Supplementary Material to “Efficient Convex Relaxations for
Streaming PCA"'

We note that constants «y and /3 are replaced in the appendix by € or €. These €’s are not to be confused

by the € used to denote suboptimality, but rather denote a small positive value. We also note that we
use J(A) to denote the eigengap of A instead of A(A).

A Proofs for MB-MSG
A.1 Sufficient condition

Lemma A.1. Suppose Py is rank k. If (P, Cy) + \p (U] C,Uy) > Z;Cill A (Cy), then Pyyq is also
rank k.

14+ XM\
14 X
Proof of Lemma[5.1| Let Py /5 = Uppq)o Aot UtT+1/2'
Ad

1+ N\

14+ Ao
Lety = . and let ¢* and j* be respectively the largest index of y which is set to 1 after

Ad

shifting and the smallest index of y which is set to 0 after shifting. Let the shifting amount for indices
1* and j* be s;x j~. WLOG assume that A\ > Ay > ... > Ay and A1 > ... > Ag. The projection
formula tells us that
i =1
Y i—sieg) +it =k
I=i*+1
E?:;}JA yi—k+i”

Thus Six gx = 2

. Since we are trying to derive a sufficient condition for when P, is
. . Eji? yi—k+i*
rank k, we necessarily have j* = k 4 1 and thus s~ j~ = == ———
we must have s;« ;= > yi41 and thus a sufficient condition becomes

Z?:;lﬂ yi—k -+ . Zf:i*+1 yi—k+i* _ Zf:i*+1 Al > Zf:i*-&-l Al >\ 7

i1 k1 k17 ke o O

From our assumption on the ordering on \js we see that the above sufficient condi-

Z;c:i*+1 AL
k—i*

. By the projection rule

tion is always implied by Ay > Ag41, since >  MAg.  This is equiv-
alent to Ag(Pyp1/2) > 1 4 Agg1(Peyr2).  We now write the k-th eigenvalue of

Pit1/2 in its variational form Ag(Pyi1/2) = maxyego(k) Milyegpan(U) uTPtH/Qu =
maXUeso(k) Amin(UTPtJ’_l/QU) Z )\k(U:Pt-i-l/QUt) = 1 + T]t)\k(U;rCtUt) We also
have Zle >\Z(Pt+1/2) = mMaXyeso(k) Tr (UTPtJrl/QU) > Tr (U;—Pt+1/2Ut) = k +
Nt Zle N (U] C;U,). We now use the above inequality to derive:
k+1 k
M1 (Pigaja) €D MiPryrye) =k —m Y N(UCUY)
=1 =1 )
k+1 k
<k4+mY MNC)—k—m > MU CUY),
=1 =1
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where the second inequality follows from Ky Fan’s inequality and the fact that P, is a rank k
projection matrix so that Zf + (P;) = k. The above inequality implies that a sufficient condition
for projecting back to a rank-k matrix is 1 + 7; Zz 1 )\I(Ct) — k+1 )\l(UtTCtUt) < Ak(Py).
Together with A\ (Py41/2) > 1+ Ak (U] CUy), we get the followmg sufﬁ01ent condition:

k+1
(U CUy) > lect Z (U CiUy). ©)

=

O

Lemma A.2. Suppose that ||C — Cy|| < € and that Py is rank k. If
o(C
(P*—P,,C) < % —e(k+ 1),
then Pyy1 is also rank k.

Proof. We have:
k k
> (U CUL) + M (U] CUy) = Y M (U]CUL) — A (U] CUY)
=1 =1
< (P, Co — C)| + [ A1 (U] CeUp) — Mig1 (U] CUY) | < K[|C = Col| + | A1 (U] CeUy) — A1 (U] CUY) |
< ek +[|U/ (C, = O)U|| < (k + De.

