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Abstract

Abstraction reasoning is a long-standing challenge in artificial intelligence. Recent
studies suggest that many of the deep architectures that have triumphed over
other domains failed to work well in abstract reasoning. In this paper, we first
illustrate that one of the main challenges in such a reasoning task is the presence
of distracting features, which requires the learning algorithm to leverage counter-
evidence and to reject any of the false hypotheses in order to learn the true patterns.
We later show that carefully designed learning trajectory over different categories of
training data can effectively boost learning performance by mitigating the impacts
of distracting features. Inspired by this fact, we propose feature robust abstract
reasoning (FRAR) model, which consists of a reinforcement learning based teacher
network to determine the sequence of training and a student network for predictions.
Experimental results demonstrated strong improvements over baseline algorithms
and we are able to beat the state-of-the-art models by 18.7% in the RAVEN dataset
and 13.3% in the PGM dataset.

1 Introduction

A critical feature of biological intelligence is its capacity for acquiring principles of abstract reasoning
from a sequence of images. Developing machines with skills of abstract reasoning help us to improve
the understandings of underlying elemental cognitive processes. It is one of the long-standing
challenges of artificial intelligence research [3, 12, 31, 34]. Recently, Raven’s Progressive Matrices
(RPM), as a visual abstract reasoning IQ test for humans, is used to effectively estimate a model’s
capacity to extract and process abstract reasoning principles.

Various models have been developed to tackle the problem of abstract reasoning. Some traditional
models [4, 24, 25, 26, 27, 29, 30] rely on the assumptions and heuristics rules about various mea-
surements of image similarity to perform abstract reasoning. As Wang and Su [38] propose an
automatic system to efficiently generate a large number using first-order logic. There has also been
substantial progress in both reasoning and abstract representation learning using deep neural networks
[14, 15, 34, 39]. However, these deep neural based methods simply adopt existing networks such as
CNN [22], ResNet [11] and relational network [35] to perform abstract reasoning but largely ignore
some of the reasoning’s fundamental characteristics.

One aspect that makes abstract reasoning substantially difficult is the presence of distracting features
in addition to the reasoning features that are necessary to solve the problem. Learning algorithms
would have to leverage various counter-evidence to reject any false hypothesis before reaching the
correct one. Some other methods [36, 37] design an unsupervised mapping from high-dimensional
feature space to a few explanatory factors of variation that are subsequently used by reasoning models
to complete the abstract reasoning task. Although these models boost the performance of abstract
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Figure 1: Left: Without distracting features, it is obvious to infer the abstract reasoning principles.
Samples with distracting features confuse our judgment and make it harder to characterize reasoning
features. Right: The influence of distracting features. (a) Without distracting features, training on the
whole dataset is better than training on the individual dataset. (b) When the divergence of distracting
features is set to zero, test performance decreases as the mean of distracting features increases. (c)
When the mean of distracting features is set to one, test performance decreases as the divergence of
distracting features increases.

Table 1: Test performance of LEN trained on different trajectories. "−>" denotes to training order.
The first row demonstrates two datasets (i.e., 1 and 2) without distracting features while the second
row illustrates datasets (i.e., 3 and 4) with distracting features. FRAR demonstrates our algorithm
which optimizes learning trajectory to prevent distracting features from affecting the training of
learning algorithms.

