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Abstract

A basic question in learning theory is to identify if two distributions are identical1

when we have access only to examples sampled from the distributions. This2

basic task is considered, for example, in the context of Generative Adversarial3

Networks (GANs), where a discriminator is trained to distinguish between a real-4

life distribution and a synthetic distribution. Classically, we use a hypothesis class5

H and claim that the two distributions are distinct if for some h ∈ H the expected6

value on the two distributions is (significantly) different.7

Our starting point is the following fundamental problem: "is having the hypothesis8

dependent on more than a single random example beneficial". To address this9

challenge we define k-ary based discriminators, which have a family of Boolean10

k-ary functions G. Each function g ∈ G naturally defines a hyper-graph, indicating11

whether a given hyper-edge exists. A function g ∈ G distinguishes between two12

distributions, if the expected value of g, on a k-tuple of i.i.d examples, on the two13

distributions is (significantly) different.14

We study the expressiveness of families of k-ary functions, compared to the classi-15

cal hypothesis class H , which is k = 1. We show a separation in expressiveness16

of k + 1-ary versus k-ary functions. This demonstrate the great benefit of having17

k ≥ 2 as distinguishers.18

For k ≥ 2 we introduce a notion similar to the VC-dimension, and show that it19

controls the sample complexity. We proceed and provide upper and lower bounds20

as a function of our extended notion of VC-dimension.21

1 Introduction22

The task of discrimination consists of a discriminator that receives finite samples from two distribu-23

tions, say p1 and p2, and needs to certify whether the two distributions are distinct. Discrimination has24

a central role within the framework of Generative Adversarial Networks [12], where a discriminator25

trains a neural net to distinguish between samples from a real-life distribution and samples generated26

synthetically by another neural network, called a generator.27

A possible formal setup for discrimination identifies the discriminator with some distinguishing class28

D = {f : X → R} of distinguishing functions. In turn, the discriminator wishes to find the best29

d ∈ D that distinguishes between the two distributions. Formally, she wishes to find d ∈ D such that130

31 ∣∣∣∣ E
x∼p1

[d(x)]− E
x∼p2

[d(x)]

∣∣∣∣ > sup
d∗∈D

∣∣∣∣ E
x∼p1

[d∗(x)]− E
x∼p2

[d∗(x)]

∣∣∣∣− ε. (1)

1Note that with such d at hand, with an order of O(1/ε2) examples one can verify if any discriminator in the
class certifies that the two distributions are distinct.
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For examples, in GANs, the class of distinguishing functions we will consider could be the class of32

neural networks trained by the discriminator.33

The first term in the RHS of eq. (1) is often referred to as the Integral Probability Metric (IPM distance)34

w.r.t a class D [17], denoted IPMD. As such, we can think of the discriminator as computing the35

IPMD distance.36

Whether two, given, distributions can be distinguished by the discriminator becomes, in the IPM37

setup, a property of the distinguishing class. Also, the number of examples needed to be observed38

will depend on the class in question. Thus, if we take a large expressive class of distinguishers, the39

discriminator can potentially distinguish between any two distributions that are far in total variation.40

In that extreme, though, the class of distinguishers would need to be very large and in turn, the41

number of samples needed to be observed scales accordingly. One could also choose a “small" class,42

but at a cost of smaller distinguishing power that yields smaller IPM distance.43

For example, consider two distributions over [n] to be distinguished. We could choose as a distin-44

guishing class the class of all possible subsets over n. This distinguishing class give rise to the total45

variation distance, but the sample complexity turns out to be O(n). Alternatively we can consider the46

class of singletones: This class will induce a simple IPM distance, with graceful sample complexity,47

however in worst case the IPM distance can be as small as O(1/n) even though the total variation48

distance is large.49

Thus, IPM framework initiates a study of generalization complexity where we wish to understand50

what is the expressive power of each class and what is its sample complexity.51

For this special case that D consists of Boolean functions, the problem turns out to be closely related52

to the classical statistical learning setting and prediction [22]. The sample complexity (i.e., number of53

samples needed to be observed by the discriminator) is governed by a combinatorial measure termed54

VC dimension. Specifically, for the discriminator to be able to find a d as in eq. (1), she needs to55

observe order of Θ( ρε2 ) examples, where ρ is the VC dimension of the class D [5, 22].56

In this work we consider a natural extension of this framework to more sophisticated discriminators:57

For example, consider a discriminator that observes pairs of points from the distribution and checks58

for collisions – such a distinguisher cannot apriori be modeled as a test of Boolean functions, as the59

tester measures a relation between two points and not a property of a single point. The collision test60

has indeed been used, in the context of synthetic data generation, to evaluate the diversity of the61

synthetic distribution [2].62

More generally, suppose we have a class of 2-ary Boolean functions: G = {g : g(x1, x2)→ {0, 1}}63

and the discriminator wishes to (approximately) compute64

sup
g∈G

∣∣∣∣∣ E
(x1,x2)∼p21

[g(x1, x2)]− E
(x1,x2)∼p22

[g(x1, x2)]

∣∣∣∣∣ . (2)

Here p2 denotes the product distribution over p. More generally, we may consider k-ary mappings,65

but for the sake of clarity, we will restrict our attention in this introduction to k = 2.66

Such 2-ary Boolean mapping can be considered as graphs where g(x1, x2) = 1 symbolizes that there67

exists an edge between x1 and x2 and similarly g(x1, x2) = 0 denotes that there is no such edge.68

The collision test, for example, is modelled by a graph that contains only self–loops. We thus call69

such multi-ary statistical tests graph-based distinguishers.70

Two natural question then arise71

1. Do graph–based discriminators have any added distinguishing power over classical discrimi-72

nators?73

2. What is the sample complexity of graph–based discriminators?74

With respect to the first question we give an affirmative answer and we show a separation between the75

distinguishing power of graph–based discriminators and classical discriminators. As to the second76

question, we introduce a new combinatorial measure (termed graph VC dimension) that governs the77

sample complexity of graph–based discriminators – analogously to the VC characterization of the78

sample complexity of classical discriminators. We next elaborate on each of these two results.79
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As to the distinguishing power of graph–based discriminators, we give an affirmative answer in the80

following sense: We show that there exists a single graph g such that, for any distinguishing class D81

with bounded VC dimension, and ε, there are two distributions p1 and p2 that areD–indistinguishable82

but g certifies that p1 and p2 are distinct. Namely, the quantity in eq. (2) is at least 1/4 for G = {g}.83

This result may be surprising. It is indeed known that for any two distributions that are ε–far in total84

variation, there exists a boolean mapping d that distinguishes between the two distributions. In that85

sense, distinguishing classes are known to be universal. Thus, asymptotically, with enough samples86

any two distribution can be ultimately distinguished via a standard distinguishing function.87

Nevertheless, our result shows that, given finite data, the restriction to classes with finite capacity88

is limiting, and there could be graph-based distinguishing functions whose distinguishing power is89

not comparable to any class with finite capacity. We stress that the same graph competes with all90

finite–capacity classes, irrespective of their VC dimension.91

With respect to the second question, we introduce a new VC-like notion termed graph VC dimension92

that extends naturally to graphs (and hypergraphs). On a high level, we show that for a class of graph-93

based distinguishers with graph VC dimension ρ, O(ρ) examples are sufficient for discrimination94

and that Ω(
√
ρ) examples are necessary. This leaves a gap of factor

√
ρ which we leave as an open95

question.96

The notion we introduce is strictly weaker than the standard VC–dimension of families of multi-ary97

functions, and the proofs we provide do not follow directly from classical results on learnability of98

finite VC classes [22, 5]. In more details, a graph-based distinguishing class G is a family of Boolean99

functions over the product space of vertices V: G ⊆ {0, 1}V2

. As such it is equipped with a VC100

dimension, the largest set of pairs of vertices that is shattered by G.101

It is not hard to show that finite VC is sufficient to achieve finite sample complexity bounds over 2-ary102

functions [9]. It turns out, though, that it is not a necessary condition: For example, one can show103

that the class of k-regular graphs has finite graph VC dimension but infinite VC dimension. Thus,104

even though they are not learnable in the standard PAC setting, they have finite sample complexity105

within the framework of discrimination.106

The reason for this gap, between learnability and discriminability, is that learning requires uniform107

convergence with respect to any possible distribution over pairs, while discrimination requires108

uniform convergence only with respect to product distributions – formally then, it is a weaker task,109

and, potentially, can be performed even for classes with infinite VC dimension.110