Using the above and Lemma we have that a sufficient condition is Zle N (USCUy) +
M(UFCUY) — e(k + 1) > Zk“ M (Cy). Using |A(A + B) — A(B)| < |B| we also have

A (C) — A(Cy)| < ||IC — Cy| and thus ZkH [A(Cy) — A (C)| < (k + 1)e. Thus the sufficient
condition becomes:

k+1
Z AN(USCUY) + \e(UCUL) = 2¢(k +1) = > N(C (10)
=1 =1

We further simplify the above as follows:

(Py,C) > (P,C) +e(k+1)

. 5(C)
(P, C) = (P*,C) — T+€(k+1)
_ T T
where P = (U)“““(U)l”““;(U)l:k‘l(U)”“’l and §(C) is the eigengap of C at k. O

A.2 Convergence of SGD from '"warm start"
We now show it is possible to achieve better guarantees for the ¢-th iterate of SGD, with high
probability, if we assume ||x; — x*||? < €. As a result, we obtain Theorem

Lemma A.3. Consider running SGD on the convex function f, with iterates x;. Assume that
IIx1 —x*||2 < Ve < 1andsetn; = \/}7“ Assume that for all t we have that the stochastic gradient

g is bounded as ||g:|| <V and that for all iterates we have ||x; — x*|| < R. LetX = Zthll x¢. Then
with probability at least 1 — § 1c it holds that

F®) — F(x) < i+ R2+V2+log(1/5),

T/ /T/ + 1

forc=8V2R? aslong as T'e > 4.
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Proof. Let g; denote the stochastic gradient at time ¢, with ||g;|| < V. Begin as in the proof for SGD:

1 = x[1* < llxe = x*[1% = 2me(ge e — x7) + 0 llgell® < lxe — x1% = 2me(ge, xe —x*) + 07 V2
=[x = x*|* = 20(V f(x0), %0 = x7) + 206(V f(x0) — 80, x0 — x7) + 0 V2.

Let §; = (Vf(x¢) — g, x¢ — x*). The above implies that

e — x*|” — flxers — x|

F6s) = F6x7) < o

+ 0 + %VZ

Letx = Zthll x; and suppose that ||x; — x*||? < R?. We have

>+Z5t+znt

Ve %+1 1 \f vz T o
<V R raT )+ [ —at 5
<R+ — )+ Vi +; :

T/
1 1 1
<1+R? <\/+T’—\/>>+V2 (x/T/—\[>+Z<5t.
€ € €
t=1

_ 1 VI—\/T _ 1
LetT =T + < We have —i = U 7T < \F To finish the bound we need to bound with

high probability the sum Zthll ;. It is standard to show that §; is a martingale difference and we
also have |0;| < 2V R. We can apply Azuma’s inequality to get

T(®) - o) < R2z<m L

TI
Z(St > Al <e 8T’V2R2

t=1

Letc = 8V2R?. We set A = (ﬁ - \/g) \/log (1/6). Then

2
e 78T/?/2R2 _5* log(1/6)+ <2 legfﬁ)

The functions 27 —= 1s decreasing for > 1 and at = = 4 it takes value 3/4 and thus e~ sva2R2 <

1 241 5
§3c. This implies that, with probability 1 — &3¢, we have f(X) — f(x*) < 1/T" + %ﬁ?l/),

and so we have improved the iteration complexity of SGD by % aslong as T'e > 4. O

If the the stochastic gradients are sufficiently variance reduced, we can show that the above result
holds for all 7'. In particular, we have the following lemma for the iterates of MSG.

Lemma A.4. Suppose that ||C—C,|| < \/5 forallt. Let ||C,||p <V and ¢ = 8k?. With probability
at least 1 — /¢ it holds that

N 1 4k 4+ V2 +1log(1/9)

(P*—P,C) < =+ ,
T +1

=l

forall T > 1, where P= % Zle P,

Proof. We would like to refine the bound in Lemma[A.3|by using the structure of the MSG update.
In particular we have that |;| = [{C — C;, Py — P*)| < ||C — C;||2k. Suppose that ||C — C;|| < &

Let ¢ = 8k?, then an application of Azuma’s inequality with A = \/TLT Vlog (1/6) yields

) T
S 6> log (178) | < exp (—log<1/6>
t=1 T+1

€
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x

T+%

Notice that we are free to choose € in our algorithm and since is an increasing function of z,

setting € = \/g < ﬁl/s guarantees that for any 7 > 1 with probability 1 — §'/¢ the result of
Lemma[A3]holds. O

For our final result, we are going to need € = O (gap(C)?) and thus € = ©(gap(C)), which is anyway
required by the sufficient condition.

Next we attempt to improve the iteration complexity for the final iterate analysis with high probability.
We note that in expectation this is somewhat easy to achieve.

