
A Proof of Theorem 3.1312

We denote [n] = {1, 2, ..., n}, ⇧d
i=1Wi = W1W2 . . .Wd, and ⇧1

i=dWi = WdWd�1 · · ·W1. kxk and313

kAk are the Euclidean vector norm and matrix operator norm. C,C 0, c, c0 > 0 denote d-dependent314

constants that may change from instance to instance.315

We adapt ideas of Hand and Voroninski (2017). Denote for simplicity G(x) = G(x, ✓0) and316

f(x) = f0(x). Define317

Wi,+,v = diag(Wiv + bi > 0)Wi, bi,+,v = diag(Wiv + bi > 0)bi

where diag(w > 0) denotes a diagonal matrix with jth diagonal element {wj > 0}. Then318

�(Wiv + bi) = Wi,+,vv + bi,+,v.

The analysis of Hand and Voroninski (2017) shows that the matrices319

W̃i,+,v ⌘ (Wi,+,v bi,+,v) 2 Rni⇥(ni�1+1)

satisfy a certain Weight Distribution Condition (WDC), yielding a deterministic approximation for320

W̃>
i,+,vW̃i,+,v0 and any v, v0 2 Rni�1 . We will use the following consequence of this condition.321

Lemma A.1. Under the conditions of Theorem 3.1, with probability at least 1�C
Pd

i=1 nie�c"2ni�1 ,322

the following hold for every i 2 [d] and v, v0 2 Rni�1 :323

(a) kWi,+,vk  2 and kbi,+,vk  2.324

(b) kW>
i,+,vWi,+,v0 � 1

2Ik  "+ ✓/⇡, where ✓ is the angle formed by v and v0.325

(c) kW>
i,+,vbi,+,vk  ".326

Proof. For (a), note that kWik  2 and kbik  2 with probability 1 � e�cni , by a standard �2327

tail-bound and operator norm bound for a Gaussian matrix. On the event that these hold, the bounds328

hold also for Wi,+,v and bi,+,v and every v 2 Rni�1 .329

For (b) and (c), by (Hand and Voroninski, 2017, Lemma 11), with probability 1� 8nie�c"2ni�1 the330

matrix W̃i,+,v satisfies WDC with constant " for every v. (The dependence of the constants c, � in331

(Hand and Voroninski, 2017, Lemma 11) are given by c & "�2 log "�1 and � . "2 as indicated in332

the proof. This condition for c matches the growth rate of ni specified in our Theorem 3.1.) From the333

form of Q in (Hand and Voroninski, 2017, Definition 2), the WDC implies334

����W̃
>
i,+,vW̃i,+,v0 � 1

2
I

����  "+ ✓̃/⇡

where ✓̃ is the angle between (v, 1) and (v0, 1). Noting that ✓̃  ✓ and recalling the definition of335

W̃i,+,v , we get (b) and (c).336

For x 2 Rk, let x0 = x and let xi = �(Wi . . .�(W1x+ b1) . . .+ bi) be the output of the ith layer.337

Denote338

Wi,x = Wi,+,xi�1 , bi,x = bi,+,xi�1 .

Then also xi = Wi,xxi�1 + bi,x.339

Lemma A.2. Under the conditions of Theorem 3.1, with probability 1, the total number of distinct340

possible tuples (W1,x, b1,x, . . . ,Wd,x, bd,x) satisfies341

|{(W1,x, b1,x, . . . ,Wd,x, bd,x) : x 2 Rk}|  10d
2

(n1 . . . nd)
d(k+1).

Proof. Let S = Rk+1, which contains (x, 1). Then the result of (Hand and Voroninski, 2017, Lemma342

15) applied to the vector space S and to W̃1,x = (W1,x b1,x) yields343

|{(W1,x, b1,x : x 2 Rk)}|  10nk+1
1 .
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Each distinct (W1,x, b1,x) defines an affine linear space of dimension k which contains the first layer344

output x1, and hence a subspace S of dimension k + 1 which contains (x1, 1). Applying (Hand and345

Voroninski, 2017, Lemma 15) to each such S and W̃2,x yields346

|{(W2,x, b2,x : x 2 Rk)}|  10nk+1
1 · 10nk+1

2 .

