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A Linear algebra primer

This work makes heavy use of the Kronecker product and related operators. To ease the user’s
understanding, we provide a short description of these operators along with proofs of common
transforms used throughout the text. Useful references for this section are [9, 5].

A.1 Conventions

Throuhought this document, we adopt the following conventions:

• Vectors are denoted with bold lowercase letters: y.

• Matrices are denoted with bold uppercase letters: A.

• If A ∈ CM×N , ak ∈ CM denotes the k-th column of A.

• The i-th entry of vector y is denoted [y]i.

• The (i, j)-th entry of matrix A is denoted [A]ij .

• The conjugation operation is denoted by overlining a vector or a matrix respectively: a, A.

• The modulus of a complex number z ∈ C is denoted by |z|.

A.2 Hadamard, Kronecker and Khatri-Rao products

The Hadamard product is the element-wise multiplication operator:
Definition A.1 (Hadamard product). Let A ∈ CM×N and B ∈ CM×N . The Hadamard product
A�B ∈ CM×N is defined as

[A�B]ij = [A]ij [B]ij .

Moreover, we denote by A�2 the Hadamard square of a matrix: A�A.

The Kronecker product generalises the vector outer product to matrices, and represents the tensor
product between two finite-dimensional linear maps:
Definition A.2 (Kronecker product). Let A ∈ CM1×N1 and B ∈ CM2×N2 . The Kronecker product
A⊗B ∈ CM1M2×N1N2 is defined as

A⊗B =

 [A]11 B · · · [A]1N1
B

...
. . .

...
[A]M11

B · · · [A]M1N1
B

 .
The main properties of the Kronecker product are [9]:

(A⊗B)
H

= AH ⊗BH , (A.1)
(A⊗B) (C⊗D) = (AC)⊗ (BD) , (A.2)

(A⊗B)� (C⊗D) = (A�C)⊗ (B�D) . (A.3)

The Khatri-Rao product finally, is a column-wise Kronecker product:
Definition A.3 (Khatri-Rao product). Let A ∈ CM1×N and B ∈ CM2×N . The Khatri-Rao product
A ◦B ∈ CM1M2×N is defined as

A ◦B = [a1 ⊗ b1, . . . ,aN ⊗ bN ] .

A.3 Matrix identities

In imaging problems, A⊗B and A ◦B are often too large to be stored in memory. However it is not
the matrix itself that is of interest in many circumstances, but rather the effect of a linear map such as
f(x) = (A ⊗B)x. The matrix identities below allow us to evaluate f(x) without ever having to
compute large intermediate arrays. They make use of the vectorisation operator, defined hereafter:
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Definition A.4 (Vectorisation). Let A ∈ CM×N . The vectorisation operator vec(·) reshapes a matrix
into a vector by stacking its columns:

[vec(A)]M(j−1)+i = [A]ij .

Conversely, the matricisation operator matM,N (·) reshapes a vector into a matrix:

[matM,N (a)]ij = [a]M(j−1)+i .

Commonly used matrix identities are the following [5, 23]:

vec(ABC) =
(
CT ⊗A

)
vec(B) (A.4)

vec(A diag(b)C) =
(
CT ◦A

)
b (A.5)

〈A,B〉F = tr
(
AHB

)
= vec(A)H vec(B) (A.6)

vec(baT ) = a⊗ b (A.7)
In this work, we furthermore make use of the following nonstandard matrix identities, proven
hereafter:

(A ◦B)
H

vec(C) = diag
(
BHCA

)
(A.8)

(A⊗B)
H

(A⊗B) vec(C) = vec(BHBCATA) (A.9)

(A ◦B)
H

(A ◦B) c = diag(BHB diag(c)ATA) (A.10)

(A ◦B)
H

(A ◦B) = AHA�BHB. (A.11)

Proof. (A.8)[
(A ◦B)

H
vec(C)

]
i

= 〈[A ◦B]i , vec(C)〉 = (ai ⊗ bi)
H vec(C)

(A.7)
= vec(bia

T
i )H vec(C)

(A.6)
= tr

(
aib

H
i C

)
= tr

(
bHi Cai

)
=
[
BHCA

]
ii

=
[
diag

(
BHCA

)]
i

Proof. (A.9)

(A⊗B)
H

(A⊗B) vec(C)
(A.1)
=
(
AH ⊗BH

)
(A⊗B) vec(C)

(A.3)
=
[(

AHA
)
⊗
(
BHB

)]
vec(C)

(A.4)
= vec(BHBCATA)

Proof. (A.10)

(A ◦B)
H

(A ◦B) c
(A.5)
= (A ◦B)

H
vec
(
B diag(c)AT

)
(A.8)
= diag

(
BHB diag(c)ATA

)
Proof. (A.11)[

(A ◦B)
H

(A ◦B)
]
ij

= 〈ai ⊗ bi,aj ⊗ bj〉
(A.7)
= 〈vec(bia

T
i ), vec(bja

T
j )〉

(A.6)
= tr

(
aib

H
i bja

T
j

)
= tr

(
bHi bja

T
j ai
)

= 〈bi,bj〉〈ai,aj〉
When put in matrix form, the above yields

(A ◦B)
H

(A ◦B) = AHA�BHB
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(a) Equal-angle tessellation. (b) HEALPix tessellation. (c) Fibonacci tessellation.

Figure B.1: Examples of spherical maps defined over tessellations on the sphere, with an approximate
resolution of N = 200 for each scheme. Cell centres are marked by black dots. The equal-
angle tessellation fig. B.1a is obtained by pixelating the azimuth-elevation domain. The Fibonacci
tessellation fig. B.1c is obtained by constructing the spherical Voronoi tessellation of the Fibonacci
lattice (B.1). The HEALPix tessellation fig. B.1b finally, very popular in cosmology and astronomy,
is constructed by hierarchical subdivision of the Voronoi cells of the dodecahedron vertices [4].