Dataset 1 2−>1 2 1−>2 1+2 1−>2 1−>2−> 2−>1−> FRAR
−>1+2 1−>1+2 2−>1+2

Acc(%) 74.2 79.5 60.2 77.5 81.0 81.8 81.5 81.3 82.1

dataset 3 4−>3 4 3−>4 3+4 3−>4 3−>4−> 4−>3−> FRAR
−>3+4 1−>3+4 4−>3+4

Acc(%) 52.5 58.4 64.5 65.9 58.2 61.0 59.6 62.1 67.6

reasoning tasks by capturing the independent factors of variation given an image, it is still difficult to
find the reasoning logic from independent factors of variation and separate distracting features and
reasoning features. Figure 1 shows one such example of abstract reasoning with distracting features
where the true reasoning features in 1) is mingled with distracting ones in 2). Distracting features
disrupt the learning of statistical models and make them harder to characterize the true reasoning
patterns. On the right panel of Figure 1, we see that when we add more distracting features into
the dataset (either through increasing the mean number of distracting features or through increasing
the divergence of such features), the learning performance decrease sharply alert no information
that covers the true reasoning patterns have been changed. Another observation with the distracting
feature is that when we divide the abstract reasoning dataset into several subsets, training the model
on the entire dataset would benefit the model as opposed to training them separately on the individual
dataset. This is not surprising since features that are not directly benefiting its own reasoning logic
might benefit those from other subsets. When distracting features are present, however, we see that
some of the learning algorithms get worse performance when training on the entire dataset, suggesting
that those distracting features trick the model and interfere with the performance.
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To tackle the problem of abstract reasoning with distraction, we take inspirations from human learning
in which knowledge is taught progressively according to a specific order as our reasoning abilities
build up. Table 1 illustrates such an idea by dividing the abstract reasoning dataset into two parts as
we change the proportion of datasets and take them progressively to the learning algorithm as learning
proceeds. As we see from the results, when no distracting features are present (first row), changing
the order of the training has little impacts on the actual results. When distracting features are present
(second row), however, the trajectory of training data significantly affects the training outcome. The
FRAR model that we propose to optimize training trajectory in order to prevent distracting features
from affecting the training achieves a significant boost of 15.1% compares to training on a single
dataset. This suggests that we are able to achieve better training performance by changing the order
that the learning algorithm receives the training data.

The next question we want to ask is can we design an automated algorithm to choose an optimized
learning path in order to minimize the adversarial impacts of distracting features in abstract reasoning.
Some of the methods have been studied but with slightly different motivations. Self-paced learning
[21] prioritize examples with small training loss which are likely not noising images; hard negative
mining [28] assign a priority to examples with high training loss focusing on the minority class in order
to solve the class imbalance problem. Mentornet[18] learns a data-driven curriculum that provides
a sample weighting scheme for a student model to focus on the sample whose label is probably
correct. These attempts are either based on task-specific heuristic rules, the strong assumption of a
pre-known oracle model. However, in many scenarios, there are no heuristic rules, so it is difficult to
find an appropriate predefined curriculum. Thus adjustable curriculum that takes into account of the
feedback from the student accordingly has greater advantages. [10] leverages the feedback from the
student model to optimize its own teaching strategies by means of reinforcement learning. But in
[10], historical trajectory information is insufficiently considered and action is not flexible enough,
lead to being not suitable for the situations where training trajectory should be taken into account.

In this paper, we propose a method to learn the adaptive logic path from data by a model named feature
robust abstract reasoning model (FRAR). Our model consists of two intelligent agents interacting
with each other. Specifically, a novel Logic Embedding Network (LEN) as the student model is
proposed to disentangle abstract reasoning by explicitly enumerating a much larger space of logic
reasoning. A teacher model is proposed to determine the appropriate proportion of teaching materials
from the learning behavior of a student model as the adaptive logic path. With the guidance of this
adaptive logic path, the Logic Embedding Network enables to characterize reasoning features and
distracting features and then infer abstract reasoning rules from the reasoning features. The teacher
model optimizes its teaching strategies based on the feedback from the student model by means of
reinforcement learning so as to achieve teacher-student co-evolution. Extensive experiments on PGM
and RAVEN datasets have demonstrated that the proposed FRAR outperforms the state-of-the-art
methods.