1.1 Related Work111

The task of discrimination has been considered as early as the work of Vapnik and Chervonenkis in112

[22]. In fact, even though Vapnik and Chervonenkis original work is often referred in the context of113

prediction, the original work considered the question of when the empirical frequency of Boolean114

functions converges uniformly to the true probability over a class of functions. In that sense, this115

work can be considered as a natural extension to k-ary functions and generalization of the notion of116

VC dimension.117

The work of [9, 8] studies also a generalization of VC theory to multi-ary functions, in the context118

of ranking tasks and U-statistics. They study the standard notion of VC dimension. Specifically119

they consider the function class as Boolean functions over multi-tuples and the VC dimension is120

defined by the largest set of multi-tuples that can be shattered. Their work provides several interesting121

fast-rate convergence guarantees. As discussed in the introduction, our notion of capacity is weaker,122

and in general the results are incomparable.123

GANs A more recent interest in discrimination tasks is motivated by the framework of GANs,124

where a neural network is trained to distinguish between two sets of data – one is real and the other is125

generated by another neural network called generator. Multi-ary tests have been proposed to assess126

the quality of GANs networks. [2] suggests birthday paradox to evaluate diversity in GANs. [19]127

uses Binning to assess the solution proposed by GANs.128

Closer to this work [15] suggests the use of a discriminator that observes samples from the m-th129

product distribution. Motivated by the problem of mode collapse they suggest a theoretical framework130

in which they study the algorithmic benefits of such discriminators and observe that they can131
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significantly reduce mode collapse. In contrast, our work is less concerned with the problem of mode132

collapse directly and we ask in general if we can boost the distinguishing power of discriminators via133

multi-ary discrimination. Moreover, we provide several novel sample complexity bounds.134

Property Testing A related problem to ours is that of testing closeness of distributions [3, 11].135

Traditionally, testing closeness of distribution is concerned with evaluating if two discrete distributions136

are close vs. far/identical in total variation. [11], motivated by graph expansion test, propose a137

collision test to verify if a certain distribution is close to uniform. Interestingly, a collision test is a138

graph-based discriminator which turns out to be optimal for the setting[18]. Our sample–complexity139

lower bounds are derived from these results. Specifically we reduce discrimination to testing140

uniformity [18]. Other lower bounds in the literature can be similarly used to achieve alternative141

(yet incomparable bounds) (e.g. [7] provides a Ω(n2/3/ε3/4) lower bounds for testing whether two142

distributions are far or close).143

In contrast with the aforementioned setup, here we do not measure distance between distributions144

in terms of total variation but in terms of an IPM distance induced by a class of distinguishers. The145

advantage of the IPM distance is that it sometimes can be estimated with limited amount of samples,146

while the total variation distance scales with the size of the support, which is often too large to allow147

estimation.148

Several works do study the question of distinguishing between two distributions w.r.t a finite capacity149

class of tests, Specifically the work of [14] studies refutation algorithms that distinguish between150

noisy labels and labels that correlate with a bounded hypothesis class. [21] studies a closely related151

question in the context of realizable PAC learning. A graph-based discriminator can be directly turned152

to a refutation algorithm, and both works of [14, 21] show reductions from refutation to learning.153

In turn, the agnostic bounds of [14] can be harnessed to achieve lower bounds for graph-based154

discrimination. Unfortunately this approach leads to suboptimal lower bounds. It would be interesting155

to see if one can improve the guarantees for such reductions, and in turn exploit it for our setting.156

2 Problem Setup157

2.1 Basic Notations – Graphs and HyperGraphs158

Recall that a k-hypergraph g consists of a a set Vg of vertices and a collection of non empty k–159

tuples over V: Eg ⊆ Vk, which are referred to as hyperedges. If k = 2 then g is called a graph.160

1–hypergraphs are simply identified as subsets over V . We will normally use d to denote such161

1-hypergraphs and will refer to them as distinguishers. A distinguisher d can be identified with a162

Boolean function according to the rule: d(x) = 1 iff x ∈ Ed.163

Similarly we can identify a k-hypergraph with a function g : Vk → {0, 1}. Namely, for any graph g164

we identify it with the Boolean function165

g(v1, . . . , vk) =

{
1 (v1, . . . , vk) ∈ Eg
0 else

We will further simplify and assume that g is undirected, this means that for any permutation166

π : [k]→ [k], we have that167

g(vπ(1), vπ(2), . . . , vπ(k)) = g(v1, . . . , vk).

We will call undirected k-hypergraphs, k-distinguishers. A collection of k-distinguishers over a168

common set of vertices V will be referred to as a k-distinguishing class. If k = 1 we will simply call169

such a collection a distinguishing class. For k > 1 we will normally denote such a collection with G170

and for k = 1 we will often use the letter D.171

Next, given a distribution P over vertices and a k–hypergraph g let us denote as follows the frequency172

of an edge w.r.t P :173

EP (g) = E
v1:k∼Pk

[g(v1:k)] = P k [{(v1, . . . ,vk) : (v1, . . . ,vk) ∈ Eg)}] ,
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where we use the notation v1:t in shorthand for the sequence (v1, . . . ,vt) ∈ Vt, and P k denotes the174

product distribution of P k times.175

Similarly, given a sample S = {vi}mi=1 we denote the empirical frequency of an edge:176

ES(g) =
1

mk

∑
u1:k∈Sk

g(u1:k) =
|{(u1, . . . ,uk) ∈ Eg : ∀i, ui ∈ S}|

mk

As a final set of notations: Given a k-hypergraph g a sequence v1:n where n < k, we define a177

k − n–distinguisher gv1:n
as follows:178

gv1:n
(u1:k−n) = g(v1, . . .vn,u1, . . .uk−n).

In turn, we define the following distinguishing classes: For every sequence v1:n, n < k, the179

distinguishing class Gv1:n is defined as follows:180

Gv1:n
= {gv1:n

: g ∈ G} (3)

Finally, we point out that we will mainly be concerned with the case that |V| ≤ ∞ or V = N.181

However, all the results here can be easily extended to other domains as long as certain (natural)182

measurability assumptions are given to ensure that VC theory holds (see [22, 4]).183

2.2 IPM distance184

Given a class of distinguishers D the induced IPM distance [17], denoted by IPMD, is a (pseudo)–185

metric between distributions over V defined as follows186

IPMD(p1, p2) = sup
d∈D
|Ep1(d)− Ep2(d)| = sup

d∈D

∣∣∣∣ E
v∼p1

[d(v)]− E
v∼p2

[d(v)]

∣∣∣∣ .
The definition can naturally be extended to a general family of graphs, and we define:187

IPMG(p1, p2) = sup
g∈G
|Ep1(g)− Ep2(g)]| = sup

g∈G

∣∣∣∣∣ E
v1:k∼pk1

[g(v1:k)]− E
v1:k∼pk2

[g(v1:k)]]

∣∣∣∣∣
Another metric we would care about is the total variation metric. Given two distributions p1 and p2188

the total variation distance is defined as:189

TV(p1, p2) = sup
E
|p1(E)− p2(E)|

where E ⊆ V{0,1} goes over all measurable events.190

In contrast with an IPM distance, the total variation metric is indeed a metric and any two distributions191

p1 6= p2 we have that TV(p1, p2) > 0. In fact, for every distinguishing class D, IPMD � TV.2192

For finite classes of vertices V , it is known that the total variation metric is given by193

TV(p1, p2) =
1

2

∑
v∈V
|p1(v)− p2(v)|.

Further, if we let D = P (V) the power set of V we obtain194

IPMP (V)(p1, p2) = TV(p1, p2).