B Signal processing tools for spherical maps

B.1 Spherical tessellations and spherical maps

In the Euclidean setting, images are commonly stored, manipulated and displayed as multi-
dimensional arrays. This convenient data-structure implicitly assumes a uniform partitioning of the
image support into rectangular tiles or pixels. Spherical maps on the other hand are stored as arbitrar-
ily ordered intensity vectors x ∈ RN associated to a lattice of directions Θ = {r1, . . . , rN} ⊂ S2
sampling irregularly the sphere. The pixels are obtained as polygonal Voronoi cells of the set Θ, and
form a spherical tessellation [7]. For example, the equal-angle tessellation in fig. B.1a is obtained
by pixelating the azimuth-elevation domain with rectangular tiles. This tessellation is unfortunately
impractical since irregular: its polygonal cells have varying areas and shapes (large rectangular
cells at the equator and elongated triangular cells near the poles). For practical purposes, regular
tessellations –with equal-area and identical polygonal cells– are often preferred. The latter are
however only available for fixed resolutions (N = 4, 6, 8, 12 and 20) and are obtained from the
five Platonic solid vertices [14, Chapter 3]: the tetrahedron, cube, octahedron, dodecahedron and
icosahedron. For arbitrary number of tiles, there exist many near-regular tilings of the sphere with
almost uniform polygonal tiles [14, Chapter 3]. Among them, one counts notably the HEALPix
tessellation [4], primarily used in cosmological applications [12]. It is obtained by hierarchically
subdividing the Voronoi cells of the dodecahedron vertices into equal-area elements (see fig. B.1b).
In this work, we consider moreover the Fibonacci tessellation [7]. Points in the Fibonacci lattice are
arranged uniformly along a spiral pattern on the sphere linking the two poles (see fig. B.1c). The
lattice can very easily be generated from the following formulae:{

rn = [cos(ϕn) sin(θn), sin(ϕn) sin(θn), cos(θn)] ,

where ϕn = 2πn
(

1− 2
1+
√
5

)
& θn = arccos

(
1− 2n

N

)
,

n = 1, . . . , N. (B.1)

B.2 Spherical maps as signals on graphs

Multi-dimensional arrays are particularly convenient data-structures, since their connectivity graph is
implicitly defined3 and preserves the notion of spatial locality: Euclidean distances are proportional
to index offsets. Labels of spherical maps on the other hand are often arbitrary, resulting in a
fundamental mismatch between connectivity in the intensity vector x and locality in the lattice Θ.
To properly account for the dependencies in x arising from the underlying domain geometry, one
possibility [3, 12] is to define an explicit connectivity graph G = (Θ, E ,W), where E ⊂ Θ2 is an
edge set defining neighbouring vertices in Θ and W ∈ RN×N a weighting matrix, defining the
similarity between two connected vertices (see fig. B.2). Given an arbitrary lattice Θ, the edge set

3For example, two entries (i, j) and (k, l) in a 2D-array are neighbours if max(|i− k|, |j − l|) = 1.
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(a) Spherical map on its connectivity graph. (b) Sparsity pattern of the associated graph Laplacian (only '
0.4% of nonzero values).

Figure B.2: Spherical map seen as a signal on a graph.

can for example be defined as its Delaunay triangulation, obtained from the convex-hull of Θ. The
edge weights are moreover commonly defined as a function of the distance separating two vertices in
the lattice Θ. In [12], the authors recommend the following weighting scheme:

[W]nm :=

exp

(
−‖rn − rm‖22

ρ2

)
if (rn, rm) ∈ E ,

0 otherwise,

where ρ > 0 is given by ρ = 1
|E|
∑

(rn,rm)∈E ‖rn − rm‖2. With this additional structure, a spherical
map can be seen as a signal on a graph (see fig. B.2a), which can be processed by means of graph
signal processing tools [17].

B.3 Discrete spherical convolutions

The DeepWave RNN described in (1) performs filtering operations at each layer, implemented
by means of graph convolution operators [17]. Graph convolution operators generalise Euclidean
convolution operators to irregular domains such as spherical tessellations where shifts are not naturally
defined. By analogy to the Euclidean setting, graph convolutions are defined as operators diagonalised
by the Fourier basis, obtained from the eigenvectors of the Laplacian of the graph G. As explained in
[17], there exist many possible definitions of the graph Laplacian. In this paper, we proceed as in
[12] and choose to work with the normalised Laplacian given by:

L := I−D−1/2WD−1/2, (B.2)

where I ∈ RN×N denotes the identity matrix and D ∈ RN×N is a diagonal matrix defined as:

[D]ii =

N∑
n=1

[W]in .

The Laplacian operator (B.2) has many useful properties [17]. In particular, it is often extremely
sparse4 (see fig. B.2b) and its induced norm

‖x‖L := ‖L1/2x‖22 = xTLx, (B.3)

can be seen as a measure of smoothness [17, Example 2] for a signal x ∈ RN defined on the vertex
set Θ of G. If L = UΛUT is the eigendecomposition of L, a filter h(L) ∈ RN×N is a linear operator
acting on a graph signal x ∈ RN as

h(L)x := Uh(Λ)UTx,

4At least in the context of sparse connectivity graphs explored here.
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for some function h : R+ → R. In this work, we will consider specific graph filters for which h is an
order-K polynomial:

h(L) =

K∑
k=0

θkL
k.

Such filters can indeed be shown [17, 12] to have finite support in the graph domain, with radius
at most K vertices. Moreover, they can be efficiently implemented as a cascade of multiplications
between the sparse matrix L and the vector x to be filtered. In particular, if z0 = x and x0 = θ0x,
then the filtered vector x̃ is given by the outcome xK of the following recursion:{

zk = Lzk−1

xk = xk−1 + θkz
k
, k = 1, . . . ,K. (B.4)

For stability reasons, we consider in practice an equivalent version of (B.4), as recommended in
[17, 12]: {

zk = 2L̃zk−1 − zk−2

xk = xk−1 + θ̃kz
k

, k = 2, . . . ,K, (B.5)

with x0 = z0 = x, z1 = L̃x and x1 = θ̃1z
1 + θ̃2z

2. The weights {θ̃0, . . . , θ̃K} ⊂ R in (B.5) are
such that

K∑
k=0

θkL
k =

K∑
k=0

θ̃kTk(L̃),

where Tk : [−1, 1]→ R are Chebyshev polynomials and L̃ is the Laplacian with rescaled and shifted
spectrum in the interval [−1, 1] [12]:

L̃ =
2

λmax
L− I.

Note that eq. (B.5) is obtained from the recursion formula defining the Chebyshev polynomials:
Tk(x) = 2xTk−1(x)− Tk−2(x), with T1(x) = x and T0(x) = 1.

C Background: far-field point source reconstruction problem 2

This section provides background material on classical objective function (2).