Lemma A.5. With the same assumptions as in Lemma with probability 1 — § 1c it holds that
1 N R? 4+ V? 4+ log (1/6) N (R + V(1 +1og(T))

Fler) = 1) < o s

T-1 ] T
* Z m (VF(xt) — g, Xe — X7—k)
k=1 t=T—k

Proof. The proof essentially follows the proof of Theorem 2 in [Shamir & Zhang| (2013). Let
Ot = (Vf(xe) — g, %t — Xr_k). We have

2 2
Xt — X7k — ||1X — X7k
) — flpy) < P r s e el e,

The above implies

T 2 T
L S S i e R DA
t=T-k

t=T—k t=T—k+1 e M+l

R2\/ 1 \/ 1. vz [Tt 1 a
<—(/TH+==\|T—k+>)+— —
< 5 T+ kt )+ 2/t \/de > Sk

— 1
=T—k—1+< =T —k

R? 1 1 1 1
:(\/T+—\/T—k+)+V2(\/T+—\/T—k—1+)+
2 € € € €

T
> O
=T—

t k

Let Sk = £ >¢_1_4 f(x¢). From the above we have

fxr—i) < S+(R2+V2) L L1 ZTzé
—f(Xr—k) < =5k - tk-
2 T+% At

By the definition of Sy, it also holds that

t=T—-k

R? 1 1 <
ESp_1 = (k+1)Sk — f(xr_1) < (k+1)Sk — — +V? Stk
Sp1 = (k+1)Sy — flxr_i) < (k+1)S; S’“+(2+V>\/ﬁ+k+1 D Ok
The above implies

Sp_1 < S +<R2+V2) L ! XT:‘S
k—1 > Ok a t,ks
2 T+1 k(k +1) t=T—k

and thus we have

2
fxr) < Sp_1+ <E; + V2) M + ;1) Z Ot k-
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Remembering that S7_1 = 7 Zt 1 f(x¢), subtracting f(x*) from both sides of the inequality and
using Lemmal[A.3|we arrive at the desired result.

The rest of our efforts are now focused on bounding the term Zf;ll ﬁ Z?:T_ H(Vf(xe) —

g, Xt — X7_k). We now attempt to do so by repeating the proofs inHarvey et al. (2018)). We begin
by showing that Lemma 8.4 from Harvey et al.|(2018) still holds.

Lemma A.6. Assume \(C) < 1, then

7 f 1 a Vf 1 iy Xi — Xa
—x ”2 Z”g +22 X X 22 X \/g; X >

I

Proof.
lI%a — Xsz < lxa — Xp-1 + nb,lgb,1||2 = |Ixa — Xble2 + 205 (gp—1,Xa — Xp—1) + 771?71”%1;71”2

< I%a = o1 [1* 4 2m—1 (f (xo—1) — (X)) + 201 (V f(xp-1) — 8b—1,X6—1 — Xa) + 751 [|go—1>
<..
b—1
<an ||gl||2+2znz z Xa +22771 vf Xz gi7Xi_Xa>
bi il +QZ F65) ~ f(0) +2Z (V£ (xi) — % — xa)
p Vi ’
where the last inequality follows from the fact that 7); = H_% < % O

We next introduce some additional notation. Let o;; =
Change of summation shows that

t—1
T Wt = 2y (X — x5).

I/2 1 T T—1
i+ 1) ;ka(Xt) —gnxe—xpop) = > (Vf(xe) = g, wi)
= t=T- t=T/2

Now the proof of Lemma 8.6 |Harvey et al.| (2018) is unchanged. We restate the lemma here of
convenience.

Lemma A.7. Assume f is 1-Lipschitz, then there exists a constant ¢ (depending on V' and R) such
that
(lo log (1/9) 4log (T
S ol < LB ~/los (1/9) Y () - \gﬁ”w»,

t=T/2 t=T/2
with probability at least 1 — 0.
We are going to use Lemma[A.7)in combination with Corollary C.5 in[Harvey et al.| (2018), which
states the following:

Lemma A.8. Let {F;} be a filtration, let a; be an Fi-measurable random vector and let by be an
Fi—1-measurable random vector. Let d; = (a;, b;) and suppose (az); is a Martingale difference,
with ||a¢|| < 1. Further suppose that there exist R > 0 and a positive sequence (o) such that

maxi{oy} < eV'R (for some constant ¢), such that exactly one of the following holds for all
0 €(0,1).

