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Abstract

Graph Neural Networks (GNN) come in many flavors, but should always be either
invariant (permutation of the nodes of the input graph does not affect the output)
or equivariant (permutation of the input permutes the output). In this paper, we
consider a specific class of invariant and equivariant networks, for which we prove
new universality theorems. More precisely, we consider networks with a single
hidden layer, obtained by summing channels formed by applying an equivariant
linear operator, a pointwise non-linearity, and either an invariant or equivariant
linear output layer. Recently, Maron et al. (2019b) showed that by allowing higher-
order tensorization inside the network, universal invariant GNNs can be obtained.
As a first contribution, we propose an alternative proof of this result, which relies
on the Stone-Weierstrass theorem for algebra of real-valued functions. Our main
contribution is then an extension of this result to the equivariant case, which
appears in many practical applications but has been less studied from a theoretical
point of view. The proof relies on a new generalized Stone-Weierstrass theorem
for algebra of equivariant functions, which is of independent interest. Additionally,
unlike many previous works that consider a fixed number of nodes, our results
show that a GNN defined by a single set of parameters can approximate uniformly
well a function defined on graphs of varying size.

1 Introduction

Designing Neural Networks (NN) to exhibit some invariance or equivariance to group operations is
a central problem in machine learning (Shawe-Taylor, 1993). Among these, Graph Neural Networks
(GNN) are primary examples that have gathered a lot of attention for a large range of applications.
Indeed, since a graph is not changed by permutation of its nodes, GNNs must be either invariant
to permutation, if they return a result that must not depend on the representation of the input, or
equivariant to permutation, if the output must be permuted when the input is permuted, for instance
when the network returns a signal over the nodes of the input graph. In this paper, we examine
universal approximation theorems for invariant and equivariant GNNs.

From a theoretical point of view, invariant GNNs have been much more studied than their equivariant
counterpart (see the following subsection). However, many practical applications deal with equivari-
ance instead, such as community detection (Chen et al., 2019), recommender systems (Ying et al.,
2018), interaction networks of physical systems (Battaglia et al., 2016), state prediction (Sanchez-
Gonzalez et al., 2018), protein interface prediction (Fout et al., 2017), among many others. See (Zhou
et al., 2018; Bronstein et al., 2017) for thorough reviews. It is therefore of great interest to increase
our understanding of equivariant networks, in particular, by extending arguably one of the most
classical result on neural networks, namely the universal approximation theorem for multi-layers
perceptron (MLP) with a single hidden layer (Cybenko, 1989; Hornik et al., 1989; Pinkus, 1999).
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Maron et al. (2019b) recently proved that certain invariant GNNs were universal approximators of
invariant continuous functions on graphs. The main goal of this paper is to extend this result to the
equivariant case, for similar architectures.

Outline and contribution. The outline of our paper is as follows. After reviewing previous works
and notations in the rest of the introduction, in Section 2 we provide an alternative proof of the
result of (Maron et al., 2019b) for invariant GNNs (Theorem 1), which will serve as a basis for the
equivariant case. It relies on a non-trivial application of the classical Stone-Weierstrass theorem for
algebras of real-valued functions (recalled in Theorem 2). Then, as our main contribution, in Section
3 we prove this result for the equivariant case (Theorem 3), which to the best of our knowledge was
not known before. The proof relies on a new version of Stone-Weierstrass theorem (Theorem 4).
Unlike many works that consider a fixed number of nodes n, in both cases we will prove that a GNN
described by a single set of parameters can approximate uniformly well a function that acts on graphs
of varying size.

1.1 Previous works

The design of neural network architectures which are equivariant or invariant under group actions is
an active area of research, see for instance (Ravanbakhsh et al., 2017; Gens and Domingos, 2014;
Cohen and Welling, 2016) for finite groups and (Wood and Shawe-Taylor, 1996; Kondor and Trivedi,
2018) for infinite groups. We focus here our attention to discrete groups acting on the coordinates of
the features, and more specifically to the action of the full set of permutations on tensors (order-1
tensors corresponding to sets, order-2 to graphs, order-3 to triangulations, etc).

Convolutional GNN. The most appealing construction of GNN architectures is through the use of
local operators acting on vectors indexed by the vertices. Early definitions of these “message passing”
architectures rely on fixed point iterations (Scarselli et al., 2009), while more recent constructions
make use of non-linear functions of the adjacency matrix, for instance using spectral decomposi-
tions (Bruna et al., 2014) or polynomials (Defferrard et al., 2016). We refer to (Bronstein et al.,
2017; Xu et al., 2019) for recent reviews. For regular-grid graphs, they match classical convolutional
networks (LeCun et al., 1989) which by design can only approximate translation-invariant or equiv-
ariant functions (Yarotsky, 2018). It thus comes at no surprise that these convolutional GNN are not
universal approximators (Xu et al., 2019) of permutation-invariant functions.

Fully-invariant GNN. Designing Graph (and their higher-dimensional generalizations) NN which
are equivariant or invariant to the whole permutation group (as opposed to e.g. only translations)
requires the use of a small sub-space of linear operators, which is identified in (Maron et al., 2019a).
This generalizes several previous constructions, for instance for sets (Zaheer et al., 2017; Hartford
et al., 2018) and points clouds (Qi et al., 2017). Universality results are known to hold in the special
cases of sets, point clouds (Qi et al., 2017) and discrete measures (de Bie et al., 2019) networks.

In the invariant GNN case, the universality of architectures built using a single hidden layer of
such equivariant operators followed by an invariant layer is proved in (Maron et al., 2019b) (see
also (Kondor et al., 2018)). This is the closest work from our, and we will provide an alternative
proof of this result in Section 2, as a basis for our main result in Section 3.

Universality in the equivariant case has been less studied. Most of the literature focuses on equivari-
ance to translation and its relation to convolutions (Kondor et al., 2018; Cohen and Welling, 2016),
which are ubiquitous in image processing. In this context, Yarotsky (2018) proved the universality
of some translation-equivariant networks. Closer to our work, universality of NNs equivariant to
permutations acting on point clouds has been recently proven in (Sannai et al., 2019), however their
theorem does not allow for high-order inputs like graphs. It is the purpose of our paper to fill this
missing piece and prove the universality of a class of equivariant GNNs for high-order inputs such as
(hyper-)graphs.

1.2 Notations and definitions

Graphs. In this paper, (hyper-)graphs with n nodes are represented by tensors G ∈ Rnd indexed
by 1 6 i1, . . . , id 6 n. For instance, “classical” graphs are represented by edge weight matrices
(d = 2), and hyper-graphs by high-order tensors of “multi-edges” connecting more than two nodes.
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Note that we do not impose G to be symmetric, or to contain only non-negative elements. In the rest
of the paper, we fix some d > 1 for the order of the inputs, however we allow n to vary.

Permutations. Let [n]
def.
= {1, . . . , n}. The set of permutations σ : [n]→ [n] (bijections from [n]

to itself) is denoted by On, or simply O when there is no ambiguity. Given a permutation σ and an
order-k tensor G ∈ Rnk , a “permutation of nodes” on G is denoted by σ ? G and defined as

(σ ? G)σ(i1),...,σ(ik) = Gi1,...,ik .

We denote by Pσ ∈ {0, 1}n×n the permutation matrix corresponding to σ, or simply P when there is
no ambiguity. For instance, for G ∈ Rn2

we have σ ? G = PGP>.

Two graphsG1, G2 are said isomorphic if there is a permutation σ such thatG1 = σ?G2. IfG = σ?G,
we say that σ is a self-isomorphism of G. Finally, we denote by O(G)

def.
= {σ ? G ; σ ∈ O} the orbit

of all the permuted versions of G.