Narrow-band far-field acoustic perturbations are modeled in baseband-equivalent form [19] as
realisations of a random function

S =
{
S(r) : Ω→ C, r ∈ S2

}
,

where S(r) follows a zero-mean, spatially-uncorrelated complex Gaussian distribution of variance
(i.e. intensity) x(r) = E [S(r)S∗(r)] ∈ R+. Concretely, when mapped onto a discrete spherical
tesselation of resoluton N , S(r) is given by

S(r) =

N∑
q=1

ξqδ(r− rq), (C.1)

where ξq ∼ CN (0, xq) and Θ = {r1, . . . , rN} ⊂ S2 are the tesselation support points. The goal in
the acoustic imaging problem is to estimate the intensity field x = [x1, . . . , xN ] ∈ RN+ .

Knowledge of x can be gathered by observing realisations of S using a microphone array. Let
y : Ω → CM denote the random samples measured at the output of an M -element array. Then
microphone samples are linked to S through the relation [20]

[y]m =

∫
S2
S(r) exp

(
−j 2π

λ0
〈r,pm〉

)
dr

(C.1)
=

N∑
q=1

ξq exp

(
−j 2π

λ0
〈rq,pm〉

)
, (C.2)
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where pm ∈ R3 denotes the position of the m-th microphone, and λ0 > 0 is the wavelength of the
impeding plane wave. The covariance matrix Σ ∈ CM×M then directly links x to the measurements
as

[Σ]ij = E
[
[y]i [y]

∗
j

]
=

N∑
q=1

N∑
l=1

E [ξqξ
∗
l ] exp

(
−j 2π

λ0
〈rq,pi〉

)
exp

(
j

2π

λ0
〈rl,pj〉

)

=

N∑
q=1

[x]q exp

(
j

2π

λ0
〈rq,pj − pi〉

)
,

which can be succintely described by matrix equation

Σ = A diag(x)AH , A = exp

(
−j 2π

λ0
PTR

)
∈ CM×N , (C.3)

where P = [p1, . . . ,pM ] ∈ R3×M and R = [r1, . . . , rN ] ∈ R3×N . Replacing Σ in (C.3) by the
empirical covariance matrix Σ̂ ∈ CM×M then gives rise to the data-fidelity term

1

2

∥∥∥Σ̂−A diag(x)AH
∥∥∥2
F
. (C.4)

Minimisation of (C.4) alone is not enough to obtain a unique minimiser due to limited data availability,
i.e.
(
M
2

)
� N . To overcome this limitation and allow group-sparse reconstructions characteristic of

acoustic scenes, (C.4) is augmented with the elastic-net regulariser [25]

λ
[
γ ‖x‖1 + (1− γ) ‖x‖22

]
. (C.5)

Combining (C.4) and (C.5) leads to (2).

D Derivation: proximal gradient descent for elastic-net problem 3

This section shows how to obtain proximal iteration (4) from (3).

Recall that the sound intensity map is obtained by solving the convex optimisation problem:
x̂ = arg min

x∈RN
+

f(x) + g(x), (D.1)

f(x) =
1

2

∥∥∥Σ̂−A diag(x)AH
∥∥∥2
F

(A.5)
=

1

2

∥∥∥vec(Σ̂)−
(
A ◦A

)
x
∥∥∥2
2
, (D.2)

g(x) = λ
[
γ ‖x‖1 + (1− γ) ‖x‖22

]
, (D.3)

where g is an elastic-net regularizer with λ ≥ 0 and γ ∈]0, 1[.

Proximal gradient descent (PGD) is a fixed-point method to solve problems of the form (D.1) where
f , g are closed proper convex with f differentiable. It consists of iterating the proximal update
equation until convergence:

xk = proxαg
(
xk−1 − α∇f(xk−1)

)
, (D.4)

where α > 0 is the step size and proxαg is the proximal operator associated with (D.3), given by (see
proof below):

proxαg(x) = arg min
u∈RN

+

g(u) +
1

2α
‖u− x‖22 , (D.5)

= ReLu

(
x− λαγ

2λα(1− γ) + 1

)
, ∀x ∈ RN . (D.6)

The quantity ∇f ∈ RN finally is obtained using the rules of vector calculus [13]:

∇f(x) =

{
∂

∂x

[
vec(Σ̂)−

(
A ◦A

)
x
]}
·
[
vec(Σ̂)−

(
A ◦A

)
x
]

=
(
A ◦A

)H [(
A ◦A

)
x− vec(Σ̂)

]
. (D.7)

Combining (D.4), (D.6) and (D.7) leads to (4).
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Proof: (Analytic expression for proxαg). Replacing (D.3) in (D.5), we get for x ∈ RN :

proxαg(x) = arg min
u∈RN

+

λ
[
γ ‖u‖1 + (1− γ) ‖u‖22

]
+

1

2α
‖u− x‖22

= arg min
(u1,...,uN )∈RN

+

N∑
n=1

λ
[
γ|un|+ (1− γ)u2n

]
+

1

2α
(un − xn)2

= arg min
(u1,...,uN )∈RN

+

N∑
n=1

λ
[
γun + (1− γ)u2n

]
+

1

2α

[
u2n + x2n − 2unxn

]
= arg min

(u1,...,uN )∈RN
+

N∑
n=1

ϕn(un). (D.8)

Notice that (D.8) is the sum of N independent objective functionals, hence each can be independently
minimised. (We drop the subscript of ϕn below for simplicity.) Let û be the minimiser:5

û = arg min
u≥0

ϕ(u) = arg min
u≥0

λ
[
γu+ (1− γ)u2

]
+

1

2α

[
u2 + x2 − 2ux

]
, (D.9)

for some fixed x ∈ R. Then two cases can occur:

• x ≤ 0: the objective functional being composed of positive terms only, any û > 0 will
increase the objective. Therefore û = 0.

• x > 0: In this case the Karush Kuhn Tucker (KKT) conditions [18, 2] tell us that û is a
minimizer of (D.9) if

ûϕ′(û) = 0

ϕ′(û) ≥ 0 if û = 0.

Plugging ϕ′(u) = λγ +
(
2λ(1− γ) + α−1

)
u− α−1x and solving the above yields

û =

{
x−λαγ

2λα(1−γ)+1 x > λαγ,

0 x ≤ λαγ
.

