
Supplementary Material to “Efficient Convex Relaxations for

Streaming PCA"

We note that constants � and � are replaced in the appendix by ✏ or ✏̃. These ✏’s are not to be confused

by the ✏ used to denote suboptimality, but rather denote a small positive value. We also note that we
use �(A) to denote the eigengap of A instead of �(A).

A Proofs for MB-MSG

A.1 Sufficient condition

Lemma A.1. Suppose Pt is rank k. If hPt,Cti+ �k(U>
t
CtUt) �

P
k+1
l=1 �l(Ct), then Pt+1 is also

rank k.

Proof of Lemma 5.1. Let Pt+1/2 = Ut+1/2
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CCA and let i⇤ and j
⇤ be respectively the largest index of y which is set to 1 after

shifting and the smallest index of y which is set to 0 after shifting. Let the shifting amount for indices
i
⇤ and j

⇤ be si⇤,j⇤ . WLOG assume that �1 � �2 � . . . � �k and �k+1 � . . . � �d. The projection
formula tells us that
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j⇤�i⇤�2 . Since we are trying to derive a sufficient condition for when Pt+1 is

rank k, we necessarily have j
⇤ = k + 1 and thus si⇤,j⇤ =
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k�i⇤�1 . By the projection rule
we must have si⇤,j⇤ � yk+1 and thus a sufficient condition becomes
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From our assumption on the ordering on �
0
l
s we see that the above sufficient condi-

tion is always implied by �k � �k+1, since
Pk

l=i⇤+1 �l

k�i⇤ � �k. This is equiv-
alent to �k(Pt+1/2) � 1 + �k+1(Pt+1/2). We now write the k-th eigenvalue of
Pt+1/2 in its variational form �k(Pt+1/2) = maxU2SO(k) minu2span(U) u

>Pt+1/2u =
maxU2SO(k) �min(U>Pt+1/2U) � �k(U>

t
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CtUt). We also

have
P

k

l=1 �l(Pt+1/2) = maxU2SO(k) Tr
�
U>Pt+1/2U

�
� Tr

�
U>

t
Pt+1/2Ut

�
= k +

⌘t

P
k

l=1 �l(U
>
t
CtUt). We now use the above inequality to derive:
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where the second inequality follows from Ky Fan’s inequality and the fact that Pt is a rank k

projection matrix so that
P

k+1
l=1 (Pt) = k. The above inequality implies that a sufficient condition

for projecting back to a rank-k matrix is 1 + ⌘t

P
k+1
l=1 �l(Ct) � ⌘t

P
k+1
l=1 �l(U

>
t
CtUt)  �k(Pt).

Together with �k(Pt+1/2) � 1 + ⌘t�k(U>
t
CtUt), we get the following sufficient condition:
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Lemma A.2. Suppose that kC� Ctk  ✏ and that Pt is rank k. If

hP⇤ � Pt,Ci 
�(C)

2
� ✏(k + 1),

then Pt+1 is also rank k.

Proof. We have:
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(Ct � C)Utk  (k + 1)✏.

Using the above and Lemma 5.1, we have that a sufficient condition is
P

k

l=1 �l(U
>
t
CUt) +

�k(U>
t
CUt) � ✏(k + 1) �

P
k+1
l=1 �l(Ct). Using |�l(A + B) � �l(B)|  kBk we also have

|�l(C) � �l(Ct)|  kC � Ctk and thus
P

k+1
l=1 |�l(Ct) � �l(C)|  (k + 1)✏. Thus the sufficient

condition becomes:
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We further simplify the above as follows:

hPt,Ci � hP̄,Ci+ ✏(k + 1)

()

hPt,Ci � hP⇤
,Ci � �(C)

2
+ ✏(k + 1)

(11)

where P̄ =
(U)1:k+1(U)>1:k+1+(U)1:k�1(U)>1:k�1

2 and �(C) is the eigengap of C at k.

A.2 Convergence of SGD from "warm start"

We now show it is possible to achieve better guarantees for the t-th iterate of SGD, with high
probability, if we assume kx1 � x⇤k2  ✏. As a result, we obtain Theorem 4.1.
Lemma A.3. Consider running SGD on the convex function f , with iterates xt. Assume that

kx1� x⇤k2 
p
✏  1 and set ⌘t =

1p
1
✏+t

. Assume that for all t we have that the stochastic gradient

gt is bounded as kgtk  V and that for all iterates we have kxt � x⇤k  R. Let bx =
P

T
0

t=1 xt. Then

with probability at least 1� �
1
4c it holds that

f(bx)� f(x⇤)  1

T 0 +
R

2 + V
2 + log (1/�)q
T 0 + 1

✏

,

for c = 8V 2
R

2
, as long as T

0
✏ > 4.
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Proof. Let gt denote the stochastic gradient at time t, with kgtk  V . Begin as in the proof for SGD:

kxt+1 � x⇤k2  kxt � x⇤k2 � 2⌘thgt, xt � x⇤i+ ⌘
2
t
kgtk2  kxt � x⇤k2 � 2⌘thgt, xt � x⇤i+ ⌘

2
t
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2
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2
t
V

2
.