1 23:1 [Ibe]|? < Zthl aids + Rlog (1/6) with probability at least 1 — 6;

2. Zthl Ibe]|? < Zle axdy + Ry/log (1/9) with probability at least 1 — 4.
Then

T 2

xr
P dy > <d+e — .
[Z t= 4 = Xp( 4maxt{at}f;11x+smog(1/5)>

t=1
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Combining Lemmal[A.6]and Lemma[A.8| we arrive at the following:
Lemma A.9. Suppose |V f(x;) — || < 1 and Te > 1. Then with probability 1 — 263¢ it holds that

S (9 ) < BB D)

t=T/2 T +1

Proof. Leta; = Vf(x:) — gt, bt = Wy, ap = ‘“L\/ET) fort =T/2,...,T —1and ar = 0. Then

maxi{a;} < 1 10:3%) Let R = w. Then from Lemma we have

a 2
T
P (Vf(xt) —ge,we) > x| <d+exp | —
tzT:/Q 4C1%1’+862w10g (1/(5)

Setz = \l;gTi(TT)l log (1/6). Then

9TV Jog (1/6)°

dey lo\g/(TI) i;‘;(T log (1/0) + 8¢ (log(T)) log (1/6)

where ¢ = 12 max(cy, ¢3). Thus as long as T'e > 1 we have with probability 1 — 253¢
T

S (Vi) — g we) < 22108 1/0)

t=T/2 VT +1

Theorem A.10. Suppose that |P1 — P*||% < \/e, for all t it holds that ||C; — C|| < \/gm and
that |C — Cy|| < 1. For any T > 1, with probability 1 — 46"/¢ (for some ¢ = O(k*V'?)) it holds that

exp

o (- to1/0) L)

O

k2 log (1/6) (log (T))?
b0y < o [ F1o80/8) tos ()
T +1
Proof of Theorem Lemma together with Lemmagives us that with probability 1—§1/¢
1 4k*>+ V2 +log(1/6) N (4k% + V) (1 + log (T))

(P* —Pp,C) < =+
T T+ 1 T +1
T—1 1 T
—_ — Py —Pr_p).
+ RO+ 1) (C—=Cy, Py —Pr_y)

=~
Il

1 t=T—k

We now bound Zk 1 k(k+1) Zt 7_1(C — C, P, — Pp_y) by splitting it into two parts.
First consider Zk:T/QH k(k+1) S (C = C,, Py — Pr_y). For a fixed k, we can use
Azuma’s inequality with the assumption that ||C — Cy|| < /5 and get as in Lemma that

P Z?:T—MC —Cy, Py — Pr_y) > log (T/9) \/If-ij < %51/‘:. A union bound for all & thus
gives us ’
[ -1 T )
Pl o> > (C=Cy. Py —Pr_y) > log (T/9) Z < ot/e
| k=T/2+1 (k + 1 t=T k k=T/2+1 Vv k+ 1/6(k + 1)
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Notice that

~
~
o —
+
a =
vl

SR
kerjos1 VR 1/e(k+1) 2
and thus

T
2log (T'/9) 1/c
P Z kk—i—l Z (C=Cy, Py —Pr_p) > —=—="| <d"/°

k=T/2+1 t:T k T+;

Next we bound 25/21 k(k:+1 Zt 7_1(C—Cy, Py — Pp_y) by using Lemmaand a refinement
for the case when T'e < 1. When T'e > 1, direct application of Lemma[A.9]gives us:

T/2 T
log (T') log (1/9) 12
Zkk+1 D {C—Cp Py —Pry) > ==L < 261/2

t=T—k / - T+ 1

Suppose now that T'e < 1. Let ||C — C¢|| < €. Then

T/2 T 1/e B
Zkk+1 (C—=Cy, Py —Pr_y, <Zi<log(1/e)€.

t=T—-k

Let ¢ = max(c, 2¢). The above implies that as long as € < \/gm, forany T > 1

T-1 T
E: log (T) log (1/6

kk:+1 > ! C—Ct,Pt—PngM’
k=1

t:T k T+ 1

with probability at least 1 — 3§'/¢. Combining this, with Lemma and a union bound over T’
completes the proof. O

A.3 Putting everything together

I+ D
and €5 = (5( )) for an appropriate constant ¢, which depends only on ||x;, ||,k and log (1/4).
In particular from Theorem [A.10, we know that for some ¢; (which depends only on HCt”F

and k, and therefore only on |x;, | and k) it holds (P* — P7,C) < ¢ %, for

all T with probability 1 — 36'/¢". Setting ¢; = %, Lemma lzl implies that we should
log(1/8)(log(T))* e = 9©) (log(T))?
T 1