Both cases can be written in short as

û = arg min
u≥0

ϕ(u) =

[
x− λαγ

2λα(1− γ) + 1

]
+

, ∀x ∈ R,

leading to an element-wise proximal operator of the form

proxαg(x) =

[
x− λαγ

2λα(1− γ) + 1

]
+

= ReLu

(
x− λαγ

2λα(1− γ) + 1

)
, ∀x ∈ RN .

E Proof: proposition 1

In this section, we prove proposition 1 of the main paper:
Proposition. Consider a spherical microphone array, with diameter D and microphone directions
{p̃1, . . . , p̃M} ⊂ S2, forming a near-regular tessellation of the sphere. Then, we have[

I − α
(
A ◦A

)H (
A ◦A

)]
ij
'
[
δij − αM2 sinc2

(
D

λ0
‖ri − rj‖

)]
, ∀i, j ∈ {1, . . . , N}

(E.1)

where λ0 is the wavelength, δij denotes the Kronecker delta and sinc(x) := sin(πx)/πx is the
cardinal sine. Moreover, the approximation (E.1) is extremely good for M ≥ 3b 2πDλ0

c2.
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(a) Beamshape of the Pyramic array.

(b) Approximate beamshape obtained with (E.2).

Figure E.1: Accuracy of approximation (E.2) for the Pyramic array [16] (D = 30[cm], M = 48) at 1
kHz.

Proof. To prove (E.1), it is sufficient to show that[(
A ◦A

)H (
A ◦A

)]
ij
'M2 sinc2

(
D

λ0
‖ri − rj‖

)
. (E.2)

To this end, we first use (A.11) and obtain:(
A ◦A

)H (
A ◦A

)
=
∣∣AHA

∣∣�2 . (E.3)

For a spherical array with diameter D and microphone directions {p̃1, . . . , p̃M} ⊂ S2, we get
moreover from the definition of the steering matrix that:

[AHA]ij =

M∑
m=1

exp

(
j
πD

λ0
〈ri − rj , p̃m〉

)
, i, j = 1, . . . , N. (E.4)

Since the microphone directions are assumed to form a near-regular tessellation over the sphere (such
as the Fibonacci or HEALPix tessellations discussed in appendix B.1), we can interpret (E.4) as a
quadrature rule on the sphere, yielding:

4π

M

M∑
m=1

exp

(
j
πD

λ0
〈ri − rj , p̃m〉

)
'
∫
S2

exp

(
j
πD

λ0
〈ri − rj , p̃〉

)
dp̃ (E.5)

= 4π sinc

(
D

λ0
‖ri − rj‖

)
, (E.6)

where the second equality (E.6) follows from the result on [21, p. 154]. From (E.6), (E.4) and (E.3)
we obtain (E.2) from which (E.1) trivially follows.
Regarding the quality of the approximation (E.2) finally, we use the approximate bandlimitedness
of complex plane-waves in the spherical domain [14, Chapter 2]. Indeed, quadrature rules such as

5which exists since the optimisation problem is convex.
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(E.5) are almost exact for bandlimited functions [14, Chapter 3], provided a high-enough number of
quadrature pointsM . For example, a function with spherical harmonic bandwidth L ∈ N is extremely
well approximated by the HEALPix quadrature rule for M ≥ 3L2 [4]. In our case, the plane-wave
expansion [14, Chapter 2] gives us

exp

(
j
πD

λ0
〈ri − rj , p̃〉

)
= 4π

+∞∑
l=0

l∑
k=−l

jl(2l + 1)jl

(
πD

λ0
‖ri − rj‖2

)
Y kl (r̃ij)Y

k
l (p̃),

where jl are spherical Bessel functions, Y kl spherical harmonics, and r̃ij = (ri−rj)/‖ri−rj‖22 [14].
Since jl(x) ' 0 for l ≥ x [14, Chapter 2] we have hence that complex plane-waves are approximately
bandlimited with bandwidth L = bπDλ0

‖ri − rj‖2c ≤ b 2πDλ0
c. As a result, choosing M ≥ 3b 2πDλ0

c2
makes the approximation (E.2) very accurate.

While proven for spherical arrays only, approximation (E.2) (and hence (E.1)) remains quite accurate
in practice, even for non spherical microphone arrays such as the Pyramic array used in our real-world
experiments [16]. In fig. E.1, we investigated visually the quality of the approximation (E.2) for
the Pyramic array at 1 kHZ. To this end, we plotted a row of

∣∣AHA
∣∣�2 (which corresponds to

the beamshape of the instrument for a particular direction [23]) with and without approximation.
We observe that the approximation is already very good, even if the Pyramic array possesses only
M = 48 microphones against the 90 required by proposition 1 for an optimal approximation accuracy
at this frequency.

F Network gradient evaluation

This section shows how to obtain derivatives of data-fidelity term Lt from eq. (9) w.r.t. network
parameters θ,B, τ .6

F.1 Problem statement

Recall that

∇L(Ω) =

{
∂L
∂θ
∈ RK+1,

∂L
∂B
∈ CM×N ,

∂L
∂τ
∈ RN

}
,

L(Ω) =
1

2

∥∥x̂− xL(Ω)
∥∥2
2

‖x̂‖22
, (F.1)

where xL(Ω) ∈ RN+ is given by recurrence relation (1):

xl(Ω) = σ
[
Pθ(L)xl−1 +

(
B ◦B

)H
vec(Σ̂)− τ

]
(F.2)

= σ
[
ul + w − τ

]
(F.3)

= σ
[
sl
]
, l = 1, . . . , L (F.4)

with x0 ∈ RN+ some arbitrary constant, σ : R → R a point-wise non-linearity, and Pθ(L) =∑K
k=0 θkTk(L) a polynomial filter of order K expressed in terms of Chebychev polynomials.

∇L can be efficiently evaluated using reverse-mode algorithmic differentiation[1, 6] in a two-stage
process:

• Forward pass: evaluate eq. (F.1) while storing all intermediate values w, τ ,
{
sl
}
l=1,...,L

;

• Backward pass: walk the computational graph (fig. F.1) backwards to evaluate derivatives
w.r.t. θ,B, τ .

6For notational simplicity, this section drops the subscript in Lt.
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Figure F.1: L-layer computational graph of L.