Let �t = hrf(xt)� gt, xt � x⇤i. The above implies that
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2
.

Let bx = 1
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2. We have
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✏
. We have
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p
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<
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. To finish the bound we need to bound with

high probability the sum
P

T
0

t=1 �t. It is standard to show that �t is a martingale difference and we
also have |�t|  2V R. We can apply Azuma’s inequality to get
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4
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Let c = 8V 2
R

2. We set � =
⇣p

T 0 �
q
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log (1/�). Then
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p
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The functions 2 1p
x
� 1

x
is decreasing for x � 1 and at x = 4 it takes value 3/4 and thus e�

�2

8T 0V 2R2 

�
1
4c . This implies that, with probability 1� �

1
4c , we have f(bx)� f(x⇤)  1/T 0 + R

2+V
2+log(1/�)p
T 0+ 1

✏

,

and so we have improved the iteration complexity of SGD by 1
✏

as long as T 0
✏ � 4.

If the the stochastic gradients are sufficiently variance reduced, we can show that the above result
holds for all T . In particular, we have the following lemma for the iterates of MSG.
Lemma A.4. Suppose that kC�Ctk 

p
✏

2 for all t. Let kCtkF  V and c = 8k2. With probability

at least 1� �
1/c

it holds that

hP⇤ � bP,Ci  1

T
+

4k2 + V
2 + log (1/�)q
T + 1

✏

,

for all T � 1, where bP = 1
T

P
T

t=1 Pt

Proof. We would like to refine the bound in Lemma A.3 by using the structure of the MSG update.
In particular we have that |�t| = |hC� Ct,Pt � P⇤i|  kC� Ctk2k. Suppose that kC� Ctk  ✏̃.
Let c = 8k2, then an application of Azuma’s inequality with � = Tp

T+ 1
✏

p
log (1/�) yields
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Notice that we are free to choose ✏̃ in our algorithm and since x

x+ 1
✏

is an increasing function of x,

setting ✏̃ =
p

✏

2 
q

1
1+1/✏ guarantees that for any T � 1 with probability 1 � �

1/c the result of
Lemma A.3 holds.

For our final result, we are going to need ✏ = ⇥(gap(C)2) and thus ✏̃ = ⇥(gap(C)), which is anyway
required by the sufficient condition.

Next we attempt to improve the iteration complexity for the final iterate analysis with high probability.
We note that in expectation this is somewhat easy to achieve.
Lemma A.5. With the same assumptions as in Lemma A.3, with probability 1� �

1
4c it holds that

f(xT )� f(x⇤)  1
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✏
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Proof. The proof essentially follows the proof of Theorem 2 in Shamir & Zhang (2013). Let
�t,k = hrf(xt)� gt, xt � xT�ki. We have
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and thus we have

f(xT )  ST�1 +

✓
R

2

2
+ V

2

◆
1 + log (T )q

T + 1
✏

+
T�1X

k=1

1

k(k + 1)

TX

t=T�k

�t,k.

14



Remembering that ST�1 = 1
T

P
T

t=1 f(xt), subtracting f(x⇤) from both sides of the inequality and
using Lemma A.3 we arrive at the desired result.

The rest of our efforts are now focused on bounding the term
P

T�1
k=1

1
k(k+1)

P
T

t=T�k
hrf(xt) �

gt, xt � xT�ki. We now attempt to do so by repeating the proofs in Harvey et al. (2018). We begin
by showing that Lemma 8.4 from Harvey et al. (2018) still holds.
Lemma A.6. Assume �1(C)  1, then

kxa � xbk2 
b�1X

i=a

kgik2

i
+ 2

b�1X

i=a

f(xi)� f(xa)p
i

+ 2
b�1X

i=a

hrf(xi)� gi, xi � xaip
i

Proof.

kxa � xbk2  kxa � xb�1 + ⌘b�1gb�1k2 = kxa � xb�1k2 + 2⌘ihgb�1, xa � xb�1i+ ⌘
2
b�1kgb�1k2

 kxa � xb�1k2 + 2⌘b�1(f(xb�1)� f(xa)) + 2⌘b�1hrf(xb�1)� gb�1, xb�1 � xai+ ⌘
2
b�1kgb�1k2

 · · ·


b�1X

i=a

⌘
2
i
kgik2 + 2

b�1X

i=a

⌘i(f(xi)� f(xa)) + 2
b�1X

i=a

⌘ihrf(xi)� gi, xi � xai

<

b�1X

i=a

kgik2

i
+ 2

b�1X

i=a

f(xi)� f(xa)p
i

+ 2
b�1X

i=a

hrf(xi)� gi, xi � xaip
i

,

where the last inequality follows from the fact that ⌘i =
q

1
i+ 1

✏
<

1p
i
.