2.3 Discriminating Algorithms195

Definition 1. Given a distinguishing class G a G-discriminating algorithm A with sample complexity196

m(ε, δ) is an algorithm that receives as input two finite samples S = (S1, S2) of vertices and outputs197

a hyper-graph gAS ∈ G such that:198

2we use the notation f1 � f2 to denote that for every x, y we have f1(x, y) ≤ f2(x, y).
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If S1, S2 are drawn IID from some unknown distributions p1, p2 respectively and |S1|, |S2| > m(ε, δ)199

then w.p. (1− δ) the algorithm’s output satisfies:200

|Ep1(gAS )− Ep2(gAS )| > IPMG(p1, p2)− ε.

The sample complexity of a class G is then given by the smallest possible sample complexity of a201

G-discriminating algorithm A.202

A class G is said to be discriminable if it has finite sample complexity. Namely there exists a203

discriminating algorithm for G with sample complexity m(ε, δ) <∞.204

VC classes are discriminable For the case k = 1, discrimination is closely related to PAC learning.205

It is easy to see that a proper learning algorithm for a class D can be turned into a discriminator:206

Indeed, given access to samples from two distributions p1 and p2 we can provide a learner with207

labelled examples from a distribution p defined as follows: p(y = 1) = p(y = −1) = 1
2 and208

p(·|y = 1) = p1, and p(·|y = −1) = p2. Given access to samples from p1 and p2 we can clearly209

generate IID samples from the distribution p. If, in turn, we provide a learner with samples from p210

and it outputs a hypothesis d ∈ D we have that (w.h.p):211

|Ep1(d)− Ep2(d)| = 2|1
2

E
(x,y)∼p1×{1}

[yd(x)] +
1

2
E

(x,y)∼p2×{−1}
[yd(x)]|

= 2| E
(x,y)∼p

[yd(x)]|

= 2(1− 2p(d(x) 6= y))

≥ 2(1− 2(min
d∈D

p(d(x) 6= y) + ε))

= max
d∈D

(2(| E
(x,y)∼p

yd(x)| − 4ε)

= max
d∈D
|Ep1(d)− Ep2(d)| − 4ε

= IPMD(p1, p2)− 4ε

One can also see that a converse relation holds, if we restrict our attention to learning balanced labels212

(i.e., p(y = 1) = p(y = −1)). Namely, given labelled examples from some balanced distribution,213

the output of a discriminator is a predictor that competes with the class of predictors induced by D.214

Overall, the above calculation, together with Vapnik and Chervonenkis’s classical result [22] shows215

that classes with finite VC dimension ρ are discriminable with sample complexity O( ρε2 ).3 The216

necessity of finite VC dimension for agnostic PAC-learning was shown in [1]. Basically the same217

argument shows that given a class D, Ω̃( ρε2 ) examples are necessary for discrimination. We next218

introduce a natural extension of VC dimension to hypergraphs, which will play a similar role.219

2.4 VC Dimension of hypergraphs220

We next define the notion of graph VC dimension for hypergraphs, as we will later see this notion221

indeed characterizes the sample complexity of discriminating classes, and in that sense it is a natural222

extension of the notion of VC dimension for hypotheses classes:223

Definition 2. Given a family of k-hypergraphs, G: The graph VC dimension of the class G, denoted224

gVC(G), is defined inductively as follows: For k = 1 gVC(G) is the standard notion of VC dimension,225

i.e., gVC(G) = VC(G). For k > 1:226

gVC(G) = max
v∈V
{gVC(Gv)}

Roughly, the graph VC dimension of a hypergraph is given by the VC dimension of the induced227

classes of distinguishers via projections. Namely, we can think of the VC dimension of hypergraphs228

as the projected VC dimension when we fix all coordinates in an edge except for one.229

3Recall that the VC dimension of a class D is the largest set that can be shattered by D where a set S ⊆ V is
said to be shattered if D restricted to S consists of 2|S| possible Boolean functions.
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3 Main Results230

We next describe the main results of this work. The results are divided into two sections: For the first231

part we characterize the sample complexity of graph–based distinguishing class. The second part is232

concerned with the expressive/distinguishing power of graph–based discriminators. All proofs are233

provided in appendices B and C respectively.234

3.1 The sample complexity of graph-based distinguishing class235

We begin by providing upper bounds to the sample complexity for discrimination236

Theorem 1 (Sample Complexity – Upper Bound). Let G be a k–distinguishing class with gVC(G) =237

ρ then G has sample complexity O(ρk
2

ε2 log 1/δ).238

Theorem 1 is a corollary of the following uniform convergence upper bound for graph-based distin-239

guishing classes.240

Theorem 2 (uniform convergence). Let G be a k–distinguishing class with gVC(G) = ρ. Let241

S = {vi}mi=1 be an IID sample of vertices drawn from some unknown distribution P . If m =242

Ω(ρk
2

ε2 log 1/δ) then with probability at least (1− δ) (over the randomness of S):243

sup
g∈G
|ES(g)− EP (g)| ≤ ε

The proof of theorem 2 is given in appendix B.1. We next provide a lower bound for the sample244

complexity of discriminating algorithms in terms of the graph VC dimension of the class245

Theorem 3 (Sample Complexity – Lower Bound). Let G be a k–distinguishing class with gVC(G) =246

ρ. Any G-discriminating algorithm with accuracy ε > 0 that succeeds with probability 1− 2−k log k

3 ,247

must observe at least Ω
( √

ρ

27k3ε2

)
samples.248

We refer the reader to appendix B.2 for a proof of theorem 3. Our upper bounds and lower bounds249

leave a gap of order O(
√
ρ): As dicussed in section 2.3, for the case k = 1 we can provide a tight250

θ( ρε2 ) bound through a reduction to agnostic pac learning and the appropriate lower bounds[1].251

3.2 The expressive power of graph-based distinguishing class252

So far we have characterized the discriminability of graph-based distinguishing classes. It is natural253

though to ask if graph–based distinguishing classes add any advantage over standard 1-distinguishing254

classes. In this section we provide several results that show that indeed graph provide extra expressive255

power over standard distinguishing classes.256

We begin by providing a result over infinite graphs (proof is provided in appendix C.1)257

Theorem 4. Let V = N. There exists a distinguishing graph class G, with sample complexity258

m(ε, δ) = O( log 1/δ
ε2 ) (in fact |G| = 1) such that: for any 1-distinguishing class D with finite VC259

dimension, and every ε > 0 there are two distributions p1, p2 such that IPMD(p1, p2) < ε but260

IPMG(p1, p2) > 1/2261

Theorem 4 can be generalized to higher order distinguishing classes (see appendix C.2 for a proof):262

Theorem 5. Let V = N. There exists a k-distinguishing class Gk, with sample complexity263

m(ε, δ) = O(k
2+log 1/δ

ε2 ) such that: For any k − 1-distinguishing class Gk−1 with bounded sample264

complexity, and every ε > 0 there are two distributions p1, p2 such that IPMGk−1
(p1, p2) < ε and265

IPMGk(p1, p2) > 1/4.266

Finite Graphs We next study the expressive power of distinguishing graphs over finite domains.267

It is known that, over a finite domain V = {1, . . . , n}, we can learn with a sample complexity of268

O( nε2 log 1/δ) any distinguishing class. In fact, we can learn the total variation metric (indeed the269

sample complexity of P(V) is bounded by log |P(V )| = n).270

Therefore if we allow classes whose sample complexity scales linearly with n we cannot hope to271

show any advantage for distinguishing graphs. However, in most natural problems n is considered to272
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be very large (for example, over the Boolean cube n is exponential in the dimension). We thus, in273

general, would like to study classes that have better complexity in terms of n. In that sense, we can274

show that indeed distinguishing graphs yield extra expressive power.275

In particular, we show that for classes with sublogarithmic sample complexity, we can construct276

graphs that are incomparable with a higher order distinguishing class.277

Theorem 6. Let |V| = n. There exists a k-distinguishing class Gk, with sample complexitym(ε, δ) =278

O(k
2+log 1/δ

ε2 ) (in fact |G| = 1) such that: For any ε > 0 and any k − 1 distinguishing class Gk−1 if:279