VT+S = 7 AGyD- T

Let the € in Lemmabe €1 and the € in Theorem|A.10 be e2. We are going to set ¢; = 9(C)

have c; Since is only decreasing in 7', we have

€2

61% < c1/exlog(1/6) (log (3))? and thus we can take €3 < ¢26(C)?, where
€2

cy = (4(k+1))2c§(1og1(1/5))2(log(3))4' Thus we would like [|[P1 — P*||%, < ,/c36(C) and ||C; — C|| <

\/€20(C) for all ¢ < T. From Davis-Kahan’s theorem Yu et al. (2014), we know that ||P; — P*[|% <

%. Thus we would like ||C — Cy]]? < %(C)B, together with ||C — C;|| < /c26(C).
We use Matrix Bernstein’s [Tropp et al. (2015) inequality to satisfy both. In particular, if at every
. . log(T) log ( —%r 2Vklog( <%

iteration we use n = O(%(g)%m)) samples to compute C; and we use n = O(céﬂogé\/%/;aZ)

samples to compute C1, and initialize P; as the projection on the top-k eigenspace of C1, then after

T iterations we have (P* — Py, C) < O W”ﬁ%””) , with probability 1 — 451/ and each
€2

of the P;’s is a rank % projection matrix.
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Theorem A.11. Assume ||x;, ||> < 1 5. After running Algorlthml wzth probability at least 1 — 46%/¢,
where ¢ = O(k*V'?), it holds that

k21log (1/5) (log (T))?
it

and for all t < T it holds that P, is a rank-k projection matrix, where € = O (&>

(P* —Pr,C) <O

(klog(1/96))*

Proof of Theorem{d.1 We proceed as in the proof of Theorem[d.2] From Lemma[TT we know that

as long as ||C — Cy| < 4?1«-40-)1)’ P, is rank k, then (P* — P;,C) < 6(C) is a sufficient condition

for Py, to be rank k. We are going to show that this sufficient condmon holds for all ¢ by

; ; o ; k? log(1/6) (log(T))* 5(C)
using Theorem In particular it is sufficient to have that % < O(557), or
equivalently e < O (ﬁ%). This implies that the conditions of Theorem are met

. 4k C—Co |2 s \? c
whenever ||P; — P*[|2 < w <e=0 ((1@10@(%/6)) ) and ||C; — C|| < % =

O = 15(0% 5 1 o . Matrix Bernstein implies that the first inequality is satisfied with
osl1/9) log(ki" lo(g.&/s))

probability 1 — §, whenever we use n; = © (W) Since we require that the second
inequality hold for all £ < 7', Matrix Bernstein together with a union bound guarantees that the

3 3
inequality holds as long as we use ny = © <log(T) Losld/o)k 1og(15/(<2)120g(5(0)/(k 10g(1/6)>)> O

B Proofs for MB-RMSG

B.1 Sufficient condition

We now consider the update Py /5 = (1 — Anp;)P¢ + 7 C; of MB-RMSG in Algorithmlg}

Lemma B.1. Let P; be rank k and suppose |C — C;|| < e. Then a sufficient condition for P;11 to
be rank k is

6(C A
(P,,C) > (P*,C}—%+§+e(k+l). (12)
Proof of Lemma[B.1] Let oy = I — X and write Py =
o+ Ap
i+ Ag ap + A\
: T Qg + )\2
Ut+1/2 /\k+1 Ut+1/2' Let y = . . As
Ad
Ad

Zf:ri*ﬁ»l yi—k+i"

before, the shift if we would like to retain rank £ of the iterates is given by s;+ ;= = e

k -k
. " . i yi—k+1i
and thus a sufficient condition is %

numerator we get
k . k . . k )
Zl:i*+1 yi—k+i . Zl:i*-H A+ (k—=i")ay — (K —14)" . Zl:i*+1 A= (k—=1")(1 —ay)
k—i*—1 k—i*—1 k—i*—1 '
k
Thus a sufficient condition becomes % > Ag+1 + (1 — ay). Using the average is larger than
the minimum we convert this sufficient condition to A, > Ag41 + (1 — o) or written equivalently