Invariant and equivariant linear operators. A function f : Rnk → R is said to be invariant if
f(σ ? G) = f(G) for every permutation σ. A function f : Rnk → Rn` is said to be equivariant if
f(σ?G) = σ?f(G). Our construction of GNNs alternates between linear operators that are invariant
or equivariant to permutations, and non-linearities. Maron et al. (2019a) elegantly characterize all
such linear functions, and prove that they live in vector spaces of dimension, respectively, exactly
b(k) and b(k + `), where b(i) is the ith Bell number. An important corollary of this result is that the
dimension of this space does not depend on the number of nodes n, but only on the order of the input
and output tensors. Therefore one can parameterize linearly for all n such an operator by the same set
of coefficients. For instance, a linear equivariant operator F : Rn2 → Rn2

from matrices to matrices
is formed by a linear combination of b(4) = 15 basic operators such as “sum of rows replicated on
the diagonal”, “sum of columns replicated on the rows”, and so on. The 15 coefficients used in this
linear combination define the “same” linear operator for every n.

Invariant and equivariant Graph Neural Nets. As noted by Yarotsky (2018), it is in fact trivial
to build invariant universal networks for finite groups of symmetry: just take a non-invariant universal
architecture, and perform a group averaging. However, this holds little interest in practice, since
the group of permutation is of size n!. Instead, researchers use architectures for which invariance is
hard-coded into the construction of the network itself. The same remark holds for equivariance.

In this paper, we consider one-layer GNNs of the form:

f(G) =

S∑
s=1

Hs

[
ρ(Fs[G] +Bs)

]
+ b, (1)

where Fs : Rnd → Rnks are linear equivariant functions that yield ks-tensors (i.e. they potentially
increase or decrease the order of the input tensor), andHs are invariant linear operatorsHs : Rnks →
R (resp. equivariant linear operators Hs : Rnks → Rn), such that the GNN is globally invariant
(resp. equivariant). The invariant case is studied in Section 2, and the equivariant in Section 3. The
bias terms Bs ∈ Rnks are equivariant, so that Bs = σ ? Bs for all σ. They are also characterized
by Maron et al. (2019a) and belong to a linear space of dimension b(ks). We illustrate this simple
architecture in Fig. 1.

In light of the characterization by Maron et al. (2019a) of linear invariant and equivariant operators
described in the previous paragraph, a GNN of the form (1) is described by 1+

∑S
s=1 b(ks+d)+2b(ks)

parameters in the invariant case and 1 +
∑S
s=1 b(ks + d) + b(ks + 1) + b(ks) in the equivariant. As

mentioned earlier, this number of parameters does not depend on the number of nodes n, and a GNN
described by a single set of parameters can be applied to graphs of any size. In particular, we are
going to show that a GNN approximates uniformly well a continuous function for several n at once.

The function ρ is any locally Lipschitz pointwise non-linearity for which the Universal Approximation
Theorem for MLP applies. We denote their set FMLP. This includes in particular any continuous
function that is not a polynomial (Pinkus, 1999). Among these, we denote the sigmoid ρsig(x) =
ex/(1 + ex).
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Figure 1: The model of GNNs studied in this paper. For each channel s 6 S, the input tensor is passed
through an equivariant operator Fs : Rnd → Rnks , a non-linearity with some added equivariant bias Bs, and
a final operator Hs that is either invariant (Section 2) or equivariant (Section 3). These GNNs are universal
approximators of invariant or equivariant continuous functions (Theorems 1 and 3).

We denote by Ninv.(ρ) (resp. Neq.(ρ)) the class of invariant (resp. equivariant) 1-layer networks of
the form (1) (with S and ks being arbitrarily large). Our contributions show that they are dense in the
spaces of continuous invariant (resp. equivariant) functions.

2 The case of invariant functions

Maron et al. (2019b) recently proved that invariant GNNs similar to (1) are universal approximators
of continuous invariant functions. As a warm-up, we propose an alternative proof of (a variant of)
this result, that will serve as a basis for our main contribution, the equivariant case (Section 3).

Edit distance. For invariant functions, isomorphic graphs are undistinguishable, and therefore we
work with a set of equivalence classes of graphs, where two graphs are equivalent if isomorphic. We
define such a set for any number n 6 nmax of nodes and bounded G

Ginv.
def.
=
{
O (G) ; G ∈ Rn

d

with n 6 nmax, ‖G‖ 6 R
}
,

where we recall that O (G) = {σ ? G ; σ ∈ O} is the set of every permuted versions of G, here seen
as an equivalence class.

We need to equip this set with a metric that takes into account graphs with different number of nodes.
A distance often used in the literature is the graph edit distance (Sanfeliu and Fu, 1983). It relies on
defining a set of elementary operations o and a cost c(o) associated to each of them, here we consider
node addition and edge weight modification. The distance is then defined as

dedit(O (G1) ,O (G2))
def.
= min

(o1,...,ok)∈P(G1,G2)

k∑
i=1

c(oi) (2)

where P(G1, G2) contains every sequence of operation to transform G1 into a graph isomor-
phic to G2, or G2 into G1. Here we consider c(node_addition) = c for some constant c > 0,
c(edge_weight_change) = |w − w′| where the weight change is from w to w′, and “edge”
refers to any element of the tensor G ∈ Rnd . Note that, if we have dedit(O (G1) ,O (G2)) < c,
then G1 and G2 have the same number of nodes, and in that case dedit(O (G1) ,O (G2)) =
minσ∈On ‖G1 − σ ? G2‖1 , where ‖·‖1 is the element-wise `1 norm, since each edge must be trans-
formed into another.

We denote by C(Ginv., dedit) the space of real-valued functions on Ginv. that are continuous with respect
to dedit, equipped with the infinity norm of uniform convergence. We then have the following result.

Theorem 1. For any ρ ∈ FMLP, Ninv.(ρ) is dense in C(Ginv., dedit).

Comparison with (Maron et al., 2019b). A variant of Theorem 1 was proved in (Maron et al.,
2019b). The two proofs are however different: their proof relies on the construction of a basis of
invariant polynomials and on classical universality of MLPs, while our proof is a direct application of
Stone-Weierstrass theorem for algebras of real-valued functions. See the next subsection for details.
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One improvement of our result with respect to the one of (Maron et al., 2019b) is that it can handle
graphs of varying sizes. As mentioned in the introduction, a single set of parameters defines a GNN
that can be applied to graphs of any size. Theorem 1 shows that any continuous invariant function
is uniformly well approximated by a GNN on the whole set Ginv., that is, for all numbers of nodes
n 6 nmax simultaneously. On the contrary, Maron et al. (2019b) work with a fixed n, and it does
not seem that their proof can extend easily to encompass several n at once. A weakness of our
proof is that it does not provide an upper bound on the order of tensorization ks. Indeed, through
Noether’s theorem on polynomials, the proof of Maron et al. (2019b) shows that ks 6 nd(nd − 1)/2
is sufficient for universality, which we cannot seem to deduce from our proof. Moreover, they provide
a lower-bound ks > nd below which universality cannot be achieved.

2.1 Sketch of proof of Theorem 1

The proof for the invariant case will serve as a basis for the equivariant case in the Section 3. It relies
on Stone-Weierstrass theorem, which we recall below.
Theorem 2 (Stone-Weierstrass (Rudin (1991), Thm. 5.7)). Suppose X is a compact Hausdorff
space and A is a subalgebra of the space of continuous real-valued functions C(X) which contains a
non-zero constant function. Then A is dense in C(X) if and only if it separates points, that is, for all
x 6= y in X there exists f ∈ A such that f(x) 6= f(y).

We will construct a class of GNNs that satisfy all these properties in Ginv.. As we will see, unlike
classical applications of this theorem to e.g. polynomials, the main difficulty here will be to prove the
separation of points. We start by observing that Ginv. is indeed a compact set for dedit.

Properties of (Ginv., dedit). Let us first note that the metric space (Ginv., dedit) is Hausdorff (i.e. sepa-
rable, all metric spaces are). For eachO (G1) ,O (G2) ∈ Ginv. we have: if dedit(O (G1) ,O (G2)) < c,
then the graphs have the same number of nodes, and in that case dedit(O (G1)O (G2)) 6
‖G1 −G2‖1. Therefore, the embedding G 7→ O (G) is continuous (locally Lipschitz). As the

continuous image of the compact
⋃nmax

n=1

{
G ∈ Rnd ; ‖G‖ 6 R

}
, the set Ginv. is indeed compact.

