2

e
�c✏

,
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where the last inequality uses the fact that ✏ > 1. Combining the result with the case N = 0, we get
that

E[|f(p)� f̂
p|] . E(f̂ , n) + n

��1/2
e
�c✏ + f(p)e�n✏

.

The result for ✏ > 1 follows if

n � max

 
n(f̂ ,↵),O

 ✓
1

↵ec✏

◆ 2
1�2�

+
1

✏
log

fmax

↵

!!
.

For ⌦(1/n)  ✏  1, by (20), the difference between the expected error and E(f̂ , n) is

. E
"
N

�

N

 
|N � n|+ nmin

 
1p
N

r
1

✏
log

2

✏
, 1

!
+
p
N

r
1

✏
log

2

✏
+

n
p
✏p

N
+

n

N

!
1N>0

#

. E
"
N

�

N

 
|N � n|+

p
N

r
1

✏
log

2

✏
+

n
p
✏p

N
+

n

N

!
1N>n/2

#
+ E

" r
1

✏
log

2

✏
+ n

!
1n/2�N>0

#

. E
"
n
�

n
|N � n|+ n

�

n

 
p
n

r
1

✏
log

2

✏

!#
+ E

" r
1

✏
log

2

✏
+ n

!
1n/2�N>0

#

. n
�

n✏
+

n
�

p
n

r
1

✏
log

2

✏
+

 r
1

✏
log

2

✏
+ n

!
e
�nc✏

. n
�

p
n

r
1

✏
log

2

✏
+ ne

�nc✏
.

Combining with the result for the case N = 0, we get

E[|f(p)� f̂
p|] . E(f̂ , n) + n

��1/2

r
1

✏
log

2

✏
+ (n+ f(p))e�nc✏

.

The result for ⌦(1/n)  ✏ < 1 follows if

n � max

0

@n(f̂ ,↵),O

0

@
 p

log(2/✏)

↵
p
✏

! 2
1�2�

+
1

✏
log

fmax

↵✏

1

A

1

A .
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