2 Related Work

Abstract reasoning In order to develop machines with the capabilities to underlying reasoning
process, computational models [4, 24, 25, 26, 27, 29, 30] are proposed to disentangle abstract
reasoning. Some simplified assumptions[4, 25, 26, 27] are made in the experiments that machines are
able to extract a symbolic representation of images and then infer the corresponding rules. Various
measurements of image similarity [24, 29, 30] are adopted to learn the relational structures of abstract
reasoning. These methods rely on assumptions about typical abstract reasoning principles. As
Wang and Su [38] propose an automatic system to efficiently generate a large number of abstract
reasoning problems using first-order logic, there are substantial progress in both reasoning and
abstract representation learning in neural networks. A novel variant of Relation Network [35] with
a scoring structure [34] is designed to learn relational comparisons between a sequence of images
and then reasoning the corresponding rules. Hill et al. [14] induce analogical reasoning in neural
networks by contrasting abstract relational structures. Zhang et al. [39] propose a dynamic residual
tree (DRT) that jointly operates on the space of image understanding and structure reasoning.

Curriculum learning The teaching strategies of weighting each training example have been well
studied in the literature[5, 6, 18, 21, 28, 32]. Self-paced learning [9, 16, 17, 21] prioritizes examples
with small training loss which are likely not noising images; hard negative mining [28] assigns a
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Figure 2: Overview of the interactive process between teacher model and student model. Left: The
guidance of a teacher model replaces that training student model in random order. Right: Form
the teacher model as a reinforcement learning problem. Our reinforcement learning agent (DDPG)
receives the state st from the performance of the student model and outputs a proportion of at of
training data at tth time step. After training the student model, the accuracy of the student model on
a held-out validation set is evaluated as a reward r which is returned to the reinforcement learning
agent.

priority to examples with high training loss focusing on the minority class in order to solve the class
imbalance problem. MentorNet [18] learns a data-driven curriculum that provides a sample weighting
scheme for StudentNet focusing on the samples whose label are probably correct. These attempts are
either based on task-specific heuristic rules or the strong assumptions of a pre-known oracle model.
Fan et al. [10] leverage the feedback from a student model to optimize its own teaching strategies by
means of reinforcement learning, so as to achieve teacher-student co-evolution. The re-weighting
method [32] determines the example weights by minimizing the loss on a clean unbiased validation
set.

Disentangled Feature Representations Disentangled feature representations efficiently encode
high-dimensional features about the sensitive variation in single generative factors, isolating the varia-
tion about each sensitive factor in a fewer dimension. The key idea about disentangled representations
is that real-world data mostly are generated by a few explanatory factors of variation which can be
recovered by unsupervised learning algorithms. Hence, disentangled representations that capture
these explanatory factors are expected to help in generalizing systematically [8, 19]. The sampling
method based on disentangled representations is more efficient [13] and less sensitive to nuisance
variables [33]. In terms of systematic generalization [1, 7], VASE [1] detects the adaptive shift of
data distribution based on the principle of minimum description length, and allocates redundant
disentangled representations to new knowledge. In other cases, however, it is not clear whether the
gains of experiments are actually due to disentanglement [20]. In the abstracting reasoning tasks,
some works [36, 37] learn an unsupervised mapping from high-dimensional feature space to a lower
dimensional and more structured latent space that is subsequently used by reasoning models to
complete reasoning task.

3 Feature Robust Abstract Reasoning

Our feature robust abstract reasoning algorithm is employed based on a student-teacher architecture
illustrated in 2. In this architecture, the teacher model adjusts the proportions of training datasets
and sends them to the student model. After these data are consumed, a student model will return its
validation accuracy on the current batch which is used as rewards for the teacher model to update
itself and to take the next action. This process repeats until the two models are converged.

3.1 Teacher Model

Since the rewards are generated by a non-differential function of the actions, we will use reinforcement
learning to optimize the teacher model in a blackbox fashion.
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Action We assume that each training sample is associated with a class label. In our dataset, this
is taken to be the category of the abstraction reasoning. Those categories are a logic combination
of some of the basic types such as “shape”, “type” or “position”. One such example can be seen
in Figure 1 where “position and” is labeled as the category of the problem. Here we divide the
training data into C parts: D = (D1,D2, ...,DC), with each of the subset Dc denotes a part of the
training data that belongs to category c. Here C is the number of categories in the dataset. The action
at =< at,1, at,2, ..., at,C > is then defined to be a vector of probabilities they will present in the
training batch. Samples in the training batch xi will be drawn from the dataset D from distribution
at. B independent draws of xi will form the mini-batch < x1, x2, ...xB > that will be sent to the
student for training.