We next introduce some additional notation. Let ↵j = 1
(T�j+1)(T�j) , wt =

P
t�1
j=1 ↵j(xt � xj).

Change of summation shows that
T/2X

k=1

1

k(k + 1)

TX

t=T�k

hrf(xt)� gt, xt � xT�ki =
T�1X

t=T/2

hrf(xt)� gt,wti

Now the proof of Lemma 8.6 Harvey et al. (2018) is unchanged. We restate the lemma here of
convenience.
Lemma A.7. Assume f is 1-Lipschitz, then there exists a constant c (depending on V and R) such

that

TX

t=T/2

kwtk2  c
(log (T ))2

p
log (1/�)

T
+

TX

t=T/2

hrf(xt)� gt,
4 log (T )p

t
wti,

with probability at least 1� �.

We are going to use Lemma A.7 in combination with Corollary C.5 in Harvey et al. (2018), which
states the following:
Lemma A.8. Let {Ft}t be a filtration, let at be an Ft-measurable random vector and let bt be an

Ft�1-measurable random vector. Let dt = hat, bti and suppose (at)t is a Martingale difference,

with katk  1. Further suppose that there exist R > 0 and a positive sequence (↵t)t such that

maxt{↵t}  c
p
R (for some constant c), such that exactly one of the following holds for all

� 2 (0, 1).

1.
P

T

t=1 kbtk2 
P

T

t=1 ↵tdt +R log (1/�) with probability at least 1� �;

2.
P

T

t=1 kbtk2 
P

T

t=1 ↵tdt +R
p
log (1/�) with probability at least 1� �.

Then

P
"

TX

t=1

dt � x

#
 � + exp

✓
� x

2

4maxt{↵t}T�1
t=1 x+ 8R log (1/�)

◆
.
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Combining Lemma A.6 and Lemma A.8 we arrive at the following:

Lemma A.9. Suppose krf(xt)� gtk  1 and T ✏ � 1. Then with probability 1� 2�
1
2c it holds that

TX

t=T/2

hrf(xt)� gt,wti 
log (T ) log (1/�)q

T + 1
✏

.

Proof. Let at = rf(xt) � gt, bt = wt, ↵t =
4 log(T )p

t
for t = T/2, . . . , T � 1 and ↵T = 0. Then

maxt{↵t}  c1
log(T )p

T
. Let R = c2

(log(T ))2

T
. Then from Lemma A.8 we have

P

2

4
TX

t=T/2

hrf(xt)� gt,wti � x

3

5  � + exp

0

@� x
2

4c1
log(T )p

T
x+ 8c2

(log(T ))2

T
log (1/�)

1

A .

Set x = log(T )p
T+ 1

✏

log (1/�). Then

exp

0

B@�
log(T )2

T+ 1
✏

log (1/�)2

4c1
log(T )p

T

log(T )p
T+ 1

✏

log (1/�) + 8c2
(log(T ))2

T
log (1/�)

1

CA  exp

✓
� log (1/�)

T

c(T + 1/✏)

◆
,

where c = 12max(c1, c2). Thus as long as T ✏ � 1 we have with probability 1� 2�
1
2c

TX

t=T/2

hrf(xt)� gt,wti 
log (T ) log (1/�)q

T + 1
✏

Theorem A.10. Suppose that kP1�P⇤k2
F


p
✏, for all t it holds that kCt�Ck 

p
✏

2
1

log(1/✏) and

that kC�Ctk  1. For any T � 1, with probability 1� 4�1/c̃ (for some c̃ = O(k2V 2)) it holds that

hP⇤ � PT ,Ci  O

0

@k
2 log (1/�) (log (T ))2q

T + 1
✏

1

A .

Proof of Theorem A.10. Lemma A.4, together with Lemma A.5 gives us that with probability 1��1/c

hP⇤ � PT ,Ci 
1

T
+

4k2 + V
2 + log (1/�)q
T + 1

✏

+
(4k2 + V

2)(1 + log (T ))q
T + 1

✏

+
T�1X

k=1

1

k(k + 1)

TX

t=T�k

hC� Ct,Pt � PT�ki.

We now bound
P

T�1
k=1

1
k(k+1)

P
T

t=T�k
hC � Ct,Pt � PT�ki by splitting it into two parts.

First consider
P

T�1
k=T/2+1

1
k(k+1)

P
T

t=T�k
hC � Ct,Pt � PT�ki. For a fixed k, we can use

Azuma’s inequality with the assumption that kC � Ctk 
p

✏

2 and get as in Lemma A.4 that

P
P

T

t=T�k
hC� Ct,Pt � PT�ki � log (T/�) kp

k+ 1
✏

�
 2

T
�
1/c. A union bound for all k thus

gives us

P

2

4
T�1X

k=T/2+1

1

k(k + 1)

TX

t=T�k

hC� Ct,Pt � PT�ki � log (T/�)
T�1X

k=T/2+1

1p
k + 1/✏(k + 1)

3

5  �
1/c

.
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Notice that
T�1X

k=T/2+1

1p
k + 1/✏(k + 1)

 T

2

1q
T/2 + 1

✏

T

2

,

and thus

P

2

4
T�1X

k=T/2+1

1

k(k + 1)

TX

t=T�k

hC� Ct,Pt � PT�ki �
2 log (T/�)q

T + 1
✏

3

5  �
1/c

.