> Ag41. Slightly rewriting the sum in the

18



)\k:(PiH»l/Z) > >\k+1 + (1 — Olt) + o = 1+ >\k+1. Now we write

Ak(Pt-i-l/Q) = Uglq%)?k) )\min(UTPt+1/2U) > Amin(U;rPtJ,-l/QUt) = A (ol + ﬂtUtTCtUt)

= oy + ntAk(UICfUt)

Thus a sufficient condition becomes 7; A, (U] C;Uy) > Agi1 +1—ay = Agy1 + Ane. We now upper
bound )\k+1 = )\k+1(Pt+1/2)-

k+1 k k+1 k
Akr1 < Z )\I(Pt+1/2) - Z )\Z(U;rPt+1/2Ut) < agk 4+ Z Al(ct) —atk — Z )\I(U:CtUt)
=1 =1 =1 =1

k+1 k
=, {Z N(C) =D )\l(UtTCtUt)} .
=1

1=1
This implies that a sufficient condition is A, (U, C;U;) + Zk: N (U CUy) > Zf;l A(Cy) + A
Assume that |C — Cy|| < e and repeat the proof of Lemmato get that a sufficient condition is
Me(UTCUY) + 38 N(UTCUY) = 2¢(k +1) > SFHEN(C) + A

k k+1
M(UCU) + 3 N(U] CUY) = 2¢(k +1) > >~ N (C) + A
=1 =1
—
k k—1
2> N(U[CUY) = 2e(k+1) > > N(C) + M(UCUL) + A(C) + Ay (C) + A
=1 =1
p—

k k
2> N(UTCUy) = 2e(k+1) > 2) " N(C) — (Ak(C) = Meya(C)) + A

=1 =1

e
: . 5(C) A
;Az(UZCUt)—e(kH) ZEAZ(C)—(2)+2
e
®.0) 2 (.0 - XD 4 A kv y)

O

From Mianjy & Arora (2018) we know that A < §(C) and so we can choose A = 6(C')/2 to get a
sufficient condition of the form

(P;,C) > (P*,C) — @ +e(k+1).

B.2 Convergence of SGD from "warm start'" for strongly convex functions

We are now going to extend Theorem 7.5 from Harvey et al.|(2018) to the case when [|x; — x*||? < €
and we run SGD with step size 1, = ﬁ for A-strongly convex and 1-Lipschitz function f. We
begin by restating Theorem 4.1 from Harvzay et al.[(2018).

Theorem B.2. Let oy € [0,1) and Bt,v+ > 0 for all t and let K = max; ( 2y 26 ) Let

1—ay? 1—ay

(X1)I_, be a stochastic process and let (F;)]_, be a filtration such that X, is F; measurable and X,
is non-negative a.s. Let Wy be a mean-zero random variable conditioned on F; such that |w;| < 1
a.s. for all t. Suppose that X1 < K and that X; 11 < Xy + e/ Xt + e for all t. Then

P[X; > Klog(1/4)] <ed
forallt.
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Assume that ||V f(x¢) — g:|| < 1 and ||g;|| < 1. With the help of this theorem we can show the
following.

Lemma B.3. Suppose ||x; — x*||? < € and we run SGD with step size 1, = Then for all t

(t+ )

log (1/0)| < ed

P _ *2>7

Proof of Lemma|B.3] Letz, = V f(x;)—g:. Repeating the proof of Lemma 6 inRakhlin et al.| (2012)
we have
e+ = x| < e — mege — X712 = llxe = x| = 2me (g, 30 — x) + 177 [l

= [Ixe = x*|12 = 20:(V F(x)e, xe = X7) + 20 (76, %0 — x*) + 07 |||

< e = x*01 = 200 (f(xe) — F(x7)) + LIIXt = X7+ 2z, xe — X7) 0 1)
*H2 4 2 77

* A * *
< lxe —x*)1* - 2ﬂt§|\xt -X ke — X))+ 200z xe — X7) + 0f eI

< (1 =20\ [lxe — x*|° + 2ﬂt<Zt»Xt —x*) 477

(1 = > I 2 OVt e
= — Xy — X Zt, Xy — X .
t+1)" A+ 1) N2(t+ )2

Let X; = (t + 2 — 1)||x; — x*||?, then from the above we have

+*—2 2<Zt,Xt*X*> Xt 1
X — X+ < + :
b1 S L1 T X x| e+ i1 2+ L)
+772 ~ Zt,Xt —X
Letat:H_l ,wtzw,ﬁt—\/ﬁand%:@. ThenKﬁ%and
X, = l||Xt —-x*2<1< %. Applying Theorem@ﬁnishes the proof. O
Theorem B.4 (Theorem 2 Yu et al.| (2014)). Let C, C € Réxd pe symmetric, with etgenvalues
A1 > ... > Agand )\1, .. )\d Fixj € {1,...,d}, and assume that min(\;_1 —Xj, \j —Xj41) >
where )\o = 00, A\g+1 = —oo. If V,V are the orthogonal matrices corresponding to the top k

