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Abstract

We study the problem of recovering a structured signal from independently and
identically drawn linear measurements. A convex penalty function f(·) is consid-
ered which penalizes deviations from the desired structure, and signal recovery is
performed by minimizing f(·) subject to the linear measurement constraints. The
main question of interest is to determine the minimum number of measurements
that is necessary and sufficient for the perfect recovery of the unknown signal
with high probability. Our main result states that, under some mild conditions on
f(·) and on the distribution from which the linear measurements are drawn, the
minimum number of measurements required for perfect recovery depends only on
the first and second order statistics of the measurement vectors. As a result, the
required of number of measurements can be determining by studying measurement
vectors that are Gaussian (and have the same mean vector and covariance matrix)
for which a rich literature and comprehensive theory exists. As an application, we
show that the minimum number of random quadratic measurements (also known as
rank-one projections) required to recover a low rank positive semi-definite matrix
is 3nr, where n is the dimension of the matrix and r is its rank. As a consequence,
we settle the long standing open question of determining the minimum number
of measurements required for perfect signal recovery in phase retrieval using the
celebrated PhaseLift algorithm, and show it to be 3n.

1 Introduction

Recovering a structured signal from a set of linear observations appears in many applications in areas
ranging from finance to biology, and from imaging to signal processing. More formally, the goal is to
recover an unknown vector x0 ∈ Rn, from observations of the form yi = aT

i x0, for i = 1, . . . ,m. In
many modern applications, the ambient dimension of the signal, n, is often (overwhelmingly) larger
than the number of observations, m. In such cases, there are infinitely many solutions that satisfy the
linear equations arising from the observations, and therefore to obtain a unique solution one must
assume some prior structure on the unknown vector. Common examples of structured signals are
sparse and group-sparse vectors [13, 6], low-rank matrices [24, 5], and simultaneously-structured
matrices [8, 21]. To this end, we use a convex penalty function f : Rn → R, that captures the
structure of the structured signal, in the sense that signals that do not adhere to the desired structure
will have a higher cost. Therefore, the following estimator is used to recover x0,

x̂ = arg min
x

f(x) subject to, yi = aT
i x, i = 1, . . . ,m . (1)

Popular choices of f(·) include the `1-norm for sparse vectors [31], and the nuclear norm for low-rank
matrices [24]. A canonical question in this area is “how many measurements are needed to recover
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x0 via this estimator?" This question has been extensively studied in the literature (see [28, 1, 9]
and the references therein.) The answer depends on the ai and is very difficult to determine for
any given set of measurement vectors. As a result, it is common to assume that the measurement
vectors are drawn randomly from a given distribution and to ask whether the unknown vector can be
recovered with high probability. In the special case where the entries of the measurement matrix are
drawn iid from a Gaussian distribution, the minimum number of measurements for the recovery of
x0 with high probability is known (and is related to the concept of the Gaussian width [28, 1, 9]). For
instance, it has been shown that 2k log(n/k) linear measurements is required to recover a k−sparse
signal [12], and 3rn measurements suffice for the recovery of a symmetric n × n rank-r matrix
[20, 9]. Recently, Oymak et al [22] showed that these thresholds remain unchanged, as long as the
entries of each ai are i.i.d and drawn from a "well-behaved" distribution. It has also been shown that
similar universality holds in the case of noisy measurements [23]. Although these works are of great
interest, the independence assumption on the entries of the measurement vectors can be restrictive.
In certain applications in communications, phase retrieval, covariance estimation, the entries of the
measurement vectors ai have correlations. In this paper, we show a much stronger universality result
which holds for a broader class of measurement distributions. Here is an informal description of our
result:

Assume the measurement vectors ai are drawn iid from some given distribution.
In other words, the measurement vectors are iid random, but their entries are not
necessarily so. Then the minimum number of observations needed to recover x0

from (1) with high probability, depends only on the first two statistics of the ai, i.e.,
their mean vector µ, and covariance matrix Σ.