Next we bound
PT/2

k=1
1

k(k+1)

P
T

t=T�k
hC� Ct,Pt � PT�ki by using Lemma A.9 and a refinement

for the case when T ✏ < 1. When T ✏ � 1, direct application of Lemma A.9 gives us:

P

2

4
T/2X

k=1

1

k(k + 1)

TX

t=T�k

hC� Ct,Pt � PT�ki �
log (T ) log (1/�)q

T + 1
✏

3

5  2�1/2c
0
.

Suppose now that T ✏ < 1. Let kC� Ctk  ✏̃. Then

T/2X

k=1

1

k(k + 1)

TX

t=T�k

hC� Ct,Pt � PT�ki <
1/✏X

k=1

✏̃

k + 1
 log (1/✏) ✏̃.

Let c̃ = max(c, 2c0). The above implies that as long as ✏̃ 
p

✏

2
1

log(1/✏) , for any T � 1

T�1X

k=1

1

k(k + 1)

TX

t=T�k

hC� Ct,Pt � PT�ki 
log (T ) log (1/�)q

T + 1
✏

,

with probability at least 1 � 3�1/c̃. Combining this, with Lemma A.5 and a union bound over T
completes the proof.

A.3 Putting everything together

Let the ✏ in Lemma 5.2 be ✏1 and the ✏ in Theorem A.10 be ✏2. We are going to set ✏1 = �(C)
4(k+1)

and ✏2 = ( �(C)
c

)2, for an appropriate constant c, which depends only on kxtnk2,k and log (1/�).
In particular from Theorem A.10, we know that for some c1 (which depends only on kCtkF
and k, and therefore only on kxtnk and k) it holds hP⇤ � PT ,Ci  c1

log(1/�)(log(T ))2q
T+ 1

✏2

, for

all T with probability 1 � 3�1/c
0
. Setting ✏1 = �(C)

4(k+1) , Lemma 5.2 implies that we should

have c1
log(1/�)(log(T ))2q

T+ 1
✏2

 ✏1 = �(C)
4(k+1) . Since (log(T ))2q

T+ 1
✏2

is only decreasing in T , we have

c1
log(1/�)(log(T ))2q

T+ 1
✏2

 c1
p
✏2 log (1/�) (log (3))2 and thus we can take ✏2  c2�(C)2, where

c2 = 1
(4(k+1))2c21(log(1/�))

2(log(3))4
. Thus we would like kP1 � P⇤k2

F
 p

c2�(C) and kCt � Ck 
p
c2�(C) for all t  T . From Davis-Kahan’s theorem Yu et al. (2014), we know that kP1 � P⇤k2

F


4kkC�C1k2

�(C)2 . Thus we would like kC � C1k2 
p
c2�(C)3

4k , together with kC � Ctk  p
c2�(C).

We use Matrix Bernstein’s Tropp et al. (2015) inequality to satisfy both. In particular, if at every

iteration we use n = O(
log(T ) log

⇣
d

�1/c
0

⌘

c2�(C)2 ) samples to compute Ct and we use n = O(
2
p
k log

⇣
d

�1/c
0

⌘

c
1/4
2

p
�(C)gap

)

samples to compute C1, and initialize P1 as the projection on the top-k eigenspace of C1, then after

T iterations we have hP⇤ � PT ,Ci  O

 
log(1/�)(log(T ))2q

T+ 1
✏2

!
, with probability 1� 4�1/c

0
and each

of the Pt’s is a rank k projection matrix.
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Theorem A.11. Assume kxtnk2  1
2 . After running Algorithm 1, with probability at least 1� 4�1/c,

where c = O(k2V 2), it holds that

hP⇤ � PT ,Ci  O

0

@k
2 log (1/�) (log (T ))2q

T + 1
✏

1

A .

and for all t  T it holds that Pt is a rank-k projection matrix, where ✏ = O

⇣
�(C)2

(k log(1/�))2

⌘
.