eigenvalues of C and C respectively, then
S 2VE|C — C|
VE-IVTV|Z < ———

where §(C) = A\, (C) — A\gy1(C).
2< % After running Algorithm with probability at least 1 — 3¢9, it

Theorem B.5. Assume ||x;, ||
holds that

32log (1/9)
T O (T+1-1)

(P*—Pp,C) <

5(0)°

and for all t < T it holds that P, is a rank-k projection matrix, where € = 28 log(1/9)"

Proof of Theorem|d.2] Foralll <t <T —1,aslongas |[|[C — Cy|| < 8(k+)1) Lemmaimplies
that a sufficient condition for P41 to be a rank-% projection matrix, given P, is a rank-k projection

matrix, is (P* —P;, C) < C) . Using Matrix Bernstein’s inequality we know that for each ¢ we have
P|C—C|| > 8?,53_)1)] < 6 . On the other hand we know from the proof of Theorem 2.5 in|[Mianjy

& Arora (2018) that (P* — Py, C) < 21O |p, — p*|2, < [P=P e LemmaEimplies that

P [(P* -P;,C) > Ni+io)

€

log <1/6>} <es,
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as long as |[P; — P*||%4 < ¢ where \ = ( ). Thus we only need to guarantee that M <2

To bound ||P1 — P*||% we use Theorem Let P; = UUT and

3]

or equlvalently €< ﬁgzl/é)
= U*(U*)T, then
[Py — P*||F = 2(k — (P1,P*)) = 2(k — Tr (UUTU*(U") )

R
= 2= T (U TUUT V) = 2k~ U7 UL ) < akl S-S
2 5(0)? - 5(C)7?

1C—Col _ i
And so we require 4k =5mr— < qogi05(775) OF equivalently IC — Col| < ok Using

Matrix Bernstein’s inequality this is guaranteed to hold with probability at least 1 — ¢ as long as
n > log (d/d) %ﬁ(&/‘”. A union bound now guarantees that for every t < T, P, is a rank-k
matrix and together with the projection onto the rescaled simplex, this guarantees that P, is a rank-k
projection matrix. O

B.3 Improved rates in expectation

For this subsection, the expectation we take is the conditional expectation on the event that P, is a

rank-k projection matrix and that ||C; — CJ| < g ki)l) for all t € [T]. We are now going to take a

proximal view of projected SGD of Algorithm l_ In particular we let f(P) = —(P,C) + 3||P||%
and ¥(P) = 2|P|% + x»(P), where x»(P) is the characteristic function of the set of constraints
={P:Tr(P) <k,0 =P < I,PT =P}. Notice that f is a convex and 3-smooth with respect

to Frobemus norm and that v is §-strongly convex with respect to Frobenius norm. We can write the
update of Algorithm 2]as

Pty = arg Hﬁl(}lxd %HP Py[[3 + (g, P — Py) + 9(P) — 0(Py),
where g, is the stochastic gradient of f at P; based on C;. Let
P P,)=- —||P —P¢||7 + (g, P — Py) + Py).
rog(Py) Pé%lr}lxd M || il B + (g t) +¥(P) —o(Py)

We have

Prog(P;) = — {;T]t||Pt+1 —Pyll% + (g, Peg1 — Py) + 0(Pyya) — ¢(Pt)}

=~ {5 1Pres = Pull + (V(P),Praa = Po) o+ 6(Pess) = 6(P0) + g2 — VIR, Pess = P |

IN

1 L
- {2m||Pt+1 —PyllF — §|\Pt+1 — Pyl + f(Prg1) — f(Py)

+(Pey1) = ¥(Pe) + (8¢ — VF(Pr),Prp1 =P},
where L is the smoothness parameter of f and the inequality follows from smoothness. Let 5; =