We anticipate that this universality result will have many practical ramifications. In this paper we focus
on the ramifications to the problem of recovering a structured matrix, X0 ∈ Rn×n, from quadratic
measurements (a.k.a. rank-one projections). In this problem, we are given observations of the
form yi = aT

i X0ai = Tr(X0(aia
T
i )) = vec(X)tvec(aia

t
i) for i = 1, . . . ,m.1 Such measurement

schemes appear in a variety of problems [11, 3, 35, 19, 18]. An interesting application of learning from
quadratic measurements is the PhaseLift algorithm [7] for phase retrieval. In phase retrieval, the goal
is to recover the signal x0 from quadratic measurements of the form, yi = |aT

i x0|2 = aT
i (x0x

T
0 )ai.

Note that x0x
t
0 is a low-rank (in this case rank-1) matrix and PhaseLift relaxes this constraint to a

non-negativity constraint and minimizes nuclear norm to encourage a low rank solution. Quadratic
measurements also appears in non-coherent energy measurements in communications and signal
processing [33, 2], sparse covariance estimation [11, 35], and sparse phase retrieval [18, 26]. Recently,
Chen et al [11] proved sufficient bounds on the number of measurements for various structures on the
matrix X0. However, to the best of our knowledge, prior to this work, the precise number of required
measurements for perfect recovery was unknown.
For example, when the ai have iid Gaussian entries (note that the measurement vectors, which are
now vec(aia

t
i), are no longer iid Gaussian) we show that 3nr measurement is necessary and sufficient

for the perfect recovery of a rank-r matrix from quadratic measurements. In the special case of
phase retrieval, we therefore demonstrate that 3n measurements is necessary and sufficient for perfect
recovery of x0, which settles the long standing open question of the recovery threshold for PhaseLift.
In particular, this indicates that 2n extra phaseless measurements is all that is needed to compensate
the missing phase information.
The remainder of the paper is structured as follows. The problem setup and definitions are given in
Section 2. In Section 3, we introduce our universality framework, which states that the number of
required observations for the recovery of an unknown model depends only on the first two statistics
of the measurement vectors. As an applications, in Section 4, we apply this universality theorem to
derive tight bounds (i.e., necessary and sufficient conditions) on the required number of observations
for matrix recovery via quadratic measurements.

2 Preliminaries

2.1 Notations

We start by introducing some notations that are used throughout the paper. Bold lower letters x,y, . . .
are used to denote vectors, and bold upper letters X,Y, . . . are for matrices. For a matrix X ∈ Rm×n,
Vec(X) ∈ Rmn returns the vectorized form of the matrix. ‖X‖2, ‖X‖F , ‖X‖? and Tr(X) represent
the operator norm, the Frobenius norm, the nuclear norm and the trace of the matrix X, respectively.
‖x‖`p denotes the `p-norm of the vector x and for matrices, ‖X‖`p = ‖Vec(X)‖`p . For both vectors
and matrices, ‖ · ‖0 indicates the number of non-zero entries. The set of n × n positive definite

1The reader should pardon the abuse of notation as the measurement vectors are now vec(aia
t
i).
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matrices and positive semi-definite matrices are denoted by Sn++ and Sn+, respectively. The letters
g and G are reserved for a Gaussian random vector and matrix with i.i.d. standard normal entries.
The letter H is reserved for a random Gaussian Wigner matrix, that is a symmetric matrix whose
upper-diagonal entries drawn independently from N (0, 1) whose its diagonals entries are drawn
independently from N (0, 2). Finally, the letter I is reserved for the identity matrix. For a random
vector a, E[a] and Cov[a] represent the expected value and the covariance matrix of a.