Proof of Theorem 4.1. We proceed as in the proof of Theorem 4.2. From Lemma 11 we know that
as long as kC � Ctk  �(C)

4(k+1) , Pt is rank k, then hP⇤ � Pt,Ci  �(C)
4 is a sufficient condition

for Pt+1 to be rank k. We are going to show that this sufficient condition holds for all t by
using Theorem 4.1. In particular it is sufficient to have that k

2 log(1/�)(log(T ))2p
T+ 1

✏

 O( �(C)
k

), or

equivalently
p
✏  O

⇣
�(C)

k3 log(1/�)

⌘
. This implies that the conditions of Theorem 4.1 are met

whenever kP1 � P⇤k2
F

 4kkC�C0k2

�(C)2  ✏ = O

✓⇣
�(C)

k3 log(1/�)

⌘2◆
and kCt � Ck 

p
✏

log(1/✏) =

O

 
�(C)

k3 log(1/�)
1

log
⇣

�(C)

k3 log(1/�)

⌘

!
. Matrix Bernstein implies that the first inequality is satisfied with

probability 1� �, whenever we use n1 = ⇥
⇣

log(d/�)k2 log(1/�)
�(C)3

⌘
. Since we require that the second

inequality hold for all t  T , Matrix Bernstein together with a union bound guarantees that the

inequality holds as long as we use n2 = ⇥

✓
log(T ) log(d/�)k3 log(1/�) log(�(C)/(k3 log(1/�)))

�(C)2

◆
.

B Proofs for MB-RMSG

B.1 Sufficient condition

We now consider the update Pt+1/2 = (1� �⌘t)Pt + ⌘tCt of MB-RMSG in Algorithm 2.

Lemma B.1. Let Pt be rank k and suppose kC� Ctk  ✏. Then a sufficient condition for Pt+1 to

be rank k is

hPt,Ci � hP⇤
,Ci � �(C)

2
+
�

2
+ ✏(k + 1). (12)

Proof of Lemma B.1. Let ↵t = 1 � �⌘t and write Pt+1/2 =

Ut+1/2

0

BBBBBBB@

↵t + �1

↵t + �2

. . .
�k+1

. . .
�d

1

CCCCCCCA

U>
t+1/2. Let y =

0

BB@

↵t + �1

↵t + �2
...
�d

1

CCA. As

before, the shift if we would like to retain rank k of the iterates is given by si⇤,j⇤ =
Pk

l=i⇤+1 yl�k+i
⇤

k�i⇤�1

and thus a sufficient condition is
Pk

l=i⇤+1 yl�k+i
⇤

k�i⇤�1 � �k+1. Slightly rewriting the sum in the
numerator we get
P

k

l=i⇤+1 yl � k + i
⇤

k � i⇤ � 1
=

P
k

l=i⇤+1 �l + (k � i
⇤)↵t � (k � i)⇤

k � i⇤ � 1
=

P
k

l=i⇤+1 �l � (k � i
⇤)(1� ↵t)

k � i⇤ � 1
.

Thus a sufficient condition becomes
Pk

l=i⇤+1 �l

k�i⇤ � �k+1 + (1� ↵t). Using the average is larger than
the minimum we convert this sufficient condition to �k � �k+1 + (1� ↵t) or written equivalently
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�k(Pt+1/2) � �k+1 + (1� ↵t) + ↵t = 1 + �k+1. Now we write

�k(Pt+1/2) = max
U2SO(k)

�min(U
>Pt+1/2U) � �min(U

>
t
Pt+1/2Ut) = �k(↵tI + ⌘tU

>
t
CtUt)

= ↵t + ⌘t�k(U
>
t
CtUt).

Thus a sufficient condition becomes ⌘t�k(U>
t
CtUt) � �k+1+1�↵t = �k+1+�⌘t. We now upper

bound �k+1 = �k+1(Pt+1/2).

�k+1 
k+1X

l=1

�l(Pt+1/2)�
kX

l=1

�l(U
>
t
Pt+1/2Ut)  ↵tk + ⌘t

k+1X

l=1

�l(Ct)� ↵tk � ⌘t

kX

l=1

�l(U
>
t
CtUt)

= ⌘t

(
k+1X

l=1

�l(Ct)�
kX

l=1

�l(U
>
t
CtUt)

)
.

This implies that a sufficient condition is �k(U>
t
CtUt) +

P
k

l=1 �l(U
>
t
CtUt) �

P
k+1
l=1 �l(Ct) + �.

Assume that kC� Ctk  ✏ and repeat the proof of Lemma 5.2 to get that a sufficient condition is
�k(U>

t
CUt) +

P
k

l=1 �l(U
>
t
CUt)� 2✏(k + 1) �

P
k+1
l=1 �l(C) + �.

�k(U
>
t
CUt) +

kX

l=1

�l(U
>
t
CUt)� 2✏(k + 1) �

k+1X

l=1

�l(C) + �

()

2
kX

l=1

�l(U
>
t
CUt)� 2✏(k + 1) �

k�1X

l=1

�l(C) + �l(U
>
t
CUt) + �k(C) + �k+1(C) + �

(=

2
kX

l=1

�l(U
>
t
CUt)� 2✏(k + 1) � 2

kX

l=1

�l(C)� (�k(C)� �k+1(C)) + �

()
kX

l=1

�l(U
>
t
CUt)� ✏(k + 1) �

kX

l=1

�l(C)�
�(C)

2
+
�

2

()

hPt,Ci � hP⇤
,Ci � �(C)

2
+
�

2
+ ✏(k + 1)

From Mianjy & Arora (2018) we know that � < �(C) and so we can choose � = �(C)/2 to get a
sufficient condition of the form

hPt,Ci � hP⇤
,Ci � �(C)

4
+ ✏(k + 1).