State The state of teacher model tracks the progress of student learning through a collection of
features. Those features include:

1. Long-term features: a) the loss of each class over the last N time steps; b) validation accuracy of
each class over N time steps;

2. Near-term features: a) the mean predicted probabilities of each class; b) the loss of each class; c)
validation accuracy of each class; d) the average historical training loss; e) batch number and its label
category of each class; f) action at the last time step; g) the time step.

Reward Reward rt measures the quality of the current action at. This is measured using a held-out
validation set on the student model.

Implementation We use the deep deterministic policy gradient (DDPG) for continuous control of
proportions of questions at. As illustrated in Figure 2, the teacher agent receives a state st of student
model at each time step t and then outputs a proportion of questions as action at. Then, the student
model adopts the proportion at to generate the training data of tth time step. We use policy gradient
to update our DDPG model used in the teacher network.

3.2 Logic Embedding Network

We can choose any traditional machine learning algorithms as our student model. Here, we propose a
novel Logic Embedding Network (LEN) with the reasoning relational module which is more fitted
for abstract reasoning questions, since it enables to explicitly enumerate a much larger space of logic
reasoning. In the case of N ×N matrices of abstract reasoning tasks, the input of LEN consists of
N2 − 1 context panels and K multiple-choice panels, and we need to select which choice panel is
the perfect match for these context panels. In the LEN, the input images firstly are processed by a
shallow CNN and an MLP is adopted to achieve N2 − 1 context embeddings and K multiple-choice
embeddings. Then, we adopt the reasoning module to output the score of combinations of given
choice embeddings and N2 − 1 context embeddings. The output of reasoning module is a score sk
for a given candidate multiple-choice panel, with label k ∈ [1,K]:

sk = fΦ(
∑

(xi1
,xi2

,...,xiN
)∈χk1

gθ1(xi1 , xi2 , ..., xiN , z) +
∑

(xj1 ,xj2 ,...,xjN
)∈χk2

gθ2(xj1 , xj2 , ..., xjN , z)),

(1)

where χk is the whole combinations of panels, χk1 is row-wise and column-wise combinations of
panels and χk2 = χk − χk1 represents the other combinations of panels. ck is a embedding of kth

choice panel, xi is a embedding of ith context panel, and z is global representation of all 8 context
embedding panels. For example, in the case of 3× 3 matrices (N=3) of abstract reasoning tasks with
8 multiple-choice panels, χk = {(xi, xj , xk)|xi, xj , xk ∈ S, S = {x1, x2, ..., x8, ck}, i 6= j, i 6=
k, j 6= k}, χk1 = {(x1, x2, x3), (x4, x5, x6), (x7, x8, ck), (x1, x4, x7), (x2, x5, x8), (x3, x6, ck)}
and χk2 = χk − χk1 . fΦ, gθ1 and gθ2 are functions with parameters Φ, θ1 and θ2, respectively.
For our purposes, fΦ, gθ1 and gθ2 are MLP layers, and these parameters are learned by end-to-end
differentiable. Finally, the option with the highest score is chosen as the answer based on a softmax
function across all scores.
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Figure 3: The architecture of Logic Embedding Network in the case of 3 × 3 abstract reasoning
matrices with 8 multiple-choice panels. A CNN processes each context panel and each choice panel
independently to produce 16 vector embeddings. Then we pass all 8 context embeddings with a
choice embedding to a reasoning model, which enumerate the all space (C3

9 = 84) of logic reasoning.
And then this model outputs a score for the associated answer choice panel. There are totally 8 such
reasoning module (here we only depict 1 for clarity) for each answer choice.