Proceeding inductively,347

|{(Wi,x, bi,x : x 2 Rk)}|  10i(n1 . . . ni)
k+1,

which is analogous to (Hand and Voroninski, 2017, Lemma 16) in our setting with biases b1, . . . , bd.348

The result follows from taking the product over i = 1, . . . , d.349

Lemma A.3. Let A 2 Rm⇥n have i.i.d. N (0, 1/m) entries. Fix " > 0, let k < n, and let350

V =
SM

i=1 Vi and W =
SN

j=1 Wj where Vi and Wj are subspaces of dimension at most k. Then351

with probability at least 1�MN(c/")2ke�c0"m, for all x 2 V and y 2 W we have352

|x>A>Ay � x>y|  "kxkkyk.

Proof. See (Hand and Voroninski, 2017, Lemma 14).353

Using these results, we analyze the gradient and critical points of f(x). Note that with the above354

definitions,355

G(x) = V (Wd,x . . . (W1,xx+ b1,x) . . .+ bd,x)

= V

 
1Y

i=d

Wi,x

!
x+ V

dX

j=1

 
j+1Y

i=d

Wi,x

!
bj,x.

The function G(x) is piecewise linear in x, so f(x) is piecewise quadratic. If f(x) is differentiable356

at x, then the gradient of f can be written as357

rf(x) =

 
dY

i=1

W>
i,x

!
V >A>

0

@AV

 
1Y

i=d

Wi,x

!
x+AV

dX

j=1

 
j+1Y

i=d

Wi,x

!
bj,x �Ay

1

A .

Lemma A.4. Define358

gx = 2�dx�
 

dY

i=1

W>
i,x

!
V >y

Under the conditions of Theorem 3.1, we have with probability 1 � C(e�c"m + e�c"n +359 P
i nie�c"2ni�1) that at every x 2 Rk where f is differentiable,360

krf(x)� gxk  C 0"(1 + kxk+ kyk)

Proof. By Lemma A.2, for fixed ✓ = (V,W1, b1, . . . ,Wd, bd), the range {V
Q1

i=d Wi,xx0 : x, x0 2361

Rk} belongs to a union of at most C(n1 . . . nd)d(k+1) subspaces of dimension k. For some C 0, c > 0,362

under the condition m � C 0k("�1 log "�1) log(n1 . . . nd), we have363

C2(n1 . . . nd)
2d(k+1)(c/")2ke�c0"m  e�c"m.

Then for A 2 Rm⇥n with i.i.d. N (0, 1/m) entries, applying Lemma A.3 conditional on ✓, and then364

A.1(a) to bound kWi,xk and kV k, we get365

�����

 
dY

i=1

W>
i,x

!
V >(A>A� I)V

 
1Y

i=d

Wi,x

!
x

�����  C"kxk.

For A = I , this bound is trivial. The given conditions imply also366

n � nd � C 0k("�1 log "�1) log(n1 . . . nd),
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so applying the same argument with V in place of A yields367

�����

 
dY

i=1

W>
i,x

!
(V >V � I)

 
1Y

i=d

Wi,x

!
x

�����  C"kxk.

Next, applying Lemma A.1(a–b) yields, for each j = d, d� 1, . . . , 2, 1,368
������

 
j�1Y

i=1

W>
i,x

!
(W>

j,xWj,x � I/2)

0

@
1Y

i=j�1

Wi,x

1

Ax

������
 C"kxk.