IPMGk−1
� ε · IPMGk

then gVC(Gk−1) = Ω( ε
2

k2

√
log n).280

The proof is given in appendix C.3. We can improve the bound in theorem 6 for the case k = 1 (see281

appendix C.4 for proof).282

Theorem 7. Let |V| = n. There exists a 2-distinguishing class G, with sample complexity m(ε, δ) =283

O( log 1/δ
ε2 ) (in fact |G| = 1) such that: For any ε > 0 and any distinguishing class D if:284

IPMD � ε · IPMG

then gVC(D) = Ω̃(ε2 log n).285

4 Discussion and open problems286

In this work we developed a generalization of the standard framework of discrimination to graph-based287

distinguishers that discriminate between two distributions by considering multi-ary tests. Several288

open question arise from our results:289

Improving Sample Complexity Bounds In terms of sample complexity, while we give a natural290

upper bound of O(ρk2), the lower bound we provide are not tight neither in d nor in k and we provide291

a lower bound of Ω(
√
ρ

2poly(k)
) This leave room for improvement both in terms of ρ and in terms of k.292

Improving Expressiveness Bounds We also showed that, over finite domains, we can construct293

a graph that is incomparable with any class with VC dimension Ω(ε2 log n). The best upper bound294

we can provide (the VC of a class that competes with any graph) is the naive O(n) which is the VC295

dimension of the total variation metric.296

Additionally, for the k-hypergraph case, our bounds deteriorate to Ω(ε2
√

log n). The improvement in297

the graph case follows from using an argument in the spirit of Boosting [10] and Hardcore Lemma298

[13] to construct two indistinguishable probabilities with distinct support over a small domain. It299

would be interesting to extend these techniques in order to achieve similar bounds for the k > 2 case.300

Relation to GANs and Extension to Online Setting Finally, a central motivation for learning the301

sample complexity of discriminators is in the context of GANs. It then raises interesting questions as302

to the foolability of graph-based distinguishers.303

The work of [6] suggests a framework for studying sequential games between generators and304

discriminators (GAM-Fooling). In a nutshell, the GAM setting considers a sequential game between305

a generator G that outputs distributions and a discriminator D that has access to data from some306

distribution p∗ (not known to G). At each round of the game, the generator proposes a distribution307

and the discriminator outputs a d ∈ D which distinguishes between the distribution of G and the true308

distribution p∗. The class D is said to be GAM-Foolable if the generator outputs after finitely many309

rounds a distribution p that is D–indistinguishable from p∗310

[6] showed that a class D is GAM–foolable if and only if it has finite Littlestone dimension. We then311

ask, similarly, which classes of graph–based distinguishers are GAM-Foolable? A characterization of312

such classes can potentially lead to a natural extension of the Littlestone notion and online prediction,313

to graph-based classes analogously to this work w.r.t VC dimension314
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A Prelimineries and Technical Background369

A.1 Statistical Learning Theory370

We begin with a brief overview of some classical results in Statistical Learning theory which371

characterizes VC classes. Throughout we assume a domain X and a hypothesis class which is a372

family of Boolean functions over X : H ⊆ {0, 1}X .373

Theorem 8. [Within proof of Thm. 6.11 in [20]] LetH be a class with VC dimension ρ then374

E
S∼Dm

[
sup
h∈H
|ES(h)− ED(h)|

]
≤

4 +
√
ρ log(2em/ρ)√

2m

Recall that a classH has the uniform convergence property, if for some m : (0, 1)2 → N if P is some375

unknown distribution and S = {xi}mi=1 is a sample drawn IID from P such that |S| > m(ε, δ) then376

w.p. (1− δ) (over the sample S):377

| 1
m

m∑
i=1

h(xi)− E
x∼P

[h(x)]| < ε

The following, high probability analogue of theorem 8, is also an immediate corollary of Theorem378

6.8 in [20]4:379

Corollary 1. [Within Thm 6.8 [20]] Let D be a class with VC dimension ρ. There exists a constant380

C > 0, such that:381

Let p be a distribution with finite support over V . Let S be an IID sequence of m elements drawn382

from p, and denote by pS the empirical distribution over S. If m ≥ C ρ+log 1/δ
ε2 then w.p. (1 − δ)383

(over the random choice of S) we have that384

IPMD(p, pS) = sup
d∈D
|Ep(d)− EpS (d)]| < ε

A.2 Closeness Testing for Discrete Distribution385

The problem of testing the closeness of two discrete distributions can be phrased as follows: Given386

samples from two distributions p1 and p2 the tester needs to distinguish between the case p1 = p2387

and the case that ‖p1 − p2‖1 ≥ ε. We will rely on the following result due to [18] (see also [7] for388

discussion).389

Theorem 9. Given ε > 0 and access to samples from distributions p1 and p2 over [n] any algorithm390

that returns with probability 2/3 EQUIV ALENT if p1 = p2 and returns DISTINCT if391

‖p1 − p2‖1 > ε must observe at least Ω
(√
n/ε2}

)
samples.392

We note that [7] gives a slightly better lower bound, of Ω
(
max(n3/4/ε4/3,

√
n/ε2)

)
. However, our393

proofs exploit other processes that exploit concentration inequalities, and it will be simpler to focus394

on rates of order O(1/ε2).395

4Note that Theorem 6.8 is stated for 0− 1 loss, however considering a distribution with constant lable y = 0
we can reduce the result for the loss `(h, x) = h(x)
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B Sample Complexity –Proofs396

B.1 Proof of theorem 2397

Theorem 2 (uniform convergence). Let G be a k–distinguishing class with gVC(G) = ρ. Let398

S = {vi}mi=1 be an IID sample of vertices drawn from some unknown distribution P . If m =399

Ω(ρk
2

ε2 log 1/δ) then with probability at least (1− δ) (over the randomness of S):400

sup
g∈G
|ES(g)− EP (g)| ≤ ε

Fix a k–distinguishing class G with graph VC dimension ρ. As in the standard proof of uniform401

convergence for VC classes, we first prove the statement in expectation and then apply Mcdiarmid’s402

inequality to prove the result w.h.p. Specifically, we will use the following Lemma (whose proof is403

given in appendix B.1.1):404

Lemma 1 (Uniform Convergence in Expectation). Let G be a k–distinguishing class with gVC(G) =405

ρ. Let S = {vi}mi=1 be an IID sample of vertices drawn from some unknown distribution P . Then,406

E
S∼Pm

[
sup
g∈G
|ES(g)− ED(g)|

]
≤
k
√

4 + ρ log(2em/ρ)√
2m

+
k(k − 1)

m

We next proceed with the proof of theorem 2, assuming the correctness of lemma 1. Define407

F (S) = sup
g∈G
|ES(g)− ED(g)|,

Let S = (v1, . . . , vm) be a sample and S′, some sequence that differ from S only in the i-th vertex408

then we will show that:409

|F (S)− F (S′)| ≤ 2k

m
(4)

Once we show eq. (4) holds, the result indeed follow from Mcdiarmid’s inequality and lemma 1.410

Specifically if we assume that m ≥ 8k2(4+ρ log(2em/ρ)
ε2 + 2k21/δ

ε2 then we obtain from lemma 1 that411

in expectation:412

E
S∼Dm

sup
g∈G
|ES(g)− ED(g)| ≤ ε

2

Applying Mcdiarmid’s we obtain that with probability at least (1− e−
mε2

8k2 ), over the sample S:413

F (S)− E
S

[F (S)] = sup
g∈G
|ES(g)− ED(g)| − E

S∼Dm
sup
g∈G
|ES(g)− ED(g)| ≤ ε

2
.