B.2 Convergence of SGD from "warm start" for strongly convex functions

We are now going to extend Theorem 7.5 from Harvey et al. (2018) to the case when kx1 � x⇤k2  ✏

and we run SGD with step size ⌘t = 1
�(1+ 1

✏ )
, for �-strongly convex and 1-Lipschitz function f . We

begin by restating Theorem 4.1 from Harvey et al. (2018).

Theorem B.2. Let ↵t 2 [0, 1) and �t, �t � 0 for all t and let K = maxt
⇣

2�t

1�↵t
,

2�2
t

1�↵t

⌘
. Let

(Xt)Tt=1 be a stochastic process and let (Ft)Tt=1 be a filtration such that Xt is Ft measurable and Xt

is non-negative a.s. Let bwt be a mean-zero random variable conditioned on Ft such that | bwt|  1
a.s. for all t. Suppose that X1  K and that Xt+1  ↵tXt + �t bwt

p
Xt + �t for all t. Then

P [Xt � K log (1/�)]  e�

for all t.
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Assume that krf(xt) � gtk  1 and kgtk  1. With the help of this theorem we can show the
following.
Lemma B.3. Suppose kx1 � x⇤k2  ✏ and we run SGD with step size ⌘t =

1
�(t+ 1

✏ )
. Then for all t

P

kxt � x⇤k2 � 8

�2(t+ 1
✏
� 1)

log (1/�)

�
 e�

Proof of Lemma B.3. Let zt = rf(xt)�gt. Repeating the proof of Lemma 6 in Rakhlin et al. (2012)
we have

kxt+1 � x⇤k2  kxt � ⌘tgt � x⇤k2 = kxt � x⇤k2 � 2⌘thgt, xt � x⇤i+ ⌘
2
t
kgtk2

= kxt � x⇤k2 � 2⌘thrf(x)t, xt � x⇤i+ 2⌘thzt, xt � x⇤i+ ⌘
2
t
kgtk2

 kxt � x⇤k2 � 2⌘t(f(xt)� f(x⇤)) +
⌘t�

2
kxt � x⇤k2 + 2⌘thzt, xt � x⇤i+ ⌘

2
t
kgtk2

 kxt � x⇤k2 � 2⌘t
�

2
kxt � x⇤k2 + ⌘t�

2
kxt � x⇤k2 + 2⌘thzt, xt � x⇤i+ ⌘

2
t
kgtk2

 (1� 2⌘t�)kxt � x⇤k2 + 2⌘thzt, xt � x⇤i+ ⌘
2
t

=

✓
1� 2

t+ 1
✏

◆
kxt � x⇤k2 + 2

�(t+ 1
✏
)
hzt, xt � x⇤i+ 1

�2(t+ 1
✏
)2
.

Let Xt = (t+ 1
✏
� 1)kxt � x⇤k2, then from the above we have

Xt+1 
t+ 1

✏
� 2

t+ 1
✏
� 1

Xt +
2

�

hzt, xt � x⇤i
kxt � x⇤k

s
Xt

t+ 1
✏
� 1

+
1

�2(t+ 1
✏
)
.

Let ↵t =
t+ 1

✏�2

t+ 1
✏�1

, bwt = hzt,xt�x⇤i
kxt�x⇤k , �t = 2

�

p
t+ 1

✏�1
and �t = 1

�2(t+ 1
✏ )

. Then K  8
�2 and

X1 = 1
✏
kxt � x⇤k2  1 <

8
�2 . Applying Theorem B.2 finishes the proof.

Theorem B.4 (Theorem 2 Yu et al. (2014)). Let C, bC 2 Rd⇥d
be symmetric, with eigenvalues

�1 � . . . � �d and b�1, . . . , b�d. Fix j 2 {1, . . . , d}, and assume that min(�j�1��j ,�j��j+1) > 0,

where �0 = 1,�d+1 = �1. If V, bV are the orthogonal matrices corresponding to the top k

eigenvalues of C and bC respectively, then

q
k � kV>bVk2

F
 2

p
kkbC� Ck
�(C)

,

where �(C) = �k(C)� �k+1(C).

Theorem B.5. Assume kxtnk2  1
2 . After running Algorithm 2, with probability at least 1� 3e�, it

holds that

hP⇤ � PT ,Ci 
32 log (1/�)

�(C)2
�
T + 1

✏
� 1
�

and for all t  T it holds that Pt is a rank-k projection matrix, where ✏ = �(C)3

128 log(1/�) .