In abstract reasoning tasks, the goal is to infer reasoning logic rules that exist among N panels.
Therefore, the structure of LEN model is very suitable for dealing with abstract reasoning task,
since it adopts gθ1 and gθ2 to form representations of relationship of N panels, in the case of 3× 3
matrices, including two context panels and a given multiple choice candidate, or triple context panels
themselves. The function gθ1 extracts the representations in row order and column order, such as “and”
relational type in the color of shapes, while gθ2 forms the representations of some reasoning logic
rules regardless of order, such as the rule that all pictures contain common “shape”. The function
fΦ integrates informations about context-context relations and context-choice relations together to
provide a score of answer. For each multiple-choice candidate, our proposed LEN model calculates
a score respectively, allowing the network to select the multiple-choice candidate with the highest
score.

3.2.1 Two-stream Logic Embedding Network

During our training process, we have observed that “shape” and “line” features share little patterns
in terms of logic reasoning. As a result, we have constructed a two-stream version of the logic
embedding network in order to process these two types of features using its own parameters. Those
two networks are then combined at the fusion layer before the predictions are generated.

4 Datasets

4.1 Procedurally Matrices dataset (PGM)

PGM [34] dataset consists of 8 different subdatasets, which each subdataset contains 119, 552, 000
images and 1, 222, 000 questions. We only compare all models on the neutral train/test split, which
corresponds most closely to traditional supervised learning regimes. There are totally 2 objects
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(Shape and Line), 5 rules (Progression, XOR, OR, AND, and Consistent union) and 5 attributes (Size,
Type, Colour, Position, and Number), and we can achieve 50 rule-attribute combinations. However,
excluding some conflicting and counterintuitive combinations (i.e., Progression on Position), we
result in 29 combinations.

4.2 Relational and Analogical Visual rEasoNing dataset (RAVEN)

RAVEN [39] dataset consists of 1, 120, 000 images and 70, 000 RPM questions, equally distributed
in 7 distinct figure configurations: Center, 2×2 Grid, 3×3 Grid, Left-Right, Up-Down, Out-InCenter,
and Out-InGrid. There are 1 object (Shape), 4 rules(Constant, Progression, Arithmetic, and Distribute
Three) and 5 attributes(Type, Size, Color, Number, and Position), and we can achieve 20 rule-attribute
combinations. However, excluding a conflicting combination (i.e., Arithmetic on Type), we result in
19 combinations.

5 Experiments

5.1 Performance on PGM Dataset

Table 2: Test performance of all models trained on the neutral
split of the PGM dataset. Teacher Model denotes that using the
teacher model to determine the appropriate training trajectory.
Type loss denotes that adding category label of questions into
loss functions.

Model Acc(%)

LSTM[34] 33.0
CNN+MLP[34] 35.8
ResNet-50 [34] 42.0

W-ResNet-50 [34] 48.0
WReN [34] 62.8

VAE-WReN [36] 64.2
LEN 68.1

T-LEN 70.3

LEN + Curriculum learning[2] 63.3
LEN + Self-paced learning[21] 57.2
LEN + Learning to teach[10] 64.3

LEN + Hard example mining[28] 60.7
LEN + Focal loss[23] 66.2

LEN + Mentornet-PD [18] 67.7

WReN + type loss[34] 75.6
LEN + type loss 82.3

T-LEN + type loss 84.1

WReN + Teacher Model [34] 68.9
LEN + Teacher Model 79.8

T-LEN + Teacher Model 85.1

WReN + Teacher Model + type loss[34] 77.8
LEN + Teacher Model + type loss 85.8

T-LEN + Teacher Model +type loss 88.9

Baseline Models We compare
a comprehensive list of baseline
models. From Table 2, we can
see that CNN models fail al-
most completely at PGM rea-
soning tasks, those in include
LSTM, CNN+MLP, ResNet-50,
and W-ResNet. The WReN
model Barrett et al. proposed
[34] is also compared. Xander
Steenbrugge et al.[36] explore
the generalization characteristics
of disentangled representations
by leveraging a VAE modular
on abstract reasoning tasks and
can boost a little performance.
Our proposed Logic Embedding
Network (LEN) and its variant
with two-stream (i.e.g, T-LEN)
achieve a much better perfor-
mance when comparing to base-
line algorithms.