Noting that m > 8k2 log 1/δ
ε2 , we obtain that with probability at least (1− δ)414

F (S) = sup
g∈G
|ES(g)− ED(g)| ≤ E

S∼Dm
sup
g∈G
|ES(g)− ED(g)|+ ε

2
≤ ε

We are thus left with proving that eq. (4) holds.415

For an index i and m ≥ i, let us denote by πi,m all k-subsets of indices from {1, . . . ,m} that include416

i and we let π¬i,m be all k-sequences that do not include i. Given a set S of size m let Si,+ all the417

k-subsets of S that include vi and let Si,− be all the k-subsets that do not include vi. Next, denote418

LSi,+(g) =
1

mk

∑
(i1,...,ik)∈πi,m

g(ui1 , . . . ,uik)

And similarly419

LSi,−(g) =
1

mk

∑
(i1,...,ik)∈π¬i,m

g(ui1 , . . . ,uik)

Then, let S and S′ be two samples that differ on the i-th example. Specifically assume that vi ∈ S420

and v′i ∈ S′. Note that Si,− = S′i,−. Then:421
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F (S)− F (S′) = sup
g∈G
|ES(g)− ED(g)| − sup

g∈G
|ES′(g)− ED(g)|

= sup
g∈G
|LSi,+(g) + LSi,−(g)− ED(g)| − sup

g∈G
|LS′i,+(g) + LS′i,−(g)− ED(g)|

≤ sup
g∈G
|LSi,+(g) + LSi,−(g)− ED(g)− (LS′i,+(g) + LS′i,−(g)− ED(g))|

= sup
g∈G
|LSi,+(g)− LS′i,+(g)|

= sup
g∈G
|LSi,+(g)|+ | sup

g∈G
|LS′i,+(g)|

≤ |Si,+|
mk

+
|S′i,+|
mk

= 2
mk − (m− 1)k

mk

= 2− 2(1− 1

m
)k

≤ 2
k

m

We are thus left with proving lemma 1:422

B.1.1 Proof of lemma 1423

The proof of the statement follows by induction. The case k = 1 is the standard uniform convergence424

property of VC classes, and it follows from theorem 8.425

We next proceed to prove the statement for k, assuming it holds for k − 1. We begin by exploiting426

trinagular inequality and together with adding/substracting terms:427

E
S∼Dm

[
sup
g∈G
|ES(g)− ED(g)|

]

= E
S∼Dm

sup
g∈G
|ES(g)− 1

mk−1

∑
v1:k−1∈Sk−1

E
v
gv1:k−1

(v) +
1

mk−1

∑
v1:k−1∈Sk−1

E
v
gv1:k−1

(v)− ED(g)|


≤ E
S∼Dm

sup
g∈G
|ES(g)− 1

mk−1

∑
v1:k−1∈Sk−1

E
v
gv1:k−1

(v)|


︸ ︷︷ ︸

∗

+

E
S∼Dm

sup
g∈G
| 1

mk−1

∑
v1:k−1∈Sk−1

E
v
gv1:k−1

(v)− ED(g)|


︸ ︷︷ ︸

∗∗

We next bound the two terms428
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Bounding *

E
S∼Dm

sup
g∈G

∣∣∣∣∣∣ 1

mk−1

∑
v1:k−1∈Sk−1

1

m

∑
v∈S

gv1:k−1
(v)− 1

mk−1

∑
v1:k−1∈Sk−1

E
v
gv1:k−1

(v))

∣∣∣∣∣∣


≤ E
S∼Dm

 1

mk−1

∑
v1:k−1∈Sk−1

sup
d∈Gv1:k−1

∣∣∣∣∣ 1

m

∑
v∈S

d(v)− E
v
d(v)

∣∣∣∣∣


= E
S∼Dm

[
E

v1:k∼USk−1

sup
d∈Gv1:k−1

∣∣∣∣∣ 1

m

∑
v∈S

d(v)− E
v
d(v)

∣∣∣∣∣
]

where we denoted by USk−1 the uniform distribution over k-tuples from S. The expectation in the last429

expression is thus taken w.r.t a process where we pick m elements according to d and then partition430

them to m− k + 1 elements and to a sequence v1:k−1 of distinct element. This process is equivalent431

to simply choosing m− k + 1 elements according to D, and then picking k− 1 new elements, again,432

according to D. We thus continue and write:433

= E
S∼Dm−k+1

E
(v1,...,vk−1)∼Dk−1

[
sup

d∈Gv1:k−1

| 1
m

∑
v∈S

d(v) +
1

m

k−1∑
i=1

d(vi)− E
v
d(v)|

]

= E
S∼Dm−k+1

E
(v1,...,vk−1)∼Dk−1

[
sup

d∈Gv1:k−1

| 1
m

∑
v∈S

d(v)− E
v
d(v) +

1

m

k−1∑
i=1

d(vi)|

]
Note that the quantity 1

m

∑
d(vi) is dependent on Gv1:k−1

, namely these are random sampled choices434

that depend on our choice of distinguishing class. To bound their effect we next add and subtract435

auxiliary random variables u1, . . . ,uk−1 sampled IID according to D:436

= E
S∼Dm−k+1

E
(v1,...,vk−1)∼Dk−1

[
sup

d∈Gv1:k−1

∣∣∣∣∣ 1

m

∑
v∈S

d(v) +
1

m
E

(u1,...,uk−1)∼Dk−1

∑
d(ui)− E

v
d(v)

− 1

m
E

(u1,...,uk)∼Dk

∑
d(ui) +

1

m

k−1∑
i=1

d(vi)

∣∣∣∣∣
]

≤ E
S∼Dm−k+1

E
(v1,...,vk−1)∼Dk−1

 sup
d∈Gv1:k−1

∣∣∣∣∣∣ E
(u1,...,uk−1)∼Dk−1

 1

m

∑
v∈S∪{u1,...,uk−1}

d(v)

− E
v
[d(v)]

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

m
E

(u1,...,uk)∼Dk

∑
d(ui)−

1

m

k−1∑
i=1)

d(vi)

∣∣∣∣∣∣


≤ E
(u1,...,uk)∼Dk

 E
S∼Dm−k

E
(v1,...,vk−1)∼Dk−1

 sup
d∈Gv1:k−1

∣∣∣∣∣∣ 1

m

∑
v∈S∪{u1,...,uk}

d(v)− E
v
[d(v)]

∣∣∣∣∣∣
+

2k

m

Renaming u1, . . . ,uk and v1, . . . ,vk we can write:437

E
(u1,...,uk)∼Dk

 E
S∼Dm−k

E
(v1,...,vk−1)∼Dk−1

 sup
d∈Gv1:k−1

∣∣∣∣∣∣ 1

m

∑
v∈S/∪{u1,...,uk}

d(v)− E
v
[d(v)]

∣∣∣∣∣∣
+

2k

m

= E
(v1,...,vk)∼Dk

 E
S∼Dm−k

E
(u1,...,uk−1)∼Dk−1

 sup
d∈Gu1:k−1

∣∣∣∣∣∣ 1

m

∑
v∈S∪(v1,...,vk)

d(v)− E
v
[d(v)]

∣∣∣∣∣∣
+

2k

m

= E
(u1,...,uk−1)∼Dk−1

E
S∼Dm

[
sup

d∈Gu1:k−1

∣∣∣∣∣ 1

m

∑
v∈S

d(v)− E
v
[d(v)]

∣∣∣∣∣
]

+
2k

m
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Finally we apply. theorem 8. Recalling that gVC(Du1:k−1
) = ρ, and that the sequence S is drawn438

IID independent of the choice u1:k−1, we obtain for every fixed (u1, . . . ,uk)439

E
S∼Dm

[
sup

d∈Du1:k−1

∣∣∣∣∣ 1

m

∑
v∈S

d(v)− E
v
[d(v)]

∣∣∣∣∣
]
≤

4 +
√
ρ log 2em/ρ√

2m

Bounding **

E
S∼Dm

sup
g∈G

∣∣∣∣∣∣ 1

mk−1

∑
v1:k−1∈Sk−1

E
v
gv1:k−1

(v)− E
v1:k−1

E
v
gv1:k−1

(v)

∣∣∣∣∣∣


≤E
v

E
S∼Dm

sup
g∈G

∣∣∣∣∣∣ 1

mk−1

∑
v1:k−1∈Sk−1

gv1:k−1
(v)− E

v1:k−1

gv1:k−1
(v)

∣∣∣∣∣∣


=E
v

E
S∼Dm

sup
g∈G

∣∣∣∣∣∣ 1

mk−1

∑
v1:k−1∈Sk−1

gv(v1, . . . ,vk−1)− E
v1:k−1

gv(v1 . . . ,vk−1)