2.2 Problem Setup

We consider the problem of recovering the unknown vector x0 ∈ S ⊆ Rn from m observations of
the form yi = aT

i x0, i = 1, . . . ,m. Here, the known measurement vectors ai ∈ Rn’s are drawn
independently and identically from a random distribution. These observations can be reformulated as

y = Ax0 , (2)

where y = [y1, . . . , ym]T ∈ Rm and A = [a1, . . . ,am]T ∈ Rm×n. We focus on the high-
dimensional setting where both n and m grow large. We use the notation m = θ(n), to fix the rate at
which m grows compared to n. Of special interest is the underdetermined case where the number of
measurement is smaller than the ambient dimension. In this case, the problem of signal reconstruction
is generally ill-posed unless some prior information is available regarding the structure of x0. Some
popular cases of structures include, sparse vectors, low-rank matrices, and simultaneously-structured
matrices.
Convex estimator: To recover the structured vector x0, we minimize a convex function f : Rn → R
that enforces this structure. We do this minimization for all feasible points x ∈ S, that satisfy
y = Ax. We formally define such estimators as follows,
Definition 1. Let x0 ∈ S where S ⊆ Rn is a convex set. For a convex function f : Rn → R and a
measurement matrix A ∈ Rm×n, we define the convex estimator E{x0,A,S, f(·)} as following,

x̂ = arg min
x∈S

Ax=Ax0

f(x) . (3)

We say E{x0,A,S, f(·)} has perfect recovery iff x̂ = x0.

Note that we are given the observation vector y = Ax0 in the constraint of (3). We aim to character-
ize the perfect recovery criteria for this estimator. Given a structured vector x0, the perfect recovery
of an estimator E{x0,A,S, f(·)} depends on three factors; the number of observations m compared
to the dimension of the ambient space n, properties of the measurement vectors {ai}mi=1, and the
penalty function, f(·). We briefly explain each factor, below.
The rate function θ(·): We work in the high dimensional regime where both n andm grow to infinity
with a fixed rate m = θ(n). Finding the minimum number of measurements to recover x0 via (3),
translates to finding the smallest rate function θ?(·), for which our estimator has perfect recovery. This
optimal rate function depends on the problem settings and varies in different problems. For instance,
in order to recover a rank-r matrix in Sn+, we will need the measurements to be of order m = O(n),
while in the case of k-sparse matrices, the measurements will be of order m = O(k log(n2/k)),
where in many applications k is a fraction of n2.
The penalty function: We use a convex function f(·) that promotes the particular structure of
x0. Exploiting a convex penalty for the recovery of structured signals has been studied exten-
sively [9, 1, 28, 14, 4, 29]. Chandrasekaran et. al. [9] introduced the concept of the atomic norm,
which is a convex surrogate defined based on a set of (so-called) "atoms". For instance, the corre-
sponding atomic norm for sparse recovery is the `1-norm and for low-rank matrix recovery the nuclear
norm. Another interesting scenario is when the underlying parameter x0 simultaneously exhibits
multiple structures such as being low-rank and sparse. For simultaneously structured signals building
the set of atoms is often intractable. Therefore, it has been proposed [21, 10] to use a weighted sum
of corresponding atomic norms for each structure as the penalty.
The measurement vectors: We consider a random ensemble, where the vectors {ai}mi=1 are drawn
independently and identically from a random distribution. Later in Section 2.3, we formally present
the required assumptions on this distribution. It has been observed that the estimator (3) exhibits
a phase transition phenomenon, i.e., there exist a phase transition rate θ?(n), such that when
m > θ?(n) the optimization program (3) successfully recover x0 with high probability, otherwise,
when m < θ?(n) it fails with high probability [1, 9]. The question is that how is this phase transition
is related to the properties of the measurement vectors ai’s?
Universality in learning: Directly calculating the precise phase transition behavior of the estimator
E(x0,A,S, f(·)), for a general random distribution on the measurement vectors is very challenging.
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Recently, as an extension of Gaussian comparison lemmas due to Gordon [16, 17] and earlier work
in [27, 28, 9, 1], a new framework, known as CGMT [29, 30], has been developed which made
this analysis possible when the measurement vectors {ai}mi=1, are independently drawn from the
Gaussian distribution, N (0, In). Another parallel work that makes this analysis possible under the
same conditions is known as AMP [14]. However, the Gaussian assumption is critical in the analysis
through these frameworks, which restricts us from investigating a vast variety of practical problems.
As our main result, we show that, for a broad class of distributions, the phase transition of
E(x0,A,S, f(·)) depends only on the first two statistics of the distribution on the measurement
vectors {ai}mi=1. As a result, the phase transition of the estimator remains unchanged when we
replace the measurement vectors with the ones drawn from a Gaussian distribution with the same
mean vector and covariance matrix. As the phase transition is the same as the one with Gaussian
measurements, we can use the CGMT framework to analyze the latter and get the desired result.
Equivalent Gaussian Problem: Let µ := E[ai] and Σ := Cov[ai] for i = 1, 2, . . . ,m, and consider
the following problem:

1. We are given m observations of the form ỹi = gT
i x0 and the measurement vectors {gi}mi=1.

2. The rows of the measurement matrix G = [g1, . . . ,gm]T ∈ Rm×n are independently drawn
from the multivariate Gaussian distribution N (µ,Σ).

3. We use the estimator E(x0,G,S, f(·)), as in Definition 1, to recover x0.

In Theorem 1, we show that under certain conditions, the two estimators E(x0,A,S, f(·)) and
E(x0,G,S, f(·)) asymptotically exhibit the same phase transition behavior. Before stating our main
result in Section 3, we discuss the assumptions needed for our universality to hold.

2.3 Assumptions

We show universality for a wide range of distributions on the measurement vector as well as a broad
class of convex penalties. Here, we give the conditions needed for the measurement matrix,

Assumption 1. [The Measurement Vectors] We say the measurement matrix A = [a1, . . . ,am]T ∈
Rm×n satisfies Assumption 1 with parameters µ ∈ Rn and Σ ∈ Rn×n, if the followings hold true.

1. [Sub-Exponential Tails] The vectors ai’s are independently drawn from a random sub-
exponential distribution, with mean µ and covariance Σ � 0.

2. [Bounded Mean] For some constants c1, τ1 > 0, we have ‖µ‖22
E[‖ai−µ‖2] ≤ c1 · n

−τ1 , for all i.

3. [Bounded Power] For some constants c2, τ2 > 0, we have Var(‖ai‖2)
E2[‖ai−µ‖2] ≤ c2 · n

−τ2 for all i .

Assumption 1 summarizes the technical conditions that are essential in the proof of our main theorem.
The first assumption on the tail of the distribution enables us to exploit concentration inequalities for
sub-exponential distributions. We allow the vector ai to have a non-zero mean in Assumption 1.2.
Yet we require the power of its mean to be small compared to the power of the random part of the
vector. Intuitively, one would like the measurement vectors to sample diversely from all the directions
in Rn, and not be biased towards a specific direction. Finally, Assumption 1.3 is meant to control
the dependencies among the entries of ai and is used to prove concentration of 1

naT
i Mai around its

mean, for a matrix M with bounded operator norm. For instance, for a Gaussian vector g ∼ N (0, I),
we have Var[‖g‖2] = 2n and E2[‖g‖2] = n2. So Assumption 1.3 is satisfied with c2 = 2 and τ2 = 1.
We will examine these assumptions for the applications discussed in Section 4.
In addition, we need to enforce a few conditions on the penalty function f(·) as follows,
Assumption 2. [The Penalty Function] We say the funtion f(·) satisfies Assumption 2, if the
following holds true.

1. [Separablity] f(·) is continuous, convex and separable, where f(x) =
∑n
i=1 fi(xi) .

2. [Smoothness] The functions {fi(·)} are three times differentiable everywhere, except for a
finite number of points.

3. [Bounded Third Derivative] For any C > 0, there exists a constant cf > 0, such that for all

i, we have |∂
3fi(x)
∂x3 | ≤ cf , for all smooth points in the domain of fi(·) such that |x| < C.
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As observed in the Assumption 2.1, we only consider the special (yet popular) case of separable
penalty functions. Common choices include ‖x‖`1 and ‖x‖2`2 for vectors, and ‖X‖`1 , ‖X‖F and
Tr(X) (which is equivalent to the nuclear norm of X when X ∈ S+) for matrices. We can also apply
our theorem for `p-norm. This is due to the fact that replacing ‖ · ‖`p with ‖ · ‖p`p does not change our
estimate, and the latter is a separable function.