Proof of Theorem 4.2. For all 1  t  T � 1, as long as kC� Ctk  �(C)
8(k+1) , Lemma B.1 implies

that a sufficient condition for Pt+1 to be a rank-k projection matrix, given Pt is a rank-k projection
matrix, is hP⇤�Pt,Ci  �(C)

8 . Using Matrix Bernstein’s inequality we know that for each t we have

P
h
kC� Ctk � �(C)

8(k+1)

i
 �

T
. On the other hand we know from the proof of Theorem 2.5 in Mianjy

& Arora (2018) that hP⇤ � Pt,Ci  �1(C)
2 kPt � P⇤k2

F
 kPt�P⇤k2

F
2 . Lemma B.3 implies that

P

hP⇤ � Pt,Ci �

4

�2(t+ 1
✏̃
� 1)

log (1/�)

�
 e�,
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as long as kP1 � P⇤k2
F
 ✏̃, where � = �(C)

2 . Thus we only need to guarantee that 4 log(1/�)✏̃
�2  �

2

or equivalently ✏̃  �(C)3

128 log(1/�) . To bound kP1 � P⇤k2
F

we use Theorem B.4. Let P1 = UU> and
P⇤ = U⇤(U⇤)>, then

kP1 � P⇤k2
F
= 2(k � hP1,P

⇤i) = 2(k � Tr
�
UU>U⇤(U⇤)>

�

= 2(k � Tr
�
(U⇤)>UU>U⇤� = 2(k � kU>U⇤k2F )  4k

kC� C0k2

�(C)2
.

And so we require 4k kC�C0k2

�(C)2  �(C)3

128 log(1/�) or equivalently kC � C0k  �(C)5/2

16
p

2k log(1/�)
. Using

Matrix Bernstein’s inequality this is guaranteed to hold with probability at least 1 � � as long as
n � log (d/�) 128k log(1/�)

�(C)5 . A union bound now guarantees that for every t  T , Pt is a rank-k
matrix and together with the projection onto the rescaled simplex, this guarantees that Pt is a rank-k
projection matrix.

B.3 Improved rates in expectation

For this subsection, the expectation we take is the conditional expectation on the event that Pt is a
rank-k projection matrix and that kCt � Ck  �(C)

8(k+1) for all t 2 [T ]. We are now going to take a
proximal view of projected SGD of Algorithm 2. In particular we let f(P) = �hP,Ci + �

4 kPk
2
F

and  (P) = �

4 kPk
2
F
+ �P(P), where �P(P) is the characteristic function of the set of constraints

P = {P : Tr (P)  k, 0 � P � I,P> = P}. Notice that f is a convex and 2
�

-smooth with respect
to Frobenius norm and that  is �

2 -strongly convex with respect to Frobenius norm. We can write the
update of Algorithm 2 as

Pt+1 = arg min
P2Rd⇥d

1

2⌘t
kP� Ptk2F + hgt,P� Pti+  (P)�  (Pt),

where gt is the stochastic gradient of f at Pt based on Ct. Let

Prog(Pt) = � min
P2Rd⇥d

1

2⌘t
kP� Ptk2F + hgt,P� Pti+  (P)�  (Pt).

We have

Prog(Pt) = �
⇢

1

2⌘t
kPt+1 � Ptk2F + hgt,Pt+1 � Pti+  (Pt+1)�  (Pt)

�

= �
⇢

1

2⌘t
kPt+1 � Ptk2F + hrf(Pt),Pt+1 � Pti+  (Pt+1)�  (Pt) + hgt �rf(Pt),Pt+1 � Pti

�

 �
⇢

1

2⌘t
kPt+1 � Ptk2F � L

2
kPt+1 � Ptk2F + f(Pt+1)� f(Pt)

+ (Pt+1)�  (Pt) + hgt �rf(Pt),Pt+1 � Pti} ,
where L is the smoothness parameter of f and the inequality follows from smoothness. Let �t =
1
⌘t

� L

2 and notice that

hrf(Pt)� gt,Pt+1 � Pti �
�t

2
kPt+1 � Ptk2F  1

2�t
krf(Pt)� gtk2F .

This implies that

f(Pt)� f(Pt+1) +  (Pt)�  (Pt+1) � Prog(Pt)�
1

2�t
krf(Pt)� gtk2F .

Lemma 2.5 from Allen-Zhu (2017) implies that

⌘thgt,Pt+1 � Pi+ ⌘t (Pt+1)� ⌘t (P)  �1

2
kPt � Pt+1k2F +

1

2
kPt � Pk2

F
� 1 + ⌘t�

2
kPt+1 � Pk2

F
,

where � is the strong convexity parameter of  for any rank-k projection matrix P. By construction
we know that f is also � strongly convex and thus we have

E [hgt,Pt � Pi] � E
h
f(Pt)� f(P) +

�

2
kPt � Pk2

F

i
.
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Combining the above two inequalities we arrive at

E
h
⌘t

⇣
f(Pt)� f(P) +

�

2
kPt � Pk2

F

⌘i
+ ⌘t (hgt,Pt+1 � Pti+  (Pt+1)�  (P))

 �1

2
kPt � Pt+1k2F +

1

2
kPt � Pk2

F
� 1 + ⌘t�

2
kPt+1 � Pk2

F
.