Combining these results, we get for the first term of rf(x) that369

�����

 
dY

i=1

W>
i,x

!
V >A>AV

 
1Y

i=d

Wi,x

!
x� 2�dx

�����  C"kxk. (3)

This holds with probability at least 1� e�c"m � e�c"n � C
P

i nie�cni�1 .370

The second term is controlled similarly: Lemma A.2 implies that for fixed parameters ✓, the set371

{V
Qj+1

i=d Wi,xbj,x : x 2 Rk, j 2 [d]} is comprised of at most one of C(n1 . . . nd)d(k+1) distinct372

vectors (which belong to subspaces of dimension 1.) Then applying Lemma A.3 twice to A and V as373

above, and using also kbj,xk  2 from Lemma A.1(a),374

�����

 
dY

i=1

W>
i,x

!
(V >A>AV � I)

 
j+1Y

i=d

Wi,x

!
bj,x

�����  C".

Applying Lemma A.1(a–b) iteratively as above, we get375
������

 
jY

i=1

W>
i,x

!2

4

0

@
dY

i=j+1

W>
i,x

1

A
 

j+1Y

i=d

Wi,x

!
� 2�(d�j)I

3

5 bj,x

������
 C".

Finally, Lemma A.1(a) and (c) yield376

�����

 
jY

i=1

W>
i,x

!
bj,x

�����  C".

Combining these, we have for the second term of rf(x) that377

������

dX

j=1

 
dY

i=1

W>
i,x

!
V >A>AV

 
j+1Y

i=d

Wi,x

!
bj,x

������
 C" (4)

also with probability 1� e�c"m � e�c"n � C
P

i nie�c"2ni�1 .378

Finally, for the last term of rf(x), if A 6= I then we may apply Lemma A.3 again to get379

�����

 
dY

i=1

W>
i,x

!
V >(A>A� I)y

�����  C"kyk (5)

with probability 1� e�c"m. Combining (3), (4), and (5) concludes the proof.380

We now bound the second term of gx.381

Lemma A.5. Under the conditions of Theorem 3.1, with probability 1� Cnde�c"4nd�1 , for every382

v 2 Rnd�1383 ��W>
d,+,vV

>y
��  C"kyk.

Proof. Note that V >y 2 Rnd has i.i.d. N (0, kyk2/n) entries. Then conditional on Wd, for each384

fixed v 2 Rnd�1 ,385

u(v) ⌘ W>
d,+,vV

>y ⇠ N (0,⌃)
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where386

⌃ = (kyk2/n) ·W>
d,+,vWd,+,v 2 Rnd�1⇥nd�1 .

On the event that Lemma A.1(b) holds, we have k⌃k  kyk2/n and hence ku(v)k2  tnd�1kyk2/n387

with probability 1 � ecnd�1t for large t, by a �2 tail-bound. Noting that n � nd � "�2nd�1 and388

applying this bound for t = "2n/nd�1, we get ku(v)k  "kyk with probability 1� e�c"2n.389

We use a covering net argument to take a union bound over v: Let N be an "2-net of the nd�1-sphere,390

of cardinality |N |  (3/"2)nd�1 . The above holds uniformly over v 2 N with probability 1� ec
0"2n,391

because n � nd � nd�1 · "�2 log "�1. For any v0 on the sphere and v 2 N with kv � v0k < "2, the392

angle ✓ between v and v0 is at most C"2. We have393

ku(v)� u(v0)k 
��W>

d,+,v �W>
d,+,v0

�� · kV >yk.
Suppose now that Lemma A.1(b) holds for Wd with the constant "2: This occurs with probability394

1� 8nde�c"4nd�1 . Approximating each of the four terms in395 �
W>

d,+,v �W>
d,+,v0

�
(Wd,+,v �Wd,+,v0)

by I/2 on this event, we get396
��W>

d,+,v �W>
d,+,v0

��2 =
���W>

d,+,v �W>
d,+,v0

�
(Wd,+,v �Wd,+,v0)

��  C 0("2 + ✓)  C"2.