Algebra of invariant GNNs. Unfortunately, Ninv.(ρ) is not a subalgebra. Following Hornik et al.
(1989), we first need to extend it to be closed under multiplication. We do that by allowing Kronecker
products inside the invariant functions:

f(G) =

S∑
s=1

Hs

[
ρ (Fs1[G] +Bs1)⊗ . . .⊗ ρ (FsTs [G] +BsTs)

]
+ b (3)

where Fst yields kst-tensors, Hs : Rn
∑
t kst → R are invariant, and Bst are equivariant bias. By

(σ ? G)⊗ (σ ? G′) = σ ? (G⊗G′), they are indeed invariant. We denote by N⊗inv.(ρ) the set of all
GNNs of this form, with S, Ts, kst arbitrarily large.
Lemma 1. For any locally Lipschitz ρ, N⊗inv.(ρ) is a subalgebra in C(Ginv., dedit).

The proof, presented in Appendix A.1.1 follows from manipulations of Kronecker products.

Separability. The main difficulty in applying Stone-Weierstrass theorem is the separation of points,
which we prove in the next Lemma.
Lemma 2. N⊗inv.(ρsig) separates points.

The proof, presented in Appendix A.1.2, proceeds by contradiction: we show that two graphs G,G′
that coincides for every GNNs are necessarily permutation of each other. Applying Stone-Weierstrass
theorem, we have thus proved that N⊗inv.(ρsig) is dense in C(Ginv., dedit).

Then, following Hornik et al. (1989), we go back to the original class Ninv.(ρ), by applying: (i) a
Fourier approximation of ρsig, (ii) the fact that a product of cos is also a sum of cos, and (iii) an
approximation of cos by any other non-linearity. The following Lemma is proved in Appendix A.1.3,
and concludes the proof of Thm 1.
Lemma 3. We have the following: (i)N⊗inv.(cos) is dense inN⊗inv.(ρsig); (ii)N⊗inv.(cos) = Ninv.(cos);
(iii) for any ρ ∈ FMLP, Ninv.(ρ) is dense in Ninv.(cos).
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3 The case of equivariant functions

This section contains our main contribution. We examine the case of equivariant functions that return
a vector f(G) ∈ Rn when G has n nodes, such that f(σ ? G) = σ ? f(G). In that case, isomorphic
graphs are not equivalent anymore. Hence we consider a compact set of graphs

Geq.
def.
=
{
G ∈ Rn

d

; n 6 nmax, ‖G‖ 6 R
}
,

Like the invariant case, we consider several numbers of nodes n 6 nmax and will prove uniform
approximation over them. We do not use the edit distance but a simpler metric:

d(G,G′) =

{
‖G−G′‖ if G and G′ have the same number of nodes,
∞ otherwise.

for any norm ‖·‖ on Rnd .

The set of equivariant continuous functions is denoted by Ceq.(Geq., d), equipped with the infinity
norm ‖f‖∞ = supG∈Geq.

‖f(G)‖∞. We recall that Neq.(ρ) ⊂ Ceq.(Geq., d) denotes one-layer GNNs
of the form (1), with equivariant output operators Hs. Our main result is the following.

Theorem 3. For any ρ ∈ FMLP, Neq.(ρ) is dense in Ceq.(Geq., d).

The proof, detailed in the next section, follows closely the previous proof for invariant functions,
but is significantly more involved. Indeed, the classical version of Stone-Weierstrass only provides
density of a subalgebra of functions in the whole space of continuous functions, while in this case
Ceq.(Geq., d) is already a particular subset of continuous functions. On the other hand, it seems difficult
to make use of fully general versions of Stone-Weierstrass theorem, for which some questions are still
open (Glimm, 1960). Hence we prove a new, specialized Stone-Weierstrass theorem for equivariant
functions (Theorem 4), obtained with a non-trivial adaptation of the constructive proof by Brosowski
and Deutsch (1981).

Like the invariant case, our theorem proves uniform approximation for all numbers of nodes n 6 nmax

at once by a single GNN. As is detailed in the next subsection, our proof of the generalized Stone-
Weierstrass theorem relies on being able to sort the coordinates of the output space Rn, and therefore
our current proof technique does not extend to high-order output Rn` (graph to graph mappings),
which we leave for future work. For the same reason, while the previous invariant case could be easily
extended to invariance to subgroups of On, as is done by Maron et al. (2019b), for the equivariant
case our theorem only applies when considering the full permuation group On. Nevertheless, our
generalized Stone-Weierstrass theorem may be applicable in other contexts where equivariance to
permutation is a desirable property.

Comparison with (Sannai et al., 2019). Sannai et al. (2019) recently proved that equivariant NNs
acting on point clouds are universal, that is, for d = 1 in our notations. Despite the apparent similarity
with our result, there is a fundamental obstruction to extending their proof to high-order input tensors
like graphs. Indeed, it strongly relies on Theorem 2 of (Zaheer et al., 2017) that characterizes invariant
functions Rn → R, which is no longer valid for high-order inputs.

3.1 Sketch of proof of Theorem 3: an equivariant version of Stone-Weierstrass theorem

We first need to introduce a few more notations. For a subset I ⊂ [n], we define OI
def.
=

{σ ∈ On ; ∃i ∈ I, j ∈ Ic, σ(i) = j or σ(j) = i} the set of permutations that exchange at least one
index between I and Ic. Indexing of vectors (or multivariate functions) is denoted by brackets, e.g.
[x]I or [f ]I , and inequalities x > a are to be understood element-wise.

A new Stone-Weierstrass theorem. We define the “multiplication” of two multivariate functions
using the Hadamard product �, i.e. the component-wise multiplication. Since (σ ? x)� (σ ? x′) =
σ ? (x� x′), it is easy to see that Ceq.(Geq., d) is closed under multiplication, and is therefore a (strict)
subalgebra of the set of all continuous functions that return a vector in Rn for an input graph with n
nodes. As mentioned before, because of this last fact we cannot directly apply Stone-Weierstrass
theorem. We therefore prove a new generalized version.

6



Figure 2: Illustration of strategy of proof for the equivariant Stone-Weierstrass theorem (Theorem 4). Consider-
ing a function f that we are trying to approximate and a graph G for which the coordinates of f(G) are sorted
by decreasing order, we approximate f(G) by summing step-functions fi, whose first coordinates are close to 1,
and otherwise close to 0.

Theorem 4 (Stone-Weierstrass for equivariant functions). Let A be a subalgebra of Ceq.(Geq., d),
such that A contains the constant function 1 and:

– (Separability) for allG,G′ ∈ Geq. with number of nodes respectively n and n′ such thatG /∈ O(G′),
for any k ∈ [n], k′ ∈ [n′], there exists f ∈ A such that [f(G)]k 6= [f(G′)]k′ ;

– (“Self”-separability) for all number of nodes n 6 nmax, I ⊂ [n], G ∈ Geq. with n nodes that has
no self-isomorphism in OI , and k ∈ I, ` ∈ Ic, there is f ∈ A such that [f(G)]k 6= [f(G)]`.

Then A is dense in Ceq.(Geq., d).

In addition to a “separability” hypothesis, which is similar to the classical one, Theorem 4 requires a
“self”-separability condition, which guarantees that f(G) can have different values on its coordinates
under appropriate assumptions on G. We give below an overview of the proof of Theorem 4, the full
details can be found in Appendix B.

Our proof is inspired by the one for the classical Stone-Weierstrass theorem (Thm. 2) of Brosowski
and Deutsch (1981). Let us first give a bit of intuition on this earlier proof. It relies on the
explicit construction of “step”-functions: given two disjoint closed sets A and B, they show that
A contains functions that are approximately 0 on A and approximately 1 on B. Then, given a
function f : X → R (non-negative w.l.o.g.) that we are trying to approximate and ε > 0, they define
Ak = {x ; f(x) 6 (k − 1/3)ε} and Bk = {x ; f(x) > (k + 1/3)ε} as the lower (resp. upper)
level sets of f for a grid of values with precision ε. Then, taking the step-functions fk between Ak
and Bk, it is easy to prove that f is well-approximated by g = ε

∑
k fk, since for each x only the

right number of fk is close to 1, the others are close to 0.