Teacher Model Baselines We
compare several baselines to
our propose teacher model and
adapt them using our LEN
model. Those baseline teacher
model algorithms include curricu-
lum learning, self-paced learn-
ing, learning to teach, hard ex-
ample mining, focal loss, and
Mentornet-PD. Results show that
these methods are not effective in
the abstract reasoning task.

Use of Type Loss We have experimented by adding additional training labels into the loss function
for training with WReN, LEN, and T-LEN. The improvements are consistent with what have been
reported in Barrett’s paper [34].

7



Teacher Models Finally, we show that our LEN and T-LEN augmented with a teacher model
achieve the testing accuracy above 79.8% and 85.1% respectively on the whole neutral split of the
PGM Dataset. This strongly indicates that models lacking effective guidance of training trajectory
may even be completely incapable of solving tasks that require very simple abstract reasoning rules.
Training these models with an appropriate trajectory is sufficient to mitigate the impacts of distracting
features and overcomes this hurdle. Further experiments by adding a type loss illustrate that teacher
model and also be improved with the best performance of LEN (from 79.8% to 85.3%) and T-LEN
(from 85.1% to 88.9%). Results with WReN with teacher network also reported improvements but is
consistently below the ones with LEN and T-LEN models.

5.2 Performance on RAVEN Dataset

We compare all models on 7 distinct figure configurations of RAVEN dataset respectively, and table
3 shows the testing accuracy of each model trained on the dataset. In terms of model performance,
popular models perform poorly (i.e., LSTM, WReN, CNN+MLP, and ResNet-50). These models lack
the ability to disentangle abstract reasoning and can’t distinguish distracting features and reasoning
features. The best performance goes to our LEN containing the reasoning module, which is designed
explicitly to explicitly enumerate a much larger space of logical reasoning about the triple rules in the
question. Similar to the previous dataset, we have also implemented the type loss. However, contrary
to the first dataset, type loss performs a bit worse in this case. This finding is consistent with what has
been reported in [39]. We observe a consistent performance improvement of our LEN model after
incorporating the teacher model, suggesting the effectiveness of appropriate training trajectory in this
visual reasoning question. Other teaching strategies have little effect on the improvement of models.
Table 3 shows that our LEN and LEN with teacher model achieve a state-of-the-art performance on
the RAVEN dataset at 72.9% and 78.3%, exceeding the best model existing when the datasets are
published by 13.3% and 18.7%.

Table 3: Test performance of each model trained on different figure configurations of the RAVEN
dataset. Acc denotes the mean accuracy of each model, while other columns show model accuracy
on different figure configurations. 2Grid denotes 2× 2 Grid, 3Grid denotes 3× 3 Grid, L-R denotes
Left-Right, U-D denotes Up-Down, O-IC denotes Out-InCenter, and O-IG denotes Out-InGrid.

model Acc Center 2Grid 3Grid L-R U-D O-IC O-IG

LSTM[39] 13.1 13.2 14.1 13.7 12.8 12.5 12.5 12.9
WReN[34] 14.7 13.1 28.6 28.3 7.5 6.3 8.4 10.6

CNN + MLP[39] 37.0 33.6 30.3 33.5 39.4 41.3 43.2 37.5
ResNet-18[39] 53.4 52.8 41.9 44.2 58.8 60.2 63.2 53.1

LEN + type loss 59.4 71.1 45.9 40.1 63.9 62.7 67.3 65.2
LEN 72.9 80.2 57.5 62.1 73.5 81.2 84.4 71.5