Thus on this event, ku(v) � u(v0)k  C"kV >yk. By a �2 tail-bound, with probability 1 � e�cnd397

we have kV >yk2  2kyk2nd/n  2kyk2 and hence ku(v)� u(v0)k  C"kyk.398

Proof of Theorem 3.1. Combining Lemmas A.4, A.5, and A.1(a), with the stated probability,399

krf(x)� 2�dxk  C"(1 + kxk+ kyk)
for every x 2 Rk. Since G is piecewise linear, the directional derivative Dvf(x) always exists at any400

x 2 Rk for any unit vector v 2 Rk, even for x where f is non-differentiable. Set x̃ = x/kxk. For any401

fixed x, there exists a sequence {xn} which converges to x and where f is differentiable, such that402

D�x̃f(x) = lim
n!1

�x̃>rf(xn)

Since403

�x̃>rf(xn) = �2�dx̃>xn + x̃>(2�dxn �rf(xn))  �2�dx̃>xn + C"(1 + kxnk+ kyk),
we get404

D�x̃f(x)  lim inf
n!1

h
� 2�dx̃>xn + C"(1 + kxnk+ kyk)

i

= �2�dkxk+ C"(1 + kxk+ kyk).
For " > 0 sufficiently small and C 0 > 0 sufficiently large, this implies D�x̃f(x) < 0 whenever405

kxk � C 0"(1 + kyk).406

B Comment on Projected-Gradient Surfing407

The projected-gradient surfing algorithm performs an exhaustive search over pieces Pg 2408

P(xt�1, ✓(�t), ⌧). The number of such pieces is at most 1 + 2|S(xt�1,✓(�t),⌧)|, where we recall409

that410

S(x, ✓, ⌧) = {(i, j) : |w>
i,jxi�1 + bi,j |  ⌧}

is the collection of layers and rows where the sign could change during the next step.411

We reason heuristically that if ✓ ⌘ ✓(�t) is “generic”, then for sufficiently small ⌧ , we should have412

|S(x, ✓, ⌧)|  dk for all s 2 [0, S] and x 2 Rk, so that this search is tractable for small k. Indeed,413

for fixed W1, b1, . . . ,Wi, bi, the set of possible outputs {xi : x 2 Rk} at the ith layer is a finite414

union of affine linear spaces of dimension k. For generic Wi+1 and bi+1, and every J ⇢ [ni] where415

|J | = k + 1, each such space has empty intersection with the affine linear space416

{z 2 Rni : w>
i+1,jz + bi+1,j = 0 for all j 2 J}

of dimension ni � k � 1. Thus417

sup
x2Rk

|{j 2 [ni] : w
>
i+1,jxi + bi+1,j = 0}|  k,

so supx2Rk |S(x, ✓, 0)|  dk for ⌧ = 0. Then we expect this to hold also for some small ⌧ > 0.418
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C Additional Simulations419

Here we give additional plots for experiments comparing surfing over a sequence of networks during420

training to gradient descent over the final trained network. As described in the main text, we consider421

the problem of minimizing the objective f(x) = 1
2kG(x)�G(x⇤)k2, that is, recovering the image422

generated from a trained network G(x) = G✓T (x) with input x⇤. We run surfing by taking a sequence423

of parameters ✓0, ✓1, ..., ✓T , where ✓0 are the initial random parameters and the intermediate ✓t’s are424

taken every 40 training steps. In order to improve convergence speed we use Adam (Kingma and425

Ba, 2014) to carry out gradient descent in each step in surfing. We also use Adam when optimizing426

over the just the final network. We apply surfing and regular Adam for 300 trials, where in each427

trial a randomly generated x⇤ and initial point xinit is chosen. Figure 5 shows the distribution of the428

distance between the computed solution bxT and the truth x⇤ for VAE, WGAN and WGAN-GP, using429

surfing (red) and regular gradient descent with Adam (blue), over three different input dimensions k.430

Figure 5: Distribution of the distance between solution bxT and the truth x⇤ for VAE, WGAN and
WGAN-GP, using surfing (red) and regular gradient descent with Adam (blue) over three different
input dimensions k.
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