The situation is more complicated in our case. Given a function f ∈ Ceq.(Geq., d)
that we want to approximate, we work in the compact subset of Geq. where the co-
ordinates of f are ordered, since by permutation it covers every case: Gf

def.
={

G ∈ Geq. ; if G ∈ Rnd : [f(G)]1 > [f(G)]2 > . . . > [f(G)]n

}
. Then, we will prove the existence

of step-functions such that: when A and B satisfy some appropriate hypotheses, the step-function is
close to 0 on A, and only the first coordinates are close to 1 on B, the others are close to 0. Indeed,
by combining such functions, we can approximate a vector of ordered coordinates (Fig. 2). The
construction of such step-functions is done in Lemma 7. Finally, we consider modified level-sets

An,`k
def.
=
{
G ∈ Gf ∩ Rn

d

; [f(G)]` − [f(G)]`+1 6 (k − 1/3)ε
}
∪
⋃
n′ 6=n

(
Gf ∩ R(n′)d

)
,

Bn,`k
def.
=
{
G ∈ Gf ∩ Rn

d

; [f(G)]` − [f(G)]`+1 > (k + 1/3)ε
}

that distinguish “jumps” between (ordered) coordinates. We define the associated step-functions fn,`k ,
and show that g = ε

∑
k,n,` f

n,`
k is a valid approximation of f .

End of the proof. The rest of the proof of Theorem 3 is similar to the invariant case. We first
build an algebra of GNNs, again by considering nets of the form (3), where we replace the Hs’s by
equivariant linear operators in this case. We denote this space by N⊗eq.(ρ).

Lemma 4. N⊗eq.(ρ) is a subalgebra of Ceq.(Geq., d).
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The proof, presented in Appendix A.2.1, is very similar to that of Lemma 1. Then we show the two
separation conditions for equivariant GNNs.
Lemma 5. N⊗eq.(ρsig.) satisfies both the separability and self-separability conditions.

The proof is presented in Appendix A.2.2. The “normal” separability is in fact equivalent to the
previous one (Lemma 2), since we can construct an equivariant network by simply stacking an
invariant network on every coordinate. The self-separability condition is proved in a similar way.
Finally we go back to Neq.(ρ) in exactly the same way. The proof of Lemma 6 is exactly similar to
that of Lemma 3 and is omitted.
Lemma 6. We have the following: (i) N⊗eq.(cos) is dense in N⊗eq.(ρsig); (ii) N⊗eq.(cos) = Neq.(cos);
(iii) for any ρ ∈ FMLP, Neq.(ρ) is dense in Neq.(cos).

4 Numerical illustrations
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Figure 3: MSE results after 150
epochs, in the invariant (top) and equiv-
ariant (bottom) cases, averaged over 5
experiments. Dashed lines represent
the testing error.

This section provides numerical illustrations of our findings on
simple synthetic examples. The goal is to examine the impact
of the tensorization orders ks and the width S. The code is
available at https://github.com/nkeriven/univgnn. We
emphasize that the contribution of the present paper is first and
foremost theoretical, and that, like MLPs with a single hidden
layer, we cannot expect the shallow GNNs (1) to be state-of-the-
art and compete with deep models, despite their universality. A
benchmarking of deep GNNs that use invariant and equivariant
linear operators is done in (Maron et al., 2019a).

We consider graphs, represented using their adjacency matrices
(i.e. 2-ways tensor, so that d = 2). The synthetic graphs are
drawn uniformly among 5 graph topologies (complete graph,
star, cycle, path or wheel) with edge weights drawn indepen-
dently as the absolute value of a centered Gaussian variable.
Since our approximation results are valid for several graph
sizes simultaneously, both training and testing datasets contain
1.4 · 104 graphs, half with 5 nodes and half with 10 nodes.
The training is performed by minimizing a square Euclidean
loss (MSE) on the training dataset. The minimization is per-
formed by stochastic gradient descent using the ADAM opti-
mizer (Kingma and Ba, 2014). We consider two different regression tasks: (i) in the invariant case,
the scalar to predict is the geodesic diameter of the graph, (ii) in the equivariant case, the vector to
predict assigns to each node the length of the longest shortest-path emanating from it. While these
functions can be computed using polynomial time all-pairs shortest paths algorithms, they are highly
non-local, and are thus challenging to learn using neural network architectures. The GNNs (1) are
implemented with a fixed tensorization order ks = k ∈ {1, 2, 3} and ρ = ρsig..

Figure 3 shows that, on these two cases, when increasing the width S, the out-of-sample prediction
error quickly stagnates (and sometime increasing too much S can slightly degrade performances by
making the training harder). In sharp contrast, increasing the tensorization order k has a significant
impact and lowers this optimal error value. This support the fact that universality relies on the use of
higher tensorization order. This is a promising direction of research to integrate higher order tensors
withing deeper architecture to better capture complex functions on graphs.

5 Conclusion

In this paper, we proved the universality of a class of one hidden layer equivariant networks. Handling
this vector-valued setting required to extend the classical Stone-Weierstrass theorem. It remains an
open problem to extend this technique of proof for more general equivariant networks whose outputs
are graph-valued, which are useful for instance to model dynamic graphs using recurrent architectures
(Battaglia et al., 2016). Another outstanding open question, formulated in (Maron et al., 2019b), is
the characterization of the approximation power of networks whose tensorization orders ks inside the
layers are bounded, since they are much more likely to be implemented on large graphs in practice.
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A Proofs

A.1 Invariant case

A.1.1 Proof of Lemma 1

We first prove that invariant GNNs are continuous with respect to dedit. For two graphs G1, G2

such that dedit(O (G1) ,O (G2)) < c, the graphs have the same number of nodes. Using the fact
that ρ,H, F are (locally) Lipschitz in this case, we have |f(G1)− f(G2)| . ‖G1 −G2‖1, and by
invariance by permutation:

|f(O (G1))− f(O (G2))| . min
σ
‖G1 − σ ? G2‖1 = dedit(O (G1) ,O (G2))

and therefore we have indeed N⊗inv.(ρ) ⊂ C(Ginv., dedit).

Since N⊗inv.(ρ) is obviously a vector space, we must now prove that it is closed by multiplication. For
that, it is sufficient to prove that, for two invariant linear operators H1 : Rnk1 → R and H2 : Rnk1 →
R, there exists an invariant linear operator H3 : Rnk1+k2 → R such that H1[G1]H2[G2] = H3[G1 ⊗
G2]. For this we recall that (A⊗B)(C⊗D) = (AC)⊗(BD) and vec (A)⊗vec (B) = vec (A⊗B),
and thus that

H1[G1]H2[G2] =
(

vec (H1)
> vec (G1)

)(
vec (H2)

> vec (G2)
)

= (vec (H1)
> ⊗ vec (H2)

>
)(vec (G1)⊗ vec (G2))

= vec (H1 ⊗H2)
> vec (G1 ⊗G2)

Hence we can define H3 = H1 ⊗H2 and check that it is invariant by permutation. By Maron et al.
(2019a) a necessary and sufficient condition is P⊗k1+k2vec (H3) = vec (H3), which we can easily
check:

P⊗(k1+k2)vec (H3) = (P⊗k1vec (H1))⊗ (P⊗k2vec (H2)) = vec (H3)

since P⊗kivec (Hi) = vec (Hi).

A.1.2 Proof of Lemma 2

We proceed by contradiction, and show that if f(O (G)) = f(O (G′)) for any f ∈ N⊗inv.(ρsig), then
O (G) = O (G′), i.e. G and G′ are permutation of each other. Let G,G′ be any two such graphs.