ResNet-18 + DRT [39] 59.6 58.1 46.5 50.4 65.8 67.1 69.1 60.1
LEN + Self-paced learning[21] 65.0 70.0 50.0 55.2 64.5 73.9 77.8 63.8
LEN + Learning to teach [10] 71.8 78.1 56.5 60.3 73.4 78.8 82.9 72.3

LEN + Hard example mining[28] 72.4 77.8 56.2 62.9 75.6 77.5 84.2 72.7
LEN + Focal loss[23] 75.6 80.4 55.5 63.8 85.2 83.0 86.4 75.3

LEN + Mentornet-PD[18] 74.4 80.2 56.1 62.8 81.4 80.6 85.5 74.5

LEN + Teacher Model 78.3 82.3 58.5 64.3 87.0 85.5 88.9 81.9

5.3 Teaching Trajectory Analysis

We set two groups of experiments to examine training trajectory generated by the teacher model.
In this setting, according to the rules of [34], we generate 4 subdatasets (D1,D2,D3,D4), which
will exhibit an “and” relation, instantiated on the attribute types of “shape”. D1 denotes that we
instantiate the “and” relation on the type of “shape” as reasoning attributes and does not set the
distracting attribute. D2 denotes that the reasoning attribution is based on the “size shape” and do not
set the distracting attribute. D3 is similar to D1, but “size” is set a random value as the distracting
attribute. D4 is similar toD2, but “type” is set a random value as the distracting attribute. In summary,
there not exist distracting attributes in D1 and D2. For D3 and D4, “size” and “type” are distracting
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attributes respectively. We conduct experiments as follows. As shown table 1, in D1 and D2, the
accuracy of joint training is higher than that of individual training. Without distracting attributes,
D1 and D2 can promote each other to encode the reasoning attributes, thus improving the accuracy
of the model. Adjusting the training trajectory in the dataset without distracting attributes only
provides a small increase in the performance. It demonstrates that a model without the influence
of distracting attributes is able to encode all the attributes into satisfactory embedding and perform
abstract reasoning. However, joint training in the dataset D3 and D4 with distracting attributes
do not promote each other. Experiments in table 1 show that training in an appropriate trajectory
can effectively guide the model to encode a satisfactory attribution and improve the performance.
Then, our proposed model is able to find a more proper training trajectory and achieve an obvious
improvement.

5.4 Embedding Space Visualizations

To understand the model’s capacity to distinguish distracting representations and reasoning repre-
sentations, we analyzed neural activity in models trained with our logic embedding network. We
generated 8 types of questions including 4 attributes: “position”, “color”, “type” and “size”, as shown
in Figure 4. Our model seems to encourage the model to distinguish distracting features and reasoning
features more explicitly, which could in turn explain its capacity to disentangles abstract reasoning.
We find that these activities clustered with the guidance of teacher model better than without it. It
demonstrates that the adaptive path from teacher model can promote the model to characterize the
reasoning features and distracting features, which is beneficial for abstract reasoning.

Figure 4: t-SNE analysis of the last layer’s embedding of logic embedding model. Each dot represents
a (8-dimensional) state coloured according to the number of reasoning features and distracting
features of the corresponding question.

Conclusions

In this paper we proposed a student-teacher architecture to deal with distracting features in abstract
reasoning through feature robust abstract reasoning (FRAR). FRAR performs abstract reasoning by
characterizing reasoning features and distracting features with the guidance of adaptive logic path.
A novel Logic Embedding Network (LEN) as a student model is also proposed to perform abstract
reasoning by explicitly enumerating a much larger space of logic reasoning. Additionally, a teacher
model is proposed to determine the appropriate proportion of teaching materials as adaptive logic
path. The teacher model optimizes its teaching strategies based on the feedback from a student model
by means of reinforcement learning. Extensive experiments on PGM and RAVEN datasets have
demonstrated that the proposed FRAR outperforms the state-of-the-art methods.
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