3 Main Result

In this section, we state our main theorem which shows that the performance of the convex estimator
E(x0,A,S, f(·)), is independent of the distribution of the measurement vectors. So we can replace
them with the Gaussian random vectors with the same mean and covariance. Next, using CGMT
framework [29, 30], we analyze the phase transition in the case with Gaussian measurements, in
Corollary 1. Later, we will apply this result to some well-known problems in Section 4.

3.1 Universality Theorem

Theorem 1. [non-Gaussian=Gaussian] Consider the problem of recovering x0 ∈ S ⊆ Rn
from the measurements y = Ax0 ∈ Rm, using a convex penalty function f(·) in the estimator
E{x0,A,S, f(·)} in (3). Assume S is a convex set and m and n are growing to infinity at a fixed
rate m = θ(n). Also assume that

1. f : Rn → R is a convex function that satisfies Assumption 2.

2. The measurement matrix A = [a1, . . . ,am]T satisfies Assumption 1, with µ := E[ai] and
Σ := Cov[ai] for all i = 1, . . . ,m .

3. G = [g1, . . . ,gm]T ∈ Rm×n is a random Gaussian matrix with independent rows drawn
from Gaussian distribution N (µ,Σ) .

Then the estimator E{x0,A,S, f(·)} (introduced in Definition 1) succeeds in recovering x0 with
probability approaching one (as m and n grow large), if and only if the estimator E{x0,G,S, f(·)}
succeeds with probability approaching one.

Theorem 1 shows that only the mean and covariance of the measurement vectors ai affect the required
number of measurements for perfect recovery in (3). Although Theorem 1 holds for n and m growing
to infinity, the result of our numerical simulations in Section 3.2, indicates the validity of universality
for values of m and n ranging in the order of hundreds.

3.1.1 Analysis of the Gaussian Estimator

Theorem 1 shows the equivalence of the convex estimator E{x0,A,S, f(·)} and the Gaussian
estimator E{x0,G,S, f(·)}. We can utilize the CGMT framework to analyze the perfect recovery
conditions for E{x0,G,S, f(·)}. Before doing so, we need the definition of the descent cone,
Definition 2. [Descent Cone] The descent cone of a convex function f(·) at point x0 is defined as

Df (x0) = Cone ({y : f(y) ≤ f(x0)}) , (4)

which is a convex cone. Here, Cone(S) denotes the conic-hull of the set S.
Corollary 1. Consider the problem of recovering the vector x0 ∈ S, given the observations y =
Gx0 ∈ Rm, via the estimator E{x0,G,S, f(·)} introduced earlier. Assume that the rows of G are
independent Gaussian random vectors with mean µ and covariance Σ = MMT. Let δ := m/n and
the set S and the penalty function f(·) be convex. E{x0,G,S, f(·)} succeed in recovering x0 with
probability approaching one (as m and n grow to infinity), if and only if

√
δ >
√
δ? = E

 max
w∈(S−x0)∩Df (x0)

1√
n
MTw∈Sn−1

wTg

n
√

1 + 1
n (wTµ)2

 (5)

where Sn−1 is the n-dimensional unit sphere, and the expected value is over the Gaussian vector
g ∼ N (0,Σ).
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["Pseudo Gaussian Width"] When µ = 0 and Σ = I, the expected value in (5) resembles
the definition of the Gaussian width [25]. It has been shown that when the measurements are
i.i.d. Gaussian, the square of the Gaussian width indicates the phase transition for linear inverse
problems [9, 1, 28]. The Gaussian width has been computed for several interesting examples, such as
sparse recovery, and low-rank matrix recovery. Using our universality result in Theorem 1, we can
state that the square of the Gaussian width indicates the phase transition in the non-Gaussian setting
as well.