The first step if to show that G and G′ have the same number of nodes n = n′. Consider τ =
mini1,...,id(min(Gi1,...,id , G

′
i1,...,id

)) − 1 the minimal element of both G and G′ minus 1, and the
following family of networks:

fλ(G) = H
[
ρsig
(
λ(G− τ1⊗d)

)]
with H[z] =

∑
i1,...,id

zi1,...,id .

By letting λ → ∞, the sigmoid produces 1 for every element in G that is above τ , that is, every
element in G or G′. Hence we have fλ(G) −−−−→

λ→∞
nd and fλ(G′) −−−−→

λ→∞
(n′)d, and therefore

n = n′.

Then, we show similarly that the multiset (that is, set with multiplicity) of {Gi1,...,id} is the same as
the multiset of {G′i1,...,id}. Consider them ordered: G

i
(1)
1 ...i

(1)
d

6 . . . 6 G
i
(N)
1 ...i

(N)
d

, andG′
j
(1)
1 ...j

(1)
d

6

. . . 6 G′
i
(N)
1 ...i

(N)
d

, where N = nd. Then, by contradiction, if there is a q such that G
i
(q)
1 ...i

(q)
d

6=
G′
j
(q)
1 ...j

(q)
d

, say G
i
(q)
1 ...i

(q)
d

< G′
j
(q)
1 ...j

(q)
d

w.l.o.g., set τ = (G
i
(q)
1 ...i

(q)
d

+ G′
j
(q)
1 ...j

(q)
d

)/2. Then, for

λ > 0, consider the same neural networks as above with this τ . Again, by letting λ→∞, the sigmoid
produces 1 for every element in G that is above τ , and 0 otherwise. Hence fλ(G) −−−−→

λ→∞
nd − q,

and fλ(G′) −−−−→
λ→∞

nd − q + 1, which is a contradiction. Hence G
i
(q)
1 ...i

(q)
d

= G′
j
(q)
1 ...j

(q)
d

for every q,

and G and G′ are formed by the same multiset of nd real numbers.

Consider now the tensors A = ρsig(G), A′ = ρsig(G′) which have strictly positive elements. Since
ρsig is a 1-to-1 mapping in R, producing a permutation between A, A′ yields a permutation for G, G′

11



and allow us to conclude. We consider the following class of neural nets in N⊗inv.(ρsig):

f(G) = H[A⊗k]

for every integer k > 0 and invariant H . Recall that A⊗k is an dk-order tensor indexed such that

(A⊗k)(i11,...,i1d),...,(ik1,...,ikd) =

k∏
`=1

ai`1,...,i`d

for any 1 6 i`q 6 n. Then, for any fixed set of such indices, it is not difficult to see that a valid
invariant operator is the following:

H[A⊗k] =
∑
σ∈On

k∏
`=1

aσ(i`1),...,σ(i`d)

where On is the set of all permutations. Indeed, for all σ̄ ∈ On:

H[(σ̄ ? A)⊗k] =
∑
σ∈On

k∏
`=1

aσ̄−1σ(i`1),...,σ̄−1σ(i`d)

=
∑
σ∈On

k∏
`=1

aσ(i`1),...,σ(i`d) = H[A⊗k]

by a simple change of variable in the sum
∑
σ∈On . In the same spirit, for any set of integers

ki1,...,id > 0 where 1 6 iq 6 n, the following is a valid invariant GNN in N⊗inv.(ρsig):

f(G) = H[A
⊗

∑
i1,...,id

ki1,...,id ] =
∑
σ∈On

n∏
i1,...,id=1

a
ki1,...,id
σ(i1),...,σ(id)

Hence, we have that for any ki1,...,id :∑
σ∈On

n∏
i1,...,id=1

a
ki1,...,id
σ(i1),...,σ(id) =

∑
σ∈On

n∏
i1,...,id=1

(a′)
ki1,...,id
σ(i1),...,σ(id)

Recalling that {ai1,...,id} and {a′i1,...,id} are the same multiset, we can apply Lemma 11 in Appendix
C, which yields a permutation σ such that ai1,...,id = a′σ(i1),...,σ(id) and concludes the proof.

A.1.3 Proof of Lemma 3

(i) Consider any function in N⊗inv.(ρsig)

f(G) =

S∑
s=1

Hs

[
ρsig(Fs1[G] +Bs1)⊗ . . .⊗ ρsig(FsTs [G] +BsTs)

]
+ b

and any ε > 0.
Given that we are on a bounded domain, there exists M such that
supG maxs,t ‖Fst[G] +Bst‖∞ 6 M for all s (where ‖·‖∞ is element-wise maxi-
mum). The Fourier development of ρsig on [−M,M ] yields that there exist ai, bi, ci, i 6 N ,
such that for all u ∈ [−M,M ]∣∣∣∣∣ρsig(u)−

N∑
i=1

ai cos(biu+ ci)

∣∣∣∣∣ 6 ε

Defining

fst(G) = ρsig(Fst[G] +Bst) ,

hst(G) =

N∑
i=1

ai cos
(
bi(Fst[G] +Bst) + ci1

⊗2kst
)
,

12



we have
sup
G

max
s,t
‖fst(G)− hst(G)‖∞ 6 ε

Hence, for any s, is we define et = ‖fs1(G)⊗ . . .⊗ fst(G)− hs1(G)⊗ . . .⊗ hst(G)‖∞,
we have
eTs 6 ‖fs1(G)⊗ . . .⊗ fsTs−1(G)⊗ (fsTs(G)− hsTs(G))‖∞

+ ‖((fs1(G)⊗ . . .⊗ fsTs−1(G)− hs1(G)⊗ . . .⊗ hsTs−1(G))⊗ hsTs(G)‖∞
6 ε+ (1 + ε)eTs−1 6 3Tse1 6 3Tsε

Since the Hs are linear in finite dimension they are bounded operators and we call Ls such
that |Hs(W )| 6 Ls ‖W‖∞. Finally, if we define g ∈ N⊗inv.(cos) by

g(G) =

S∑
s=1

Hs [hs1(G)⊗ . . .⊗ hsTs(G)]

we have proved that we have supG |f(G)− g(G)| 6 (
∑
s Ls3

Ts)ε, which concludes the
proof.

(ii) The proof is based on the fact that cos(a) cos(b) = cos(a+ b) + cos(a− b). Hence:
cos(F1[G] +B1)⊗ cos(F2[G] +B2)

=
(

cos(F1[G] +B1)⊗ 1nk2 1>nk2

)
�
(

1nk1 1>nk1 ⊗ cos(F2[G] +B2)
)

= cos(F̄1[G] + B̄1 + F̄2[G] + B̄2)

+ cos(F̄1[G] + B̄1 − F̄2[G]− B̄2)

where F̄1[G] = F1[G] ⊗ 1nk2 1>
nk2

and F̄2[G] = 1nk1 1>
nk1
⊗ F2[G] and similarly for B̄i.

Since 11> is invariant by permutation, it is easy to see that the F̄i are equivariant linear
functions outputting a k1 + k2-tensor, and B̄i are equivariant biases, which proves the result.

(iii) Since ρ ∈ FMLP and the universal approximation theorem applies, the cosine function on a
compact of R can be uniformly approximated by a linear combination of ρ:

sup
x∈[−MM ]

∣∣∣∣∣cos(x)−
N∑
i=1

aiρ(bix+ ci)

∣∣∣∣∣ 6 ε

The rest of the proof is similar to (i).