Next we use the property that Pt+1 is a rank-k projection to write

⌘t (hgt,Pt+1 � Pti+  (Pt+1)�  (P)) = ⌘thgt,Pt+1 � Pti+  (Pt+1)�  (P),

which implies

E
h
⌘t

⇣
f(Pt)� f(P) +

�

2
kPt � Pk2

F

⌘i
 �

⇢
1

2
kPt � Pt+1k2F + ⌘thgt,Pt+1 � Pti+  (Pt+1)�  (P)

�

+
1

2
kPt � Pk2

F
� 1 + ⌘t�

2
kPt+1 � Pk2

F
.

Again using the fact that  (Pt) =  (P) we have

E [⌘t(f(Pt)� f(P))]  E

⌘tProg(Pt) +

1� ⌘t�

2
kPt � Pk2

F
� 1 + ⌘t�

2
kPt+1 � Pk2

F

�
.

Using the Prog inequality from earlier we have

E [⌘t(f(Pt)� f(P))]  E

⌘t(f(Pt)� f(Pt+1)) +

1� ⌘t�

2
kPt � Pk2

F
� 1 + ⌘t�

2
kPt+1 � Pk2

F

�
+

⌘t

2�t
V

2
t
,

where Vt = E [krf(Pt)� gtkF ]. The above implies

E [f(Pt+1)� f(P)]  E

1� ⌘t�

2⌘t
kPt � Pk2

F
� 1 + ⌘t�

2⌘t
kPt+1 � Pk2

F
+

1

2�t
V

2
t
.

�

Recall that we set the step size as ⌘t = 2
�(t+1/✏) . This implies

1� ⌘t�

2⌘t
kPt � Pk2

F
� 1 + ⌘t�1�

2⌘t�1
kPt � Pk2

F
=

1

2
kPt � Pk2

F

✓
�(t+ 1/✏)

2
� �(t� 1 + 1/✏)

2
� 2�

◆

= �3

4
�kPt � Pk2

F
< 0.

Recall that � = �(C)
4 and from our initial condition we know that f(P1) � f(P⇤)  �(C)

8 . Thus
summing from t = 2 to T � 1 we have

E
"

1

T � 1

TX

t=1

f(Pt)� f(P⇤)

#
 �

T � 1
+

1

T � 1

T�1X

t=2

V
2
t

2�t
.

Let us upper bound 1
�t

.

1

�t
=

1

1/⌘t � L
=

1
�(t+1/✏)

2 � 2
�

=
2

�t+ �

✏
� 4

�

 2

�t
.

Where the last inequality follows since � = �(C)
4 and ✏ < �(C)3

128 . Next we upper bound V
2
t

. Recall
that we conditioned on the event that kCt � Ck  �(C)

8(k+1) for all t 2 [T ]. We also assumed that
Tr (Ct)  1. Thus

krf(Pt)� gtk2F = kCt � Ck2
F
 2Tr (C) kCt � Ck  �

2k
.

This implies we can bound
P

T�1
t=2

V
2
t

2�t
 log(T )

k
. It is interesting to note that we could also bound the

above sum by d� log(T )
k

and get a convergence rate depending on d� instead. We are now going to
use the trick in Shamir & Zhang (2013) to obtain a convergence guarantee for the last iterate. Instead
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of replacing P by P⇤ and summing from t = 2 to T � 1. we sum from t = T � l + 1 to T and set
P = PT�l. Thus we get

E
"

TX

t=T�l+1

f(Pt+1)� f(PT�l)

#


T�1X

t=T�l

V
2
t

2�t
.

Set Sl =
1
l

P
T

t=T�l+1 f(Pt). We have

�E [f(PT�l)]  �E [Sl] +
1

l

T�1X

t=T�l

V
2
t

2�t
.

Using the definition of Sl we also have

(l � 1)Sl�1 = lSl � f(PT�l+1)  lSl � Sl�1 +
1

l � 1

T�1X

t=T�l+1

V
2
t

2�t

()

lSl�1  lSl +
1

l � 1

T�1X

t=T�l+1

V
2
t

2�t

()

Sl�1  Sl +
1

l(l � 1)

T�1X

t=T�l+1

V
2
t

2�t
.

Thus E [f(PT )]  E [ST ] +
P

T

l=2
l

l(l�1)

P
T�1
t=T�l+1

V
2
t

2�t
 �

T�1 +
log(T )
(T�1)k + (1+log(T ))

(T�1)k . And so we
have shown the following theorem.

Theorem B.6. Let A be the event that for all t 2 [T ] it holds that kCt � Ck  �(C)
8(k+1) and Pt is a

rank-k projection matrix. Then Algorithm 2 guarantees that A occurs with probability at least 1� e�

and that

E [hP⇤ � PT ,Ci|A]  Õ

✓
�(C)

T
+min(�(C)⇥ d, 1)

1

kT

◆
.
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