3.2 Numerical Results

To validate the result of Theorem 1, we performed numerical simulations under various distributions
for the measurement vectors. For our simulations in Figure 1, we use the estimator E{x0,A,Rn, ‖ ·
‖`1} to recover a k-sparse signal x0 under three random ensembles for the measurement vectors
{ai}mi=1. In each of the three plots, we computed the norm of the estimation error E{x0,A,Rn, ‖ ·
‖`1}, for different over sampling ratios δ = m/n and multiple sparsity factors s = k/n. We generated
the measurement vectors {ai}mi=1 for each figure, as follows,

• For each trial, we generate a random matrix M ∈ Rn×n, with i.i.d. standard Gaussian ran-
dom variables. Σ = MMT will play the role of the covariance matrix of the measurement
vectors.
• For Figure 1a, {ai}mi=1 are drawn independently from the Gaussian distribution N (0,Σ).
• For the measurement vectors of the Figure 1b, we first generate i.i.d centered bernouli

vectors Ber(.8), and multiply each vector by M.
• For the measurement vectors of the Figure 1c, we first generate i.i.d centered χ1 vectors,

and multiply each vector by M.

The blue line in the figures shows the theoretical phase transition derived as a result of Corollary 1. It
can be observed that the phase transition for all the three random schemes is the same, as predicted
by Theorem 1. It also matches the theoretical phase transition derived from Corollary 1.

(a) (b)

(c)

Figure 1: Phase transition regimes for the estimator E{x0,A,Rn, ‖ · ‖`1}, in terms of the oversampling ratio
δ = m

n
and s = ‖x0‖0

n
, for the cases of (a) Gaussian measurements and (b) Bernoulli measurements and (c) χ2

measurements. The blue lines indicate the theoretical estimate for the phase transition derived from Corollary 1.
In the simulations we used vectors of size n = 256. The data is averaged over 10 independent realization of the
measurements.
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Next, to illustrate the applicability and the implications of the results, we present some examples
where our universality theorem can be applied.

4 Applications: Quadratic Measurements

In this section we consider the problem of recovering a matrix from (so-called) quadratic mea-
surements. The goal is to reconstruct a symmetric matrix X0 ∈ Rn×n in a convex set S, given m
measurements of the form,

yi = aT
i X0ai = Tr

(
X0 · (aiaT

i )
)
, i = 1, . . . ,m . (6)

Depending on the application, the matrix X0 may exhibit various structures. Similar to (3), we use the
convex penalty function f : Rn×n → n, to enforce this structure via the following convex estimator,

X̂ = arg min
X∈S

f(X)

subject to: aT
i Xai = aT

i X0ai, i = 1, . . . ,m . (7)

Note that the measurements in (6) are linear with respect to the matrix X0, yet quadratic with respect
to the measurement vectors ai. We can define x̃0 := Vec(X0) ∈ Rn2

and ãi := Vec(aia
T
i ) ∈ Rn2

,
such that the measurements take the familiar form, yi = ãT

i x̃0. In order to apply the result of
Theorem 1, one should check if the vectors {ãi}mi=1 satisfy Assumption 1.
It can be shown that if the vectors {ai}mi=1 satisfy the following conditions, then Assumption 1 holds
true for {ãi = Vec(aia

T
i )}mi=1 .

Assumption 3. We say vectors {ai}mi=1 satisfy Assumption 3, if

1. ai’s are drawn independently from a sub-Gaussian distribution.

2. For each i, the entries of ai are independent, zero-mean and unit-variance.

In particular, this assumption is valid when {ai}’s have i.i.d. standard normal entries. Therefore, when
Assumption 3 holds, we can apply Theorem 1 to show that the required number of measurements
for perfect recovery in (7) is equal to the required number of measurements for the success of the
following estimator,

X̂ = arg min
X∈S

f(X)

subject to: Tr ((Hi + I)X) = Tr ((Hi + I)X0) , i = 1, . . . ,m , (8)

where I is the n× n identity matrix and Hi’s are independent Gaussian Wigner matrices (defined in
Section 2). Corollary 2 presents a formal statement.
Corollary 2. Consider the problem of recovering the matrix X0 ∈ S ⊆ Rn×n, from m quadratic
measurements of the form (6), using the estimator (7). Let S and f(·) be convex set and function
satisying Assumption 2. Assume,

• The measurement vectors {ai}mi=1 satisfy Assumption 3, and,

• {Hi ∈ Rn×n}mi=1 is a set of independent Gaussian Wigner matrices.