∣∣∣∣∣∣


=E
v

E
S∼Dm

 sup
g∈Gv

∣∣∣∣∣∣ 1

mk−1

∑
v1:k−1∈Sm

g(v1, . . . ,vk−1)− E
v1:k−1

g(v1 . . . ,vk−1)

∣∣∣∣∣∣


We now use the induction hypothesis: Note that Gv is (k−1)-distinguishing class with gVC(Gv) = ρ440

for every choice of v. Thus, fixing v:441

E
S∼Dm

 sup
g∈Gv

∣∣∣∣∣∣ 1

mk−1

∑
v1:k−1∈Sk−1

g(v1, . . . ,vk−1)− E
v1:k−1

g(v1 . . . ,vk−1)

∣∣∣∣∣∣


≤
(k − 1)

(
4 +

√
ρ log(2em/ρ)

)
√

2m
+
k(k − 1)

m

Continuing the proof With the aforementioned bound on the terms * and ** we now obtain442

∗+ ∗∗ ≤
4 +

√
ρ log 2em/ρ√

2m
+

2k

m
+

(k − 1)
(

4 +
√
ρ log(2em/ρ)

)
√

2m
+
k(k − 1)

m

=
k
(

4 +
√
ρ log(2em/ρ)

)
√

2m
+

(k + 1)k

m

B.2 Proof of theorem 3443

Theorem 3 (Sample Complexity – Lower Bound). Let G be a k–distinguishing class with gVC(G) =444

ρ. Any G-discriminating algorithm with accuracy ε > 0 that succeeds with probability 1− 2−k log k

3 ,445

must observe at least Ω
( √

ρ

27k3ε2

)
samples.446

To prove theorem 3 we will in fact prove a stronger statement: We will show that it is not only hard447

to compute a g ∈ G as required, but in fact it is even hard to determine if such g exists vs. the case448

that p1 = p2.449

Specifically let us call an algorithm A a testing algorithm for G with sample complexity m(ε, δ)450

if A receives IID samples from two distributions p1 and p2 of size m(ε, δ) and returns either451

EQUIV ALENT or DISTINCT such that w.p. (1− δ):452

• If p1 = p2 the algorithm returns EQUIV ALENT .453
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• If IPMG(p1, p2) > ε the algorithm returns DISTINCT454

Theorem 10. Let G be a k–distinguishing class with gVC(G) = ρ. Any testing algorithm A with455

sample complexity m(ε, δ) must observe Ω
( √

ρ

27k3 ε2

)
examples for any δ < 2−k log k

3 .456

Clearly, theorem 3 is a corollary of theorem 10. Indeed if A is a discriminating algorithm for G with457

sample complexity m(ε, δ) we can apply it over a sample of size m(ε/3, δ) to receive (w.p. 1− δ) a458

graph g s.t.459

IPMG(p1, p2) ≤ |Ep1(g)− Ep2(g)|+ ε

3
.

With an additional sample of size O( log 1/δ
ε2 ) we can estimate |Ep1(g)−Ep2(g)| within accuracy ε/3,460

and verify if IPMG(p1, p2) < ε: The test will then outputEQUIV ALENT if |Ep1(g)−Ep2(g)| <461

ε
3 . It thus follows that, for sufficiently small δ m(ε, δ) > Ω(

√
ρ

27k3 ε2
).462

We proceed with the proof of theorem 10.463

B.2.1 Proof of theorem 10464

The proof is done by induction. For the induction, we will assume a more fine-grained lower bound.465

We will assume that there exists a constant C so that for every n ≤ k − 1, if mn(ε, δ) is the sample466

complexity of a n-distinguishing class then:467

mn(ε, δ) ≥ C
√
ρ

(n+ 1)!2
∑n
j=1 6j2 · ε2

= Ω

( √
ρ

27n3ε2

)
. (5)

C > 0 will depend only on the constant for the lower bound for testing if two distributions are distinct468

or ε-far in total variation, as in theorem 9.469

We start with the case k = 1.470

k = 1 The case k = 1 follows directly from theorem 9. Let D be a class with VC dimension ρ. by471

restricting our attention to probabilities supported on the shattered set of size ρ, we may assume that472

|V| = ρ and that D = P (V). Note then, that for the IPM distance we then have473

IPMD(p1, p2) = TV(p1, p2).

theorem 9 immediately yields the result.474

the induction step We now proceed with the proof assuming the statement holds for k − 1.475

By assumption gVC(G) = ρ. Fix v ∈ V such that gVC(Gv) = ρ. For every q ∈ (0, 1) and476

distribution p denote477

pq := qδv + (1− q)p. (6)

We next state the core Lemma we will need for the proof:478

Lemma 2. Let G be a family of k-hypergraphs and p1, p2 two distributions. Assume that for some479

v ∈ V we have that:480

IPMGv (p1, p2) ≥ ε.
Let pq1 and pq2 be as in eq. (6) for our choice of v ∈ V .481

Then for some value q ∈ {0, 1
k ,

2
k , · · · 1} we have that,482

IPMG(pq1, p
q
2) ≥ ε

23k2
.

We deter the proof of lemma 2 to appendix B.2.2, and proceed with the proof of the induction step.483

Let us denote δk = 2−k log k and denote ck = 2−3k2 .484

Let A be a testing algorithm for G with sample complexity m(ε, δ) as in theorem 10. We can now485

construct a testing algorithm for Gv with sample complexity486

mk−1(ε, δ) = (k + 1) ·m(ckε,
δ

k
),
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as follows: Run the testing algorithm A on pairs of distributions (p1, p2), (p
1/k
1 , p

1/k
2 ), . . . , (p1

1, p
1
2),487

each on its own fixed sample of size m(ckε,
δ
k ). If the algorithm returns DISTINCT for any of488

these tests, output DISTINCT , else output EQUIV ALENT .489

We now show that if p1 = p2 the algorithm outputs w.p. (1− δ) EQUIV ALENT : Indeed, since490

p1 = p2, we have that pq1 = pq2 for all q: Applying union bound we have that w.p. (1 − δ) the491

algorithm indeed outputs EQUIV ALENT .492

On the other hand, if IPMGv (p1, p2) ≥ ε we have by lemma 2 that for one of the distributions493

(pq1, p
q
2), IPMG(pq1, p

q
2) > ckε , in particular the algorithm will outputDISTINCT with probability494

(1− δ). Overall we constructed a testing algorithm for Gv with sample complexity (k + 1)m(ckε,
δ
k )495

Since δk < 2−(k−1) log(k−1)

k , it follows from the induction step496

(k + 1)m(ckε,
δ

k
) = mk−1(ε, δ)

≥ C
√
ρ

k!2
∑k−1
n=1 6n2 · ε2

Reparametrizing we obtain497

m(ε,
δ

k
) ≥ C

√
ρ

(k + 1)!2
∑k
n=1 6n2 · ε2

B.2.2 Proof of lemma 2498

Denote499

∆g
n(p1, p2) = E

u1:n∼pk−n1

g(v, v, v, . . . , v︸ ︷︷ ︸
n times

,u1, . . . ,uk−n)− E
u1:n∼pk−n2

g(v, v, v, . . . , v︸ ︷︷ ︸
n times

,u1, . . . ,uk−n)

One can show that500

IPMG(pq1, p
q
2) = sup

g∈G

∣∣∣∣∑(
k

n

)
qn(1− q)k−n∆g

n(p1, p2)

∣∣∣∣
= sup

g∈G

∣∣∣∣∣(1− q)k∆g
0(p1, p2) + kq(1− q)n−1∆g

1(p1, p2) +

k∑
n=2

(
k

n

)
qn(1− q)k−n∆g

n(p1, p2)

∣∣∣∣∣
= sup

g∈G

∣∣∆g
0(p1, p2) + kq (∆g

1(p1, p2)−∆g
0(p1, p2)) + q2pg(q)