F.2 Conventions
• If u ∈ RN , v ∈ RM , the Jacobian matrix ∂u

∂v ∈ RN×M is defined as[
∂u

∂v

]
ij

=
∂ [u]i
∂ [v]j

.

Gradients of scalar-valued functions are therefore row vectors.
• If u ∈ RN , V ∈ RM×Q, the Jacobian tensor ∂u

∂V ∈ RN×M×Q is defined as[
∂u

∂V

]
ijk

=
∂ [u]i
∂ [V]jk

.

F.3 Common intermediate gradients[
∂L
∂xL

]
i

=
∂L

∂ [xL]i
=

[
xL − x̂

‖x̂‖22

]
i

(F.5)

[
∂xl

∂sl

]
ij

=
∂
[
xl
]
i

∂ [sl]j
= δi−jσ

′
([

sl
]
j

)
=
[
diag

(
σ′
(
sl
))]

ij
, l = 1, . . . , L (F.6)

∂L
∂sl

=
∂L
∂xl

∂xl

∂sl
(F.6)
=

∂L
∂xl

diag
(
σ′
(
sl
))
, l = 1, . . . , L (F.7)

[
∂sl

∂ul

]
ij

=
∂
[
sl
]
i

∂ [ul]j
=

∂

∂ [ul]j

[
ul + w − τ

]
i

= δi−j = [IN ]ij (F.8)

∂L
∂ul

=
∂L
∂sl

∂sl

∂ul
(F.8)
=

∂L
∂sl

, l = 1, . . . , L (F.9)

[
∂ul

∂xl−1

]
ij

=

[
∂

∂xl−1
Pθ(L)xl−1

]
ij

= [Pθ(L)]ij , l = 1, . . . , L (F.10)

[
∂sl

∂w

]
ij

=
∂
[
sl
]
i

∂ [w]j
=

∂

∂ [w]j

[
ul + w − τ

]
i

= δi−j = [IN ]ij (F.11)

∂L
∂w

=

L∑
l=1

∂L
∂sl

∂sl

∂w

(F.11)
=

L∑
l=1

∂L
∂sl

(F.12)
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F.4 ∂L/∂θ

[
∂ul

∂θ

]
ij

=
∂

∂ [θ]j

K∑
k=0

[θ]k
[
Tk(L)xl−1

]
i

=
[
Tj(L)xl−1

]
i
, l = 1, . . . , L (F.13)

[
∂L
∂θ

]
i

=

L∑
l=1

[
∂L
∂ul

∂ul

∂θ

]
i

(F.9)
=

(F.13)

L∑
i=1

∂L
∂sl

Ti(L)xl−1, i = 0, . . . ,K (F.14)

F.5 ∂L/∂B

∂L
∂B can be obtained by evaluating ∂L

∂w
∂w
∂B , but ∂w

∂B ∈ CN×M×N is difficult to obtain directly. We
therefore proceed in multiple steps:

1. Decompose w as (w1 + w2 + w3) and express {wk}k=1,2,3 explicitly in terms of
Σ̂R, Σ̂I ,BR,BI :

w =
(
B ◦B

)H
vec(Σ̂)

(A.8)
= diag

(
BHΣ̂B

)
(F.15)

= diag
(

[BR + jBI ]
H
[
Σ̂R + jΣ̂I

]
[BR + jBI ]

)
= diag

([
BT
R − jBT

I

] [
Σ̂R + jΣ̂I

]
[BR + jBI ]

)
= diag

(
BT
RΣ̂RBR + BT

I Σ̂RBI + BT
I Σ̂IBR −BT

RΣ̂IBI

)
+ j diag

(
BT
RΣ̂IBR + BT

I Σ̂IBI + BT
RΣ̂RBI −BT

I Σ̂RBR

)
w∈RN

+
= diag

(
BT
RΣ̂RBR + BT

I Σ̂RBI + BT
I Σ̂IBR

)
− diag

(
BT
RΣ̂IBI

)
= diag

(
BT
RΣ̂RBR + BT

I Σ̂RBI + BT
I Σ̂IBR

)
− diag

(
BT
I Σ̂T

I BR

)
Σ̂I=−Σ̂T

I= diag
(
BT
RΣ̂RBR + BT

I Σ̂RBI + BT
I Σ̂IBR

)
+ diag

(
BT
I Σ̂IBR

)
= diag

(
BT
RΣ̂RBR + BT

I Σ̂RBI + 2BT
I Σ̂IBR

)
(A.8)
= (BR ◦BR)

T
vec(Σ̂R)︸ ︷︷ ︸

w1

+ (BI ◦BI)
T

vec(Σ̂R)︸ ︷︷ ︸
w2

+ 2 (BR ◦BI)
T

vec(Σ̂I)︸ ︷︷ ︸
w3

.

2. Derive analytic forms for
{

∂wk

∂BR/I

}
k=1,2,3

:[
∂w1

∂BR

]
ijk

=
∂ [w1]i
∂ [BR]jk

(A.8)
=

∂

∂ [BR]jk

[
diag

(
BT
RΣ̂RBR

)]
i

(F.16)

=
∂

∂ [BR]jk
(bRi )T Σ̂RbRi

= δi−k
∂

∂ [BR]jk
(bRk )T Σ̂RbRk

= δi−k

M∑
q=1

M∑
g=1

[
Σ̂R

]
qg

∂

∂ [BR]jk

{
[BR]qk [BR]gk

}

= δi−k

M∑
q=1

([
Σ̂R

]
jq

+
[
Σ̂R

]
qj

)
[BR]qk

Σ̂R=Σ̂T
R= 2δi−k(bRk )TσRj
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[
∂w2

∂BI

]
ijk

=
∂ [w2]i
∂ [BI ]jk

(A.8)
=

∂

∂ [BI ]jk

[
diag

(
BT
I Σ̂RBI

)]
i

(F.17)

=
∂

∂ [BI ]jk
(bIi )

T Σ̂RbIi

= δi−k
∂

∂ [BI ]jk
(bIk)T Σ̂RbIk

= δi−k

M∑
q=1

M∑
g=1

[
Σ̂R

]
qg

∂

∂ [BI ]jk

{
[BI ]qk [BI ]gk

}

= δi−k

M∑
q=1

([
Σ̂R

]
jq

+
[
Σ̂R

]
qj

)
[BI ]qk

Σ̂R=Σ̂T
R= 2δi−k(bIk)TσRj

[
∂w3

∂BR

]
ijk

=
∂ [w3]i
∂ [BR]jk

(A.8)
= 2

∂

∂ [BR]jk

[
diag

(
BT
I Σ̂IBR

)]
i

(F.18)