L _ L 3nd notice that
un 2

(Vf(Py) — gt Pryr — Py) — b
This implies that
F(PD) = f(Prsa) +6(Pe) = 0(Pran) = Prog(Pe) = 5[V F(P) — -
Lemma 2.5 from |Allen-Zhu (2017) implies that
g Pess = P) + 0 (Pess) = b (P) < —3 [Py = Puga 3+ 5 1Py = P — = Py — Y2,

where o is the strong convexity parameter of 1) for any rank-k projection matrix P. By construction
we know that f is also o strongly convex and thus we have

E [{gr, Pe — P)] = E [ £(P)) = £(P) + Z||P. — P} .

||Pt+1 Py% < 25 IVf(Py) — gell -

1+mn0
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Combining the above two inequalities we arrive at

E [ (£(P) = F(P) + Z1P: =PIl )| + e ({ge, Pet = Po) + 0(Pes) — ()

14+ n0
2

1 1
< — 5Py = Pugall} + 5 1P =PI = =22 Py — P

Next we use the property that P, is a rank-k projection to write

N ((8ts Prr1 — Po) + 0 (Piy1) — (P)) = me{gt, Pey1 — Pe) + 9(Pry1) — 9(P),

which implies

B [ (7P = 7P + P~ PI)] < = { 1P~ Proalls + e Pros = Po) + 6(Pesn) = w(P) |
14+ n0

+ 5 IP =PI - Ty, P
Again using the fact that ¢(P;) = ¢(P) we have
B (f(P) = F(P)] < B |nProg(Pr) + -7 [Py ~ Pl — 217 Py - Y.
Using the Prog inequality from earlier we have
B/ (P2) — FP)] < E [1(7(P0) ~ £(Pra)) + 271 = Pl = S5 Py — Y] + v
where V; = E[||Vf(P:) — g:||r]. The above implies
BU(Prar) — FP)) < B |52 [P~ PIE — 5 Praa — PI +

Recall that we set the step size as 1, = m This implies

1 o 1+m_10 1 o(t+1/e o(t—14+1/e
e e L I ) R T
ur 211 2 2 2

3
= —Zanpt ~P|I% <o0.

Recall that o = 2 and from our initial condition we know that f(P;) — f(P*) < % Thus

summing from ¢ = 2 to T' — 1 we have

1 T

Let us upper bound ﬁi

T—
o 1 V

< -
S e

I 1 B 1 B 2 <2 2

B lne—L il _2 oty 2 27 ot
Where the last inequality follows since o = (C) and € < (12; Next we upper bound V;2. Recall
that we conditioned on the event that |C; — CH 6,5?1) for all ¢t € [T]. We also assumed that

Tr (C;) < 1. Thus

IVf(Pe) = gl = ICe = Clff < 2Tx (C) [|C, — €| < 2k
T-1 V}
t=2 203,
above sum by ; and get a convergence rate depending on do instead. We are now going to
use the trick in|Shamir & Zhang|(2013) to obtain a convergence guarantee for the last iterate. Instead

This implies we can bound < %. It is interesting to note that we could also bound the

do log(T)
k
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of replacing P by P* and summing from¢ = 2to7 — 1. we sum from¢ =T — [+ 1 to T and set
P = P7_;. Thus we get

T T-1

E|l Y fPua)—fPra)| <

55
t=T—1+1 t=T—1 B

Set Sy = 257/ 141 f(Ps). We have

Using the definition of .S; we also have

1 T-1 V2
e B B < g —t
(I=1)S11 =18 — f(Pr_111) < 1S — S 1t Z 26,
t=T-I1+1
=
T-1
1 V7
< L _t
1Si—1 < 1S+ —1 > 25,
t=T—I1+1
—
T-1
1 Vi
Si1 <S5+ Z 5
I(1-1) et 20

o log(T)

T T-1 Vs o 1
Thus E [f(Pr)] <E[S7]+ >, ﬁ Yierois135 S Tt TR T (1(JrTig1()€)). And so we

have shown the following theorem.

Theorem B.6. Let A be the event that for all t € [T} it holds that || C, — C|| < 5t51; and Py is a
rank-k projection matrix. Then Algorithm 2| guarantees that A occurs with probability at least 1 — e§
and that

E[(P* — Py, C)|A] < O (‘S(TC) + min(6(C) x d, 1)]€1T) :
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