∣∣
where pg(q) is some k − 2 degree polynomial in q whose coefficient depend on g and p1 and p2. We501

next apply the following claim502

Claim 1. Let f(q) = a0 + a1q+ q2p(q) where p(q) is some k− 2 degree polynomial. then for some503

value q0 ∈ {0, 1
k ,

2
k , · · · 1} we have that |f(q0)| ≥ |a1|

23k2
504

Proof Sketch. We provide a full proof for this claim in appendix D.1. In a nutshell, claim 1 follows505

from the equivalence between norms in finite dimensional spaces. Indeed, the mapping506

(a0, . . . , ak)→ (pa(1/k), pa(2/k), . . . , pa(1)),

where pa(x) =
∑
aix

i is known to be a non–singular linear transformation induced by the appropri-507

ate Vandermonde matrix (specifically. Vi,j = ((i−1)/k))j−1). Letting λmin be the smallest singular508

value of the matrix V , we know that ‖V a‖2 ≥ λmin‖a‖2. where a is the vector of coefficients of the509

polynomial pa.510

Finally, we exploit the relation in Rk+1: ‖x‖∞ ≤ ‖x‖2 ≤
√
k + 1‖x‖∞. We can, thus, relate the511

max norm of the coefficient vector ‖a‖∞ ≥ |a1| to the maximum value maxi∈{0,...,k}
∑
aj(i/k)j =512

‖V a‖∞ to obtain513

|a1| ≤ ‖a‖2 ≤ λ−1
min‖V a‖2 ≤

√
k + 1

λmin
‖V a‖∞ =

√
k + 1

λmin
max

i∈{0,...,k}

∑
aj(i/k)j
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It remains only to lower bound the singular values of V , this is done in the full proof in appendix D.1.514

515

With claim 1 in mind we prove the result as follows: First, suppose that for some g ∈ G we have516

that |k(∆g
0(p1, p2) − ∆g

1(p1, p2)| > ε
2 . In this case, applying claim 1 with a0 = ∆g

0(p1, p2) and517

a1 = k (∆g
0(p1, p2)−∆g

1(p1, p2)) and p = pg , we obtain that there exists a value q = j/k such that518

IPMG(pq1, p
q
2) ≥ ε

23k2
.519

On the other hand, consider the case that |k(∆g
0(p1, p2) − ∆g

1(p1, p2)| < ε
2 for any g ∈ G, by520

assumption we have that |∆g
1(p1, p2)| > ε, for some g ∈ G. Hence |∆g

0(p1, p2)| > ε. By definition521

of ∆0 we have that for q = 0 we obtain that: IPMG(pq1, p
q
2) = |E(pq1)− E(pq2)| > ε

2 .522

C Expressivity – Proofs523

C.1 Proof of theorem 4524

Theorem 4. Let V = N. There exists a distinguishing graph class G, with sample complexity525

m(ε, δ) = O( log 1/δ
ε2 ) (in fact |G| = 1) such that: for any 1-distinguishing class D with finite VC526

dimension, and every ε > 0 there are two distributions p1, p2 such that IPMD(p1, p2) < ε but527

IPMG(p1, p2) > 1/2528

As stated, the class G will consist of a single graph g. The graph g is going to be a bipartite529

graph. We thus, divide the vertices into two infinite sets: V1 and V2 the elements of V1 will be530

indexed by N i.e. V1 = {v1, v2, · · · } and we index the elements of V2 with finite subsets of N531

V2 = {vA : A ⊆ N, |A| < ∞}. Next we define g so that an edge passes between vi ∈ V1 and532

vA ∈ V2 iff i ∈ A.533

Let D be a distinguishing class with finite sample complexity, in particular gVC(D) <∞. Denote534

gVC(D) = ρ. Let D1 be the restriction of D to V1: Note that gVC(D1) ≤ ρ.535

Next we make the following claim:536

Claim 2. There are two distributions, q1 and q2, supported on V1 so that537

IPMD1
(p1, p2) < ε.

and yet q1 and q2 have disjoint support.538

Proof. To construct two such distributions, choose a set S ⊆ V1 of size m large enough (to be539

determined later). Then, randomly choose two samples S1 and S2 out of S (uniformly), each of size540

O( ρε2 ). Then, by theorem 2 with some constant probability we have that IPMD(pS1 , pS) < ε/2 and541

similarly IPMD(pS , pS2) < ε/2 . Taken together we obtain that IPMG(pS1 , pS2) < ε.542

Also, if S is sufficiently large (say, of order O(ρ
2

ε4 )), we would have that w.h.p S1 ∩ S2 = ∅. Thus, let543

q1 = pS1
and q2 = pS2

.544

With claim 2, we proceed with the proof. Let q1 and q2 be as in claim 2. Let A be the support of q1,545

and define p1 to be a distribution p1 = 1
2δA + 1

2q1 and similarly we define p2 = 1
2δA + 1

2q2. We then546

have547

IPMD(p1, p2) =
1

2
IPMD(q1, q2)

=
1

2
IPMD1

(q1, q2)

< ε.

On the other hand, note that for p1 the probability to draw an edge from g is at least 1/2 (indeed if548

v1 = vA and v2 6= vA drawn from q1 then g(v1, v2) = 1. On the other hand, the probability to draw549

an edge from p2 is 0. It follows that550

IPMG(p1, p2) >
1

2
.
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C.2 Proof of theorem 5551

Theorem 5. Let V = N. There exists a k-distinguishing class Gk, with sample complexity552

m(ε, δ) = O(k
2+log 1/δ

ε2 ) such that: For any k − 1-distinguishing class Gk−1 with bounded sample553

complexity, and every ε > 0 there are two distributions p1, p2 such that IPMGk−1
(p1, p2) < ε and554

IPMGk(p1, p2) > 1/4.555

The construction is similar to the case k = 2. We again divide the vertices into two infinite sets V1556

and V2. Again, the elements of V1 will be indexed by N, and the elements of V2 are indexed by finite557

subsets of N. V2 = {vA : A ⊆ N, |A| <∞}.558

We define the hyper graph gk to be a (undirected) graph that contains a hyperedge (vi1 , . . . , vik−1
, vA)559

whenever {i1 . . . , ik−1} ⊆ A.560

Next, as before we construct two distributions with distinct support such that IPMG(p1, p2) ≤ ε.561

This is done similar to the proof of theorem 4. Specifically:562

Claim 3. Let G be a k− 1-distinguishing class defined on V1. There are two distributions, q1 and q2,563

supported on V1 so that564

IPMG(p1, p2) < ε.

and yet q1 and q2 have disjoint support.565

The proof is a repetition of the proof of claim 2, where we draw S1 and S2 to be order of O(k
2ρ
ε2 ),566

and again invoke theorem 2.567

As before, then, given a class G of k − 1–hypergraphs we take two distributions q1 and q2 as in568

claim 3 and if A is the support of q1, we take p1 = 1
k δvA + (1− 1

k )q1 and let p2 = 1
k δvA + (1− 1

k )q2.569

Then, we can show that IPMG(p1, p2) ≤ ε. On the other hand, the probability to draw an edge from570

gk is k · 1
k (1− 1

k )k−1 ≥ e−1 according to p1, but the probability to draw an edge from p2 is 0.571

C.3 Proof of theorem 6572

Theorem 6. Let |V| = n. There exists a k-distinguishing class Gk, with sample complexitym(ε, δ) =573

O(k
2+log 1/δ

ε2 ) (in fact |G| = 1) such that: For any ε > 0 and any k − 1 distinguishing class Gk−1 if:574

IPMGk−1
� ε · IPMGk

then gVC(Gk−1) = Ω( ε
2

k2

√
log n).575

The proof is similar to the proof of theorem 5. For simplicity, let us assume that |V| = n + log n.576

This will not change the results up to constants.577

Given n + log n vertices we partition them into two sets V1, of size log n and V2. We index578

the elements of V1 as {v1, . . . , vlogn} and we index the elements of V2 with subsets of [log n].579

We then consider a graph g that contains only hyper-edges of the form (vi1 , . . . , vk−1
, vA) iff580

{i1, . . . , ik−1} ∈ A.581

Next, let Gk−1 be a distinguishing class with gVC(Gk−1) = ρ, and let m(ε, δ) = O
(
ρk2