= 2
∂

∂ [BR]jk
(bIi )

T Σ̂Ib
R
i

= 2δi−k
∂

∂ [BR]jk
(bIk)T Σ̂Ib

R
k

= 2δi−k(bIk)TσIj

[
∂w3

∂BI

]
ijk

=
∂ [w3]i
∂ [BI ]jk

(A.8)
= 2

∂

∂ [BI ]jk

[
diag

(
BT
I Σ̂IBR

)]
i

(F.19)

= 2
∂

∂ [BI ]jk
(bIi )

T Σ̂Ib
R
i

= 2δi−k
∂

∂ [BI ]jk
(bIk)T Σ̂Ib

R
k

Σ̂I=−Σ̂T
I= −2δi−k

∂

∂ [BI ]jk
(bRk )T Σ̂Ib

I
k

= −2δi−k(bRk )TσIj

3. Combine
{

∂wk

∂BR/I

}
k=1,2,3

with ∂L
∂w to obtain ∂L

∂B ∈ CM×N :

[
∂w

∂wk

]
ij

=
∂ [w]i
∂ [wk]j

=
∂

∂ [wk]j
[w1 + w2 + w3]i = δi−j = [IN ]ij , k = 1, 2, 3

(F.20)

∂L
∂wk

=
∂L
∂w

∂w

∂wk

(F.12)
=

(F.20)

L∑
l=1

∂L
∂sl

, k = 1, 2, 3 (F.21)
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[
∂L
∂w1

∂w1

∂BR

]
jk

=

N∑
i=1

[
∂L
∂w1

]
i

[
∂w1

∂BR

]
ijk

(F.16)
= 2

N∑
i=1

[
∂L
∂w1

]
i

δi−k(bRk )TσRj (F.22)

= 2

[
∂L
∂w1

]
k

(bRk )TσRj =

[
2Σ̂T

RBR diag

(
∂L
∂w1

)]
jk

Σ̂R=Σ̂T
R=

[
2Σ̂RBR diag

(
∂L
∂w1

)]
jk

[
∂L
∂w2

∂w2

∂BI

]
jk

=

N∑
i=1

[
∂L
∂w2

]
i

[
∂w2

∂BI

]
ijk

(F.17)
= 2

N∑
i=1

[
∂L
∂w2

]
i

δi−k(bIk)TσRj (F.23)

= 2

[
∂L
∂w2

]
k

(bIk)TσRj =

[
2Σ̂T

RBI diag

(
∂L
∂w2

)]
jk

Σ̂R=Σ̂T
R=

[
2Σ̂RBI diag

(
∂L
∂w2

)]
jk

[
∂L
∂w3

∂w3

∂BR

]
jk

=

N∑
i=1

[
∂L
∂w3

]
i

[
∂w3

∂BR

]
ijk

(F.18)
= 2

N∑
i=1

[
∂L
∂w3

]
i

δi−k(bIk)TσIj (F.24)

= 2

[
∂L
∂w3

]
k

(bIk)TσIj =

[
2Σ̂T

I BI diag

(
∂L
∂w3

)]
jk

Σ̂I=−Σ̂T
I=

[
−2Σ̂IBI diag

(
∂L
∂w3

)]
jk

[
∂L
∂w3

∂w3

∂BI

]
jk

=

N∑
i=1

[
∂L
∂w3

]
i

[
∂w3

∂BI

]
ijk

(F.19)
= −2

N∑
i=1

[
∂L
∂w3

]
i

δi−k(bRk )TσIj (F.25)

= −2

[
∂L
∂w3

]
k

(bRk )TσIj =

[
−2Σ̂T

I BR diag

(
∂L
∂w3

)]
jk

Σ̂I=−Σ̂T
I=

[
2Σ̂IBR diag

(
∂L
∂w3

)]
jk

∂L
∂BR

=
∂L
∂w1

∂w1

∂BR
+

∂L
∂w3

∂w3

∂BR
(F.26)

(F.22)
=

(F.24)
2

{
Σ̂RBR diag

(
∂L
∂w1

)
− Σ̂IBI diag

(
∂L
∂w3

)}
(F.21)
= 2

{
Σ̂RBR − Σ̂IBI

}
diag

(
L∑
l=1

∂L
∂sl

)

= 2<
{

Σ̂B
}

diag

(
L∑
l=1

∂L
∂sl

)
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∂L
∂BI

=
∂L
∂w2

∂w2

∂BI
+

∂L
∂w3

∂w3

∂BI
(F.27)

(F.23)
=

(F.25)
2

{
Σ̂RBI diag

(
∂L
∂w2

)
+ Σ̂IBR diag

(
∂L
∂w3

)}
(F.21)
= 2

{
Σ̂RBI + Σ̂IBR

}
diag

(
L∑
l=1

∂L
∂sl

)

= 2=
{

Σ̂B
}

diag

(
L∑
l=1

∂L
∂sl

)

∂L
∂B

=
∂L
∂BR

+ j
∂L
∂BI

= 2Σ̂B diag

(
L∑
l=1

∂L
∂sl

)
(F.28)

F.6 ∂L/∂τ

[
∂sl

∂τ

]
ij

=
∂
[
sl
]
i

∂ [τ ]j
=

∂

∂ [τ ]j

[
ul + w − τ

]
i

= −δi−j = [−IN ]ij , l = 1, . . . , L (F.29)

∂L
∂τ

=

L∑
l=1

∂L
∂sl

∂sl

∂τ

(F.29)
= −

L∑
l=1

∂L
∂sl

(F.30)

Combining eqs. (F.14), (F.28) and (F.30) leads to algorithms 1 and 2.
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Figure G.1: Pyramic 48-element microphone array [16] used to acquire real-world dataset [10].
Eight microphones are mounted on six PCBs that form the edges of a tetrahedron.

G Real-data experiments (supplement)

Results in the main text present a summary of DeepWave’s performance on two real-world datasets.
The goal of this section is to provide a more elaborate description of the datasets, training process,
and emphasise interesting observations.