A.2 Equivariant case

A.2.1 Proof of Lemma 4

Again we must prove that N⊗eq.(ρ) is closed by “multiplication”, that is, Hadamard product. For that,

it is sufficient to show that for two equivariant linear operators H1 : Rnk → Rn, H2 : Rn` → Rn,
there exists an equivariant linear operator H3 : Rnk+` → Rn such that

H1[G1]�H2[G2] = H3[G1 ⊗G2]

For that, writing the matrices H1 ∈ Rnk×n and H2 ∈ Rn`×n by abuse of notation, we have

H1[G1]�H2[G2] = diag
(
H1vec (G1) vec (G2)

>
H>2

)
Then, defining matk,` the operator that transforms a tensor G ∈ Rnk+` to a Rnk×n` matrix and
the linear operator H3[G] = diag

(
H1matk,`(G)H>2

)
, we have indeed that H1[G1] � H2[G2] =

H3[G1 ⊗ G2]. Then, for any permutation σ and corresponding matrix P , since H1P
⊗k = PH1,

H2P
⊗` = PH2, and matk,`(σ ? G) = P⊗kmatk,`(G)(P>)⊗`, we have

H3[σ ? G] = diag
(
H1matk,`(σ ? G)H>2

)
= diag

(
H1P

⊗kmatk,`(G)(P>)⊗`H>2
)

= diag
(
PH1matk,`(G)H>2 P

>) = PH3[G]

and therefore H3 is equivariant, which concludes the proof.
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A.2.2 Proof of Lemma 5

Separability. The separability condition is in fact exactly equivalent to the invariant case: indeed,
we can construct linear equivariant operators Hs just by stacking linear invariant operators on every
coordinate. Hence, for any invariant GNN f ∈ N⊗inv.(ρsig.), h = [f, . . . , f ] ∈ N⊗eq.(ρsig.) is a valid
equivariant operator. Hence, for any two graphs G,G′ such that are not permutation of each other, by
Lemma 2 there is f ∈ N⊗inv.(ρsig.) such that f(G) 6= f(G′), and by considering h = [f, . . . , f ] every
coordinate of h(G) is different from that of h(G′).

Self-separability. For the self-separability, consider any G ∈ Geq. with n nodes, and any I ⊂ [n].
Once again we proceed by contradiction: we are going to show that if there exist k ∈ I, ` ∈ Ic such
that for all h ∈ N⊗eq.(ρsig.) we have [h(G)]k = [h(G)]`, then G ∈ Geq.(OI). Let G be such a graph,
with the corresponding fixed k, `.

Similar to the proof of the separability in the invariant case, we define A = ρsig.(G), again keeping in
mind that the sigmoid in a one-to-one mapping. Then, for any ki1,...,id , recall that the following is a
valid invariant GNN:

H[A
⊗

∑
i1,...,id

ki1,...,id ] =
∑
σ∈On

n∏
i1,...,id=1

a
ki1,...,id
σ(i1),...,σ(id)

Similarly, we are going to show that the following defines a valid equivariant GNN:

[f(G)]q =
[
H[A

⊗
∑
i1,...,id

ki1,...,id ]
]
q

=
∑

σ∈O(q)

n∏
i1,...,id=1

a
ki1,...,id
σ(i1),...,σ(id)

where O(q) def.
= {σ ∈ O ; σ(k) = q} (where we recall that k, ` are fixed and part of the hypothesis

we have made on G). Indeed, for any permutation σ̄, we have

[f(σ̄ ? G)]σ̄(q) =
∑

σ∈O(σ(q))

n∏
i1,...,id=1

a
ki1,...,id
σ̄−1(σ(i1)),...,σ̄−1(σ(id))

=
∑

σ∈O,σ̄−1(σ(k))=q

n∏
i1,...,id=1

a
ki1,...,id
σ̄−1(σ(i1)),...,σ̄−1(σ(id))

=
∑

σ∈O,σ(k)=q

n∏
i1,...,id=1

a
ki1,...,id
σ(i1),...,σ(id) = [f(G)]q

Hence, we have indeed f(σ̄ ? G) = σ̄ ? f(G), and f is equivariant. Now, by hypothesis on G, it
means that for all ki1,...,id , we have:∑

σ∈O(k)

n∏
i1,...,id=1

a
ki1,...,id
σ(i1),...,σ(id) =

∑
σ∈O(`)

n∏
i1,...,id=1

a
ki1,...,id
σ(i1),...,σ(id) .

Now, since O(k) contains the identity and has the same cardinality as O(`), by Lemma 11 it means
that there is a permutation σ ∈ O(`) such that G = σ ? G. Observing that O(`) ⊂ OI concludes the
proof.

B Adapted Stone-Weierstrass theorem: proof of Theorem 4

Let us first introduce some more notations. For O′ ⊂ O and G a set of graphs, we define

O′(G)
def.
= {σ ? G ; σ ∈ O′, G ∈ G}

G(O′) def.
= {G ∈ G ; ∃σ ∈ O′, G = σ ? G}

that is, respectively, the set of permuted graphs in G, and the set of graphs in G that have a self-
isomorphism in O′. Recall that we denote by [f ]I and [x]I indexation of multivariate functions and
vectors, and that inequalities x > a are element-wise. A neighborhood of x is an open set V such that
x ∈ V . Finally, for convenience we denote G(n)

eq. = Geq. ∩ Rnd the graphs in Geq. that have n nodes.

As described in the paper, the key lemma is the construction of step-functions.
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Lemma 7 (Existence of step-functions). Let n 6 nmax, and I ⊂ [n] be any subset of indices. Let
A ⊂ Geq., B ⊂ G(n)

eq. be two closed sets such that B ∩ G(n)
eq. (OI) = ∅ and B ∩ O(A) = ∅, that is,

graphs in B have no self-isomorphism in OI and no two graphs between A and B are isomorphic.
Then, for all ε > 0, there exists f ∈ A such that:

∀G, 0 6 f(G) 6 1

∀G ∈ B, [f(G)]I > 1− ε and [f(G)]Ic 6 ε

∀G ∈ A, f(G) 6 ε

We start the proof by a serie of three intermediate lemmas.

Lemma 8. Let n 6 nmax, and I ⊂ [n] be any subset of indices. Let G0 ∈ G(n)
eq. such that

G /∈ G(n)
eq. (OI), and T be a closed subset of Geq. such that T ∩ O(G0) = ∅. Then, there exists

V (G0) ⊂ Rnd a neighborhood of G0 such that the following holds: for all ε > 0, there exists f ∈ A
such that: 

∀G, f(G) ∈ [0, 1]

∀G ∈ V (G0), [f(G)]I > 1− ε and [f(G)]Ic 6 ε

∀G ∈ T, f(G) 6 ε

Proof. Our goal is to build a function g ∈ A along with a threshold δ > 0 and V (G0) a neighborhood
of G0 such that: {

∀G ∈ T, g(G) > δ

∀G ∈ V (G0), [g(G)]I 6 δ/2 and [g(G)]Ic > δ

Then we can conclude similarly to the end of the proof of Lemma 1 in (Brosowski and Deutsch,
1981).

Take any k ∈ I, ` ∈ Ic and G ∈ T . Note that G does not necessarily have n nodes, we denote nG its
number of nodes. Let i ∈ [nG] be any index. According to the two separability hypotheses, there
exists gG,k,i, hk,` ∈ A such that [gG,k,i(G0)]k 6= [gG,k,i(G)]i and [hk,`(G0)]k 6= [hk,`(G0)]`. Then,
consider

gG =
∏
k∈I

(
1

nG

nG∑
i=1

(gG,k,i − [gG,k,i(G0)]k1)2

‖gG,k,i − [gG,k,i(G0)]k1‖2∞

)
∈ A

h =
∏
k∈I

(
1

|Ic|
∑
`∈Ic

(hk,` − [hk,`(G0)]k1)2

‖hk,` − [hk,`(G0)]k1‖2∞

)
∈ A

where
∏
, (·)2 are to be understood component-wise and ‖g‖∞ = supG ‖g(G)‖∞. These functions

satisfy 
gG, h ∈ [0, 1] ,

[gG(G0)]I = [h(G0)]I = 0

gG(G) > 0, [h(G0)]Ic > 0

By continuity, define S(G) ⊂ RndG a neighborhood of G such that gG > 0 on S(G). By compacity
of T , there is a finite number of G1, . . . , Gm such that T ⊂

⋃
i S(Gi). Then, we define g =

1
m+1 (

∑
i gGi + h) ∈ A, which satisfies:

g ∈ [0, 1]

g > 0 on T
[g(G0)]I = 0 and [g(G0)]Ic > 0 .