Then, as m and n grow to infinity at a fixed rate m = θ(n), the estimator (7) perfectly recovers
X0 with probability approaching one if and only if the estimator (8) perfectly recovers X0 with
probability approaching one.

Therefore, in order to find the phase transition, it is sufficient to analyze the equivalent optimization (8)
which is possible via the CGMT framework. Proceeding onward, we exploit the CGMT framework
along with Corollary 1 to find the required number of measurements for the recovery of X0 in two
specific applications.

4.1 Low-rank Matrix Recovery

Assume the unknown matrix X0 � 0 has rank r, where r is a constant ( i.e., r does not grow with
problem dimensions n,m.) Such matrices appear in many applications such as traffic data monitoring,
array signal processing and phase retrieval. The nuclear norm, || · ||?, is often used as the convex
surrogate for low-rank matrix recovery [24]. Hence, we are interested in analyzing the optimization
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(7), with the choice of f(X) = ‖X‖?, where the optimization is over the set of PSD matrices. Note
that Tr(·) = || · ||? within this set, which satisfies Assumption 2.
According to Corollary 2, the perfect recovery in (7) is equivalent to perfect recovery in (8), where
the same choice of f(X) = Tr(X). The analysis of the later through CGMT yields the following
corollary.
Corollary 3. Consider the optimization program (7), where the matrix X0 � 0 has rank r, f(X) =
Tr(X), the set S is the PSD cone and the measurement vectors {ai}mi=1 satisfy Assumption 3. Assume
m,n → ∞ at the proportional rate δ := m

n ∈ (0,+∞). The estimator perfectly recovers X0 if
δ > 3r.

Corollary 3 indicates that 3rn measurements is needed to perfectly recover a rank-r PSD matrix X0,
from quadratic measurements. Although, the error of estimation gets extremely small, much before
the threshold m = 3nr. To the extent of our knowledge, this is the first work that precisely computes
the phase transition of low-rank matrix recovery from quadratic measurements. Figure2 depicts the
result of numerical simulations. For different values of r and δ, the Frobenius norm of the error of
the estimators (7) and (8) has been computed, which shows the same phase transition in both cases.

(a) (b)

Figure 2: Phase transition regimes for both estimators 7 and (8), with f(X) = Tr(X), in terms of the
oversampling ratio δ = m

n
and r = Rank(X0), for the cases of (a) estimator (7) with quadratic measurements

and (b) estimator (8) with Gaussian measurements. In the simulations we used matrices of size n = 40. The
data is averaged over 20 independent realization of the measurements.

4.1.1 Phase Transition of PhaseLift in Phase Retrieval

An important application for the result of Corollary 3, is when the underlying matrix X0 is of rank
1. This appears in the problem of phase retrieval, where X0 = x0x

T
0 is the lifted version of the

signal. The optimization program (7) with f(X) = Tr(X) in this case, is known as PhaseLift [7].
Corollary 3 states that the phase transition of the PhaseLift algorithm happens at δ? = 3, i.e., m > 3n
measurements is needed for the perfect signal reconstruction in PhaseLift. We should emphasize the
significance of this result as establishing the exact phase transition of the PhaseLift algorithm was
long an open problem.

4.2 Sparse Matrix Recovery

Let X0 � 0 represent the covariance matrix of a set of random variables. In certain applications, the
covariance matrix has many near-zero entries as the correlations are small for many pairs of random
variables. Such matrices arise in applications in spectrum estimation, biology and finance [15, 11].
We are interested in analyzing estimator (7), where f(X) = ‖X‖`1 promotes the sparsity in the
optimization. As ‖ ·‖`1 satisfies Assumption 2, applying the result of Corollary 2, the perfect recovery
in (7) is equivalent to the perfect recovery in the estimator (8), with the same penalty function.
Analyzing the optimization (8) via CGMT leads to the following result:

Corollary 4. Let δ := m
n2 , s := ‖X0‖0

n2 . As n → ∞, the optimization program (7), with f(X) =
‖X‖`1 can successfully recover the signal iff