G.1 Dataset description

Two real-world datasets are considered:

Dataset 1 [10] consists of a series of 92 microphone recordings from the Pyramic[16] array
(fig. G.1) taken in an anechoic chamber to evaluate the performance of different direction-of-arrival
algorithms [11]. Specifically, the dataset contains a series of 3 second recordings of human speech
emitted by loudspeakers positioned around the edge of the chamber and located at the same height.
Each recording has one, two, or three speakers active simultaneously. Recordings contain both male
and female speech samples to cover a wide audible range.

Dataset 2 [15] consists of a larger collection of microphone recordings from the Pyramic[16] array
(fig. G.1) taken in an anechoic chamber. The goal of this dataset is to provide a generic dataset
on which to evaluate the performance of array processing algorithms on real-life recordings with
all the non-idealities involved. Specifically, the dataset contains 2700 recordings of human speech
emitted from every direction of the anechoic chamber at a resolution of 2 degrees in azimuth and
three different elevations ({-15, 0, 15} degrees). Recordings contain both male and female speech
samples to cover a wide audible range. While the total number of recordings is significant, since
each recording contains emissions from a single source, different audio samples can be combined
to simulate complex multi-source sound fields. This data-augmentation task therefore allows us to
assess the generalizability of DeepWave to such setups. Concretely, we construct a synthetic dataset
of 5700 distinct microphone recordings with one, two, or three active speakers simultaneously.

G.2 Data pre-processing

The raw time-series are pre-processed to get a suitable training set for DeepWave as follows:

• Instantaneous empirical covariances
{

Σ̂t

}
t

are obtained for 9 equi-spaced frequency bands

spanning [1500, 4500] Hz every 100 ms using Short-Time Fourier Transforms (STFT) [24, 8].
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• APGD ground truths {x̂t}t were estimated by solving eq. (3) with γ = 0.5, step size
α = 1/

∥∥A ◦A
∥∥2
2
, and λt = max([x1

t ]1, . . . , [x
1
t ]N )/(αγ), where x1

t ∈ RN is the APGD
estimate obtained after one iteration of eq. (5).

After pre-processing, we obtain 2760 training samples T =
{(

Σ̂t, x̂t

)}
t

per frequency band for

Dataset 1. The same process applied to Dataset 2 gives 151980 training samples T =
{(

Σ̂t, x̂t

)}
t

per frequency band.

G.3 Network training

DeepWave is trained by solving eq. (9) using stochastic gradient descent (SGD) with momentum
acceleration [22]. The optimisation problem is initialised as given in eq. (10). Dataset 1 is trained
on an 80% random subset of T using mini-batches of size Nbatch = 100, with the remaining 20%
serving as a validation set. The learning rate was set to 10−8. Dataset 2 is also trained as above,
except that 10 source directions are also witheld from the training set to assess how well DeepWave
generalizes to emissions from unseen directions.

Regularisation parameters were chosen based on a grid search with optimal values λθ = λB =
λτ = 0.1. It was noticed during our experiments that regularising θ and B provides little benefit to
generalisation error and hence can be omitted. Regularisation of τ is important however to ensure
convergence to smooth biases. This is particularly relevant for rich acoustic fields where sources have
weak spatial constraints, i.e. Dataset 2. (See also appendix H.)

Training and validation losses converged in less than 10 epochs for the optimal parameterisation, i.e.
when L = 5 and K ranges from 10 to 23 depending on the frequency band. Total training time for
Dataset 1 was 10 minutes per band on an i7-8550U CPU with 32GB memory. Due to disk space
constraints, Dataset 2 was trained on a dual-socket Intel E5-2680v3 with 256GB memory. Total
training time for Dataset 2 was roughly 3 hours per band.

G.4 Experimental results

In this section, we provide the supporting plots for the claims made in section 4 of the main paper:

• Figure G.2 shows DeepWave’s learnt bias parameter on Dataset 1. Unlike APGD, the latter
is highly nonuniform in space, and slightly stronger in magnitude.

• Figure G.3 shows the impulse response of DAS and DeepWave trained on Dataset 1 at 3.5
kHz, obtained by simulating the data from a single point-source in the field. Such plots were
used to compute resolution scores of all algorithms across frequency bands.

• Figure G.4 shows example spherical fields obtained with DeepWave, DAS, APGD and
APGD prematurely terminated applied to recordings in the validation set of Dataset 1.
Resolution and contrast comparisons are moreover carried out. The true colour images
displayed in fig. G.4 were obtained by mapping frequency channels into a colour spectrum
(see the color-frequency mapping in fig. 3d).
• A video showing the evolution in time of DeepWave and DAS azimuthal sound fields (as in

figs. 3a and 3b) is also available as supplementary material.7

7Also available online: https://www.youtube.com/watch?v=PwB3CS2rHdI
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H Further experiments in simulation

Results in the main text present a summary of DeepWave’s performance on two real-world datasets.
Though the datasets represent a particular real-world scenario (i.e. Dataset 1) and realistic complex
sound fields (i.e. Dataset 2), the downside is that sound emissions are assumed to come from fixed
spatial directions. It is therefore challenging to test DeepWave’s generalisability on these datasets
alone. The goal of this section is to investigate how well DeepWave generalises to richer datasets
through simulation.

H.1 Dataset description

The simulated dataset is designed to mimic a key application of acoustic cameras: accurate mapping
of the sound field in an open-air setting from a given direction. To this end, the setup is modelled as
follows:

• The scene is assumed to be a 120◦ spherical viewport in which sources are uniformly
distributed.

• Source emissions follow a narrow-band point-source model at 2 kHz [23, 8], where their
intensities are either uniform or Rayleigh-distributed with rate parameter r = 1. All images
below show equi-amplitude visualisations only as they are easier to assess through visual
inspection.

• Emissions from the scene are captured by a 64-element spherical microphone array of radius
r = 20 cm.

• Empirical covariances matrices Σ̂ ∈ C64×64 are synthesised using the traditional far-field
measurement equation [23, eq.(12)] for point sources.

• APGD ground truths are obtained as described in appendix G.2.

Figure G.2: Bias parameter τ learnt by SGD run on Dataset 1 described in appendix G.1. We observe
that the biasing is more prominent at sidelobes and around actual sources. This results in an increased
angular resolution with fewer artefacts.

Figure G.3: Impulse response of DeepWave (top) vs DAS (bottom). We notice a shrinkage of the
main lobe, resulting in increased angular resolution.
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(a) DAS spherical sound field (resolution: 25.3◦ , RMS contrast: 0.78).