Again, by compacity of T , there exists δ > 0 such that g > δ on T and [g(G0)]Ic > 2δ. Then, by
continuity, we define V (G0) a neighborhood of G0 such that [g]I 6 δ/2 and [g]Ic > δ on V (G0).

We can now conclude. Assuming that δ < 1 is small enough without lost of generality, let k be an
integer such that 1/δ < k < 2/δ, and define the following functions in A:

qp = (1− gp)k
p
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which are obviously such that qp ∈ [0, 1].

Then, using the elementary Bernoulli inequality (1 + h)p > 1 + ph for all h > −1, we have for all
G ∈ V (G0) and i ∈ I:

qp(G)i > 1− (kgi(G))p > 1− (kδ/2)p −−−→
p→∞

1

and similarly, for either G ∈ T and any i, or G ∈ V (G0) and i ∈ Ic, we have

qp(G)i 6
1 + (kgi(G))p

(kgi(G))p
(1− gi(G)p)k

p

6
(1 + gi(G)p)k

p

(kgi(G))p
(1− gi(G)p)k

p

by Bernoulli’s inequality

=
(1− gi(G)2p)k

p

(kgi(G))p
6

1

(kδ)p
−−−→
p→∞

0

Hence, for all ε > 0, there exists an p such that qp 6 ε on T , [qp]Ic 6 ε and [qp]I > 1− ε on V (G0).
Taking f = 1− qp concludes the proof.

A similar result without the interval I is the following.
Lemma 9. Let G0 be any graph and T be a closed subset of Geq. such that T ∩ O(G0) = ∅. Then,
there exists V (G0) a neighborhood of G0 such that the following holds: for all ε > 0, there exists
f ∈ A such that: 

∀G, f(G) ∈ [0, 1]

∀G ∈ V (G0), f(G) > 1− ε
∀G ∈ T, f(G) 6 ε

Proof. The proof is similar (but simpler) to that of Lemma 8, without introduction of the interval I
and the function h.

An easy consequence of the above Lemma is the following.
Lemma 10. Let A,B be two closed sets such that B ∩ O(A) = ∅. Then, for all ε > 0, there exists
f ∈ A such that: 

∀G, f(G) ∈ [0, 1]

∀G ∈ B, f(G) > 1− ε
∀G ∈ A, f(G) 6 ε

Proof. LetG ∈ B. By hypothesis, A∩O(G) = ∅, so by Lemma 9 there exists V (G) a neighborhood
of G such that for all ε > 0 there exists f ∈ A satisfying: 0 6 f 6 1, f > 1 − ε on V (G),
and f 6 ε on A. By compacity of B, there is a finite number of G1, . . . , Gm ∈ B such that
B ⊂ ∪mi=1V (Gi). Denote by fi the associated functions produced by Lemma 9 for some ε′ > 0, and
denote f =

∏
i(1 − fi). We have that f 6 ε′ on B and f > (1 − ε′)m on A. Hence by choosing

appropriately ε′ (note that ε′ is authorized to depend on m), we obtain a function f such that f 6 ε
on B and f > 1− ε on A, and taking 1− f concludes the proof.

We can now show Lemma 7.

Proof of Lemma 7. Let G ∈ B ⊂ G(n)
eq. . By hypothesis, G /∈ G((n))

eq. (OI) and A ∩ O(G) = ∅, so by
Lemma 8 there exists V (G) ⊂ Rnd a neighborhood of G such that for all ε > 0 there exists f ∈ A
satisfying:

0 6 f 6 1

[f ]I > 1− ε and [f ]Ic 6 ε on V (G)

f 6 ε on A .

By compacity of B, there is a finite number of G1, . . . , Gm ∈ B such that B ⊂ ∪mi=1V (Gi). For
some ε > 0 that we will choose later, denote the associated functions f1, . . . , fm (note that the V (Gi)
do not depend on ε, but the fi do).
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We remark that we cannot just consider the function
∏
i fi and conclude: indeed, on each V (Gi) only

fi will satisfy [fi]I > 1− ε, and the others fj are not guaranteed to be lower bounded. For the same
reason, we cannot consider 1

m

∑
i fi either, due to the requirement that [f ]Ic 6 ε on B. We need to

introduce auxiliary functions f̃i such that we are guaranteed that for each j 6= i, [f̃j ]I > 1 − ε on
V (Gi), and we can conclude with

∏
i(fi + f̃i). We will construct such functions with Lemma 10. A

final difficulty is that V (Gi) are open sets, while Lemma 10 can only work with closed sets.

Hence, by continuity, consider the neighborhoods V ′(Gi) ⊂ Rnd such that

V (Gi) ⊂ V ′(Gi)
[fi]I > 1− 2ε and [fi]Ic 6 2ε on V ′(Gi) .

Note that the V (Gi) do not depend on ε, but the V ′(Gi) do.

Then, for all i ∈ [n] consider the closed sets Ai = A ∪ V (Gi) and Bi = B\O(V ′(Gi)). By
construction ofBi and hypothesis onA, we have indeed thatO(Ai)∩Bi = ∅, since V (Gi) ⊂ V ′(Gi).
Applying Lemma 10, we obtain a function f̃i ∈ A such that f̃ 6 ε on Ai and f̃ > 1− ε on Bi.

Finally, consider the following function: f = 1
2m

∏
i(fi + f̃i). Take any G ∈ B. Consider

the index i such that G ∈ V (Gi). We have [fi(G) + f̃i(G)]I > 1 − ε by definition of fi and
[fi(G) + f̃i(G)]Ic 6 2ε by definition of fi and f̃i and the fact that G ∈ V (Gi) ⊂ Ai. For any j 6= i,
we have the following: either G ∈ O(V ′(Gj)), in which case, by equivariance of fj and the fact that
G /∈ Geq.(OI), we have [fj(G)]I > 1− 2ε; or G ∈ Bj , in which case [f̃j(G)]I > 1− 2ε. Overall,
we obtain that

[f ]I >
1

2m
(1− 2ε)m and [f ]Ic 6

1

2m
2ε on B

f 6
1

2m
2ε on A .

We conclude by choosing ε such that (1 − 2ε)m > 2ε and proceeding similarly to the end of the
proof of Lemma 8, resorting to Bernoulli’s inequality.

We are now ready to prove Theorem 4.

Proof of Theorem 4. Fix f ∈ Ceq. a continuous equivariant function and ε > 0. Our goal is to find
a function g ∈ A such that for all G ∈ Geq., ‖F (G)− f(G)‖∞ 6 ε. Since Geq. is compact, f is
bounded, and since we can add constants to g, without lost of generality we assume that 0 < f < fmax

on Geq..

We first restrict the space to the compact set where the coordinates of F are ordered:

Gf
def.
=

nmax⋃
n=1

G(n)
f where G(n)

f
def.
=
{
G ∈ G(n)

eq. ; f1(G) > f2(G) > . . . > fn(G)
}

Indeed, by equivariance of f , every graph G ∈ Geq. has a permuted representation in Gf . Hence
proving the uniform approximation of f on Gf is sufficient to prove it on the whole set Geq..

Now, denote K ∈ N an integer such that (K − 1)ε 6 fmax 6 Kε. For k = 1, . . . ,K, n =
1, . . . , nmax and ` = 1, . . . , n, define the following compact set:

An,`k =
{
G ∈ G(n)

f ; f`(G)− f`+1(G) 6 (k − 1/3)ε
}
∪
⋃
n′ 6=n

G(n′)
f

Bn,`k =
{
G ∈ G(n)

f ; f`(G)− f`+1(G) > (k + 1/3)ε
}

where we use the convention that for G ∈ Rnd , fn+1(G) = 0. Note that An,`k ⊂ An,`k+1, and
Bn,`k+1 ⊂ B

n,`
k . For ` = 1, . . . , n we denote the integer interval I` = [1, `].