ε2

)
be an582

upper bound on the sample complexity of classes of graph VC dimension ρ.583

We claim that if log n ≥ m2(ε/8, 0.99) then there are two distinct distributions q1, q2 over [log n],584

with disjoint support such that IPMGk(q1, q2) < ε. The proof is done as in claim 3.585

Indeed, we draw IID, and uniformly, two random samples S1 and S2 from {1, . . . , log n} of size586

m(ε/8, 0.99). One can show that w.p 1/4 we have that S1 ∩ S2 are distinct, also we have w.p 0.98587

that IPMG(pS , pS1
) < ε/8 and similarly IPMG(pS , pS2

) < ε/8. Taken together we obtain that with588

positive probability q1 = pS1
and q2 = pS2

have disjoint support and IPMG(q1, q2) < ε
4 .589

As in theorem 5, let A be the support of q1 and consider a distribution p1 = 1
k δvA + (1− 1

k )q1 and590

similarly p2 = 1
k δvA + (1− 1

k q2. One can show that IPMG(p1, p2) < ε
4 but the probability to draw591

an edge from g according to q1 is at least 1/4, while it equals 0 if we draw edges according to p2.592
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To conclude, we showed that if log n ≥ m2(ε/8, 0.99) then IPMGk ≺ εIPMG . In other words, if593

IPMGk � ε · IPMG then log n ≤ m2(ε/8, 0.99).594

ρ = Ω

(
ε2

k2

√
log n

)
.

C.4 Proof of theorem 7595

Theorem 7. Let |V| = n. There exists a 2-distinguishing class G, with sample complexity m(ε, δ) =596

O( log 1/δ
ε2 ) (in fact |G| = 1) such that: For any ε > 0 and any distinguishing class D if:597

IPMD � ε · IPMG

then gVC(D) = Ω̃(ε2 log n).598

The proof is similar to the proof of theorem 4 but we will use an improved upper bound on the size of599

S which we next state (see appendix C.5 for a proof):600

Lemma 3. Let D be a class with gVC(D) = ρ over a domain S. There exists a constant c > 0601

(independent of D and d) such that if |S| > c · dε2 log2(d/ε2), Then there are two distributions q1 and602

q2, supported on S such that:603

1. q1, and q2 have disjoint support.604

2. IPMD(q1, q2) < ε605

The graph g is constructed as in theorem 4. Let V be a set of vertices of size n+ log n, let V1 be a606

set of size log n and we index its elements with {v1, . . . , v2, . . . , vlogn}. We let V2 include all other607

elements and we index them via subsets of [log n]. The graph is again constructed so that vA ∈ V2608

has an edge to vi ∈ V1 iff i ∈ A. As before, we make the graph bipartite, i.e. both V1 and V2 are609

independent sets.610

Now suppose log n ≥ c ρε2 log2 d
ε2 . By lemma 3 we have that there exists a set A ⊆ {1, . . . , log n}, a611

distribution p1 and p2 where p1 is supported on A and p2 is supported on its compelement so that612

IPMG(p1, p2) < ε. As before we construct q1 = δvA + (1− δ)p1 and q2 = δvA + (1− δ)p2. One613

can verify that IPMG(q1, q2) < ε but IPMGk+1
(q1, q2) > 1

2 . Thus, if IPMGk � ε · IPMGk+1
then614

log n ≤ c ρε2 log2 d
ε2 . In turn d = Ω̃(ε2 log n).615

C.5 Proof of lemma 3616

First w.l.o.g we assume that the constant functions are in D (i.e. 0 and 1).617

We want to choose a constant c so that if |S| ≥ c 2d
ε2 log2 2d

ε2 , then we have |S|
ln2 |S| >

2ρ log e
ε2 . Fix such618

c > 0, and letHm = {sign(
∑m
i=1(2di(v)− 1)) : di ∈ D} and denoteH = H 2

ε2
ln |S|. Note that619

|H| ≤ |D|
2
ε2

ln |S|

≤ |S|
2ρ

ε2
ln |S| Sauer’s Lemma

= 2
2ρ log e

ε2
ln2 |S|

< 2|S|

It thus follows that there exists f /∈M. Let f be such and define a matrix M = {0, 1}|S|×|D| so that620

Mv,d =

{
1 d(v) 6= f(v)

0 else
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Now suppose that for some distribution q over S, for every dwe have that Ev∼q[d(v) = f(v)] < 1
2 + 1

ε .621

Then, defining q1 = q(·|f(v) = 0) and q2 = q(·|f(v) = 1) yields the desired result. Indeed,622

sup
d∈D
|Eq1 [d]− Eq2 [d]| = sup

d∈D
2|1

2
Eq1 [d]− 1

2
Eq2 [d]|

≥ sup
d∈D

2|q(f(v) = 1)Eq1 [d]− q(f(v) = −1)Eq2 [d]| − 4 max
y∈{1,−1}

{|1
2
− q(f(v) = y)|

sup
d∈D

2| E
(v,y)∼q

yd(v)| − 4ε

= sup
d∈D

2|1− 2q(d(v) 6= f(v))| − 4ε

≥ 8ε.

We now wish to prove that indeed, such a q exists. Suppose, otherwise: That for any distribution q623

over S we can find d such that Ev∼q[d(v) = f(v)] > 1
2 + 1

ε . This can be rephrased in terms of a624

value of a minimax game as follows:625

max
q∈∆(S)

min
d∈D

q>Md <
1

2
− ε,

Where ∆(S) denotes the set of distributions over S. It is well known ([16], thm 2), that for any game626

defined by any matrix M with c columns, there exists a strategy for the row player that chooses627

uniformly from a multiset of ln c
2ε2 and achieves ε-optimiality.628

In our setting, this translate to a uniform distribution p, supported on ln |S|
2ε2 distinguishers629

{d1, . . . , d ln |S|
2ε2

such that630

2ε2

ln |S|
∑
di

[di(v) 6= f(v)] <
1

2

, this contradicts the fact that f /∈M.631

We thus obtain that there exists a distribution q over S so that for every d ∈ D
∑
q(v)[d(v) 6=632

f(v)] > 1
2 − ε.633

D Additional Proofs634

D.1 Proof of claim 1635

Consider the Vandermonde Matrix V ∈ Mk+1,k+1 given by Vi,j =
(
i−1
k

)j−1
. Our first step will636

be to lower bound the smallest singular value of V . In turn, we will obtain a lower bound on the637

maximum value over the coordinates of the vector V a. The proof can then be derived from the638

identity: (V a)i =
∑k+1
j=1 aj

(
i−1
k

)j
.639

Let λ1 ≤ λ2 ≤ . . . ≤ λk+1 be the singular values of V . To bound the smallest singular value, λ1, we640

first observe that λk+1– the highest singular value is bounded by k + 1. To see that λk+1 ≤ k + 1,641

observe that for any vector ‖a‖ ≤ 1 we have that642

‖V a‖2 ≤ k + 1 max |Vi,j ||ai| ≤ k + 1.

Next, using the formula for the determinant of a Vandermonde matrix, and the relation det(V ) =643 ∏
λi, we obtain:644

k+1∏
i=1

|λi| = |det(V )|

=
∏

1≤i<j≤k+1

|i− j|
k

≥ 2−
k(k−1) log k

2
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Taken together we obtain645

λmin ≥
2−

k(k−1) log k
2∏k+1

i=2 λi

≥ 2−
k(k−1) log k

2

λkk+1

≥ 2−k(k−1) log k−k log(k+1)

= 2−k
2+k log k/k+1

≥ 2−2k2

Finally, for any polynomial p =
∑
aiq

i with coefficient |a1| we have that ‖a‖2 ≥ |a1|. We thus646

obtain,647

max
i
p(
i

q
) ≥ 1√

k + 1

√∑
|p( i
q
|)2

=
1√
k + 1

‖V a‖2

≥ 1√
k + 1

λ1‖a‖2

≥ 2−2k2−1/2 log(k+1)

k + 1
|a|1

≥ 2−3k2 |a|1
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