(b) DeepWave spherical sound field (resolution: 18.5◦ , RMS contrast: 0.97).

(c) APGD spherical sound field (resolution: 13◦ , RMS contrast: 0.97).

(d) APGD (terminated) spherical sound field (resolution: 21.4◦ , RMS contrast: 0.94).

Figure G.4: Intensity field reconstruction comparison between DAS, DeepWave (L = 5), APGD
(converged, Niter = 17), APGD (premature termination, Niter = 5) on Dataset 1. In terms of
resolution, DeepWave and APGD perform similarly, outperforming DAS by approximately 27%. The
mean contrast scores for DeepWave and DAS over the test set of Dataset 1 are 0.99 (±0.0081) and
0.89 (±0.07), respectively. When limited to a number of iterations equal to the depth L of DeepWave,
APGD’s performance degrades considerably.
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The final dataset consists of 20’000 images that contain up to 10 sources in the field. Training the
network is identical to appendix G.3, except for the batch-size which increases to 200 and the learning
rate that is set to 10−7. In particular training converges in less than 10 epochs under an hour. The
optimal parameterisation of the network is achieved with L = 6 and K = 18.

H.2 Experimental results

• Figure H.1 shows example spherical fields obtained with DeepWave, DAS and APGD
applied to recordings in the validation set of DeepWave.

• Figure H.2 investigates the influence of DeepWave’s depth on the validation loss. Profiles
show that 5 or 6 layers are sufficient for the investigated dataset.

• Figure H.3 investigates the runtime of APGD, DAS and DeepWave for different depths.
DAS and DeepWave execute several orders of magnitude faster than APGD, regardless of
network depths. Similar conclusions apply to Dataset 1 investigated in appendix G.

Figure H.1: Intensity field reconstruction comparison between (a) APGD (Niter = 48), (b) DeepWave
(L = 5), and (c) DAS. The image quality results corroborate with the observations made in fig. G.4.
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Figure H.2: Influence of network depth on validation loss. The plot shows the relative squared-error
on the validation set between APGD ground truth x̂ and DeepWave output xL as a function of
network depth L using simulated data. The red curve corresponds to the full unconstrained dataset
with up to 10 sources present in the field. The blue curve is obtained by retraining the network on a
subset of the dataset where only up to 3 sources are present. Precision loss for small L comes from
insufficient sparsification of network output w.r.t. ground truth. On the other hand error increase for L
large are due to amplitude mismatches between ground truth and network output. This is presumably
caused by the use of the rectified tanh activation function to avoid gradient explosion during training.

Method Niter/L Execution time [s]

APGD (converged) 48 0.2118 ± 24e-3
DeepWave 6 0.0070 ± 80e-6
DeepWave 5 0.0065 ± 95e-6
DeepWave 3 0.0046 ± 44e-6
DeepWave 1 0.0031 ± 46e-6
DAS 0.0020 ± 41e-6

Figure H.3: Runtime comparison of imaging methods on simulated dataset. Execution times averaged
over 50 runs for a specific Σ̂ ∈ C64×64. DeepWave inference time is comparable to Delay-and-Sum
and is adequate to obtain a fluid framerate on an acoustic camera. Runtimes in DeepWave weakly
depends on network depth L due to strong sparsity of the deblurring operator D: the main contributor
to the former is evaluation of the backprojection term B vec(Σ̂). In stark contrast to DeepWave,
APGD requires orders of magnitude more time to reach similar accuracy.
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θ B τ Ltest rel. improv. [%] rel. improv. [%]

7 7 7 0.160417
7 7 3 0.054927 65.76 (777)
7 3 7 0.159698 0.45 (777)
3 7 7 0.159948 0.29 (777)

3 7 3 0.054910 65.77 (777) 0.03 (773)
3 3 7 0.159234 0.74 (777) 0.29 (737)
7 3 3 0.054917 65.77 (777) 0.02 (773)
3 3 3 0.054900 65.78 (777) 0.03 (733)

Figure I.1: DeepWave performance comparison on simulated dataset described in appendix H.1 as a
function of parameter degrees of freedom. A 7 in the first three columns means that the associated
parameter was frozen during training. In contrast a 3 means that the parameter is optimized during
training. Ltest represents the data-fidelity loss term of eq. (9) evaluated over the test set. Finally, the
last two columns show the relative improvement of Ltest w.r.t. the baseline parameterisation given
in parentheses. The results show that learning the shrinkage operator τ has the strongest net effect
on improving predictive performance, while for this setup the deblurring Pθ(L) and backprojection
operators B provide marginal gains.

I Ablation study

Results in the main text and above present a summary of DeepWave’s performance after optimal
tuning of network parameters θ, B, τ during training. Given the physical interpretation of these
parameters as deblurring, backprojection and shrinkage operators respectively, we carry out an
ablation study to investigate the relative importance of each parameter on DeepWave’s ability to
reconstruct ground truth APGD images.

Concretely, eight instances of DeepWave with L = 6 are trained on the simulated dataset described
in appendix H.1. Each instance corresponds to a particular combination of free/frozen parameters
such that all possible parameter triplets are taken into consideration. Frozen parameters remain at the
initialisation point eq. (10) of SGD. Network performance is assessed by computing the data-fidelity
term 1

T

∑T
t=1 Lt from eq. (9) over the test set. The results are shown in Figure I.1.

As expected, freezing all three parameters (777) produces the worst reconstructions as the network
fails to converge to the ground truth after so few iterations. At the other end of the spectrum, learning
all parameters (333) leads to the best predictive performance, with a relative improvement of
65.78% over not learning anything. However the contributions of each parameter vary significantly:
Learning τ (773) has the strongest net effect (65.76%), whereas learning θ (377), B (737) provide
minimal gains over no learning (777). The second half of Figure I.1 shows similar observations
hold when training parameter pairs, where learning any parameter in addition to τ only provides
small marginal gains over just learning the latter (773). The reason for the marginal gains obtained
when learning θ and B is that the deblurring and backprojection operators are, for the specific
experimental conditions investigated (point sources, non-reverberant environments (i.e. anechoic
chambre), near-spherical geometries), very well modelled by initialisation scheme eq. (10). However,
for environments containing reverberation and non-spherical array geometries, the observations
above may differ significantly. In these contexts, learning θ and B may lead to better predictive
performance.
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