Let us first show that An,`k ∩ O(Bn,`k ) = ∅ and B`k ∩ G
(n)
eq. (OI`) = ∅, so that we can apply Lemma

7. Consider G ∈ Bn,`k , G′ ∈ An,`k , y = F (G) and y′ = F (G′). If G′ ∈ G(n′)
eq. for n′ 6= n, G and

17



G′ are obviously not permutation of one another. If G′ ∈ G(n)
eq. , the coordinates of both y and y′ are

sorted, and we have y′` − y′`+1 > y` − y`+1 (again with the convention that yn+1, y
′
n+1 = 0). It is

therefore impossible for y and y′ to be permutation of one another, and thus An,`k ∩ O(Bn,`k ) = ∅.
Furthermore, for any ` < n, we have yi > y` > y`+1 > yj for any i 6 ` < j, and therefore there
is no self-permutation of y that exchange an index before ` and one after. In other words, we have
Bn,`k ∩ G(n)

eq. (OI`) = ∅.

Then, for all k and n, for ` < n, by applying Lemma 7 for ε > 0 we obtain fn,`k such that
0 6 fn,`k 6 1, [fn,`k ]I` > 1 − ε and [fn,`k ]Ic` 6 ε on Bn,`k , and fn,`k 6 ε on An,`k . Similarly, by
applying Lemma 10, we obtain functions fn,nk ∈ A such that 0 6 fn,nk 6 1, fn,nk > 1− ε on Bn,nk
and fn,nk 6 ε on An,nk . Finally, we define g =

∑
k,n

∑n
`=1 f

n,`
k .

Now, take any G ∈ Gf , denote by n its number of nodes. For every ` 6 n, denote k` such that
k` − 2

3 6 f`(G)−f`+1(G)
ε 6 k` + 2

3 . By summing these equations, we obtain for all q:

ε

n∑
`=q

k` −
2nε

3
6 ε

n∑
`=q

(
k` −

2

3

)
6 (f(G))q 6 ε

n∑
`=q

(
k` +

2

3

)
6 ε

n∑
`=q

k` +
2nε

3
(4)

We are going to show that g approximates these bounds. For all `, we have G ∈ An,`k`+1 ∪ B
n,`
k`−1.

Moreover, it is obvious that G ∈ An
′,`
k for all n′ 6= n, and all k, `. By construction of fn,`k , we have:

∀n′ 6= n, ∀k, `, fn
′,`

k (G) 6 ε since G ∈ An
′,`
k

∀` 6 n, ∀k > k` + 1, fn,`k (G) 6 ε since G ∈ An,`k`+1 ⊂ A
n,`
k

∀` 6 n, ∀k 6 k` − 1,

{
[fn,`k (G)][1,`] > 1− ε
[fn,`k (G)][`+1,n] 6 ε

since G ∈ Bn,`k`−1 ⊂ B
n,`
k

Then, we decompose

[f(G)]q = ε

∑
n′ 6=n

n′∑
`=1

∑
k

[fn
′,`

k (G)]q +

q−1∑
`=1

∑
k

[fn,`k (G)]q +

n∑
`=q

∑
k

[fn,`k (G)]q

 (5)

By what precedes the first term is bounded by

0 6
∑
n′ 6=n

n′∑
`=1

∑
k

[fn
′,`

k (G)]q 6 n2
maxKε < n2

maxfmax

For the second term, we have

0 6
q−1∑
`=1

∑
k

[fn,`k (G)]q 6 (q − 1)(1 + (K − 1)ε) < nmax(1 + fmax)

since for all ` 6 q − 1 and any k 6= kq , we have [fn,`k (G)]q 6 ε. Finally, for the third term:

n∑
`=q

∑
k

[fn,`k (G)]q > (1− ε)
n∑
`=q

(k` − 1) >
n∑
`=q

k` − nmax(fmax + 1),

n∑
`=q

∑
k

[fn,`k (G)]q 6
n∑
`=q

(k` + 1 + (K − k` − 1)ε) 6
n∑
`=q

k` + nmax(1 + fmax)

Hence, combining (4) and (5) with the bounds above we obtain

−ε
(

2nmax

3
+ nmax(fmax + 1)

)
6 [f(G)]q−[F (G)]q 6 ε

(
2nmax

3
+ 2nmax(1 + fmax) + n2

maxfmax

)
Hence appropriately choosing ε concludes the proof of the theorem.
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C Additional technical lemma

The next technical lemma is used in proving separation of points.
Lemma 11. Let ai1,...,id , a

′
i1,...,id

> 0 for 1 6 i1, . . . , id 6 n be nd positive numbers such that
{ai1,...,id} and {a′i1,...,id} are the same multisets. Let O′,O′′ ⊂ On be sets of permutations such
that Id ∈ O′ and |O′| = |O′′|. If, for every set of integers ki1,...,id > 0, we have∑

σ∈O′

∏
i1,...,id

a
ki1,...,id
σ(i1),...,σ(id) =

∑
σ∈O′′

∏
i1,...,id

(a′σ(i1),...,σ(id))
ki1,...,id , (6)

then there exists a permutation σ ∈ O′′ such that ai1,...,id = a′σ(i1),...,σ(id).

Proof. The proof is ultimately based on the simple fact that for two vectors x, y ∈ Rp, the inner
product 〈x, y〉 is maximum if the elements of x and y have the same ordering (the largest element xi
is multiplied to the largest element yi, and so on1).

Let us begin by fixing any ki1,...,id and showing that there is a bijection ϕ : O′ → O′′ be-
tween the two considered sets of permutations such that for all σ ∈ O′,

∏
i1,...,id

a
ki1,...,id
σ(i1),...,σ(id) =∏

i1,...,id
(a′ϕ(σ)(i1),...,ϕ(σ)(id))

ki1,...,id , that is, there is a bijection between each additive term of (6).

Denoting Aσ =
∏
i1,...,id

a
ki1,...,id
σ(i1),...,σ(id) and similarly A′σ for a′, a consequence of (6) is that∑

σ∈O′
Akσ =

∑
σ∈O′′

(A′σ)k (7)

for all k. Hence, considering the maximum elements maxσ Aσ and maxσ′ A
′
σ′ (with arbitrary choice

in case of multiple maxima): if they are different, by dividing the equation by the largest of the two
and letting k → ∞, we have that one side goes to 0 while the other tends to a positive constant.
Hence the maximal elements are the same, we can substract them from the equation and reiterate.
Hence we have proven that there is indeed a bijection between the Aσ and A′σ′ .

Then, considering the multiset of nd numbers {ai1,...,id}, pick ki1,...,id > 0 in the same order than
these numbers: ai1,...,id 6 ai′1,...,i′d implies ki1,...,id 6 ki′1,...,i′d . Using the previously proved property,
consider the permutation σ ∈ O′′ (which depends on the ki1,...,id ) such that∏

i1,...,id

a
ki1,...,id
i1,...,id

=
∏

i1,...,id

(a′σ(i1),...,σ(id))
ki1,...,id

(that is, we have isolated the term corresponding to Id ∈ O′ in the l.h.s. of (7) and located the
component in the r.h.s. that is in bijection with it). Then, remembering that the ai1,...,id and a′i1,...,id
are taken from the same pool of real numbers, we claim that having the a′σ(i1),...,σ(id) ordered as the
ki1,...,id is the only way to reach the maximum value (reached by the ai1,...,id) among all orderings
of the {a′σ(i1),...,σ(id)}: indeed, for that, take the logarithm of the equation above, and we use the
fact that the scalar product between two vectors formed by a fixed set of elements is maximal when
they are ordered in the same fashion. Hence we have proven that: ai1,...,id 6 ai′1,...,i′d implies
ki1,...,id 6 ki′1,...,i′d which implies a′σ(i1),...,σ(id) 6 a′σ(i′1),...,σ(i′d). Since the a, a′ are drawn from the
same pool of numbers, we have proven that ai1,...,id = a′σ(i1),...,σ(id), which concludes the proof.

1If there are i, j such that xi < xj and yj < yi, then we can form y′ by swapping yi and yj , and we have
x>y′ − x>y = xiyj + xjyi − xiyi − xjyj = (xj − xi)(yi − yj) > 0, hence the swapping strictly increases
the scalar product, which is maximal when x and y are ordered in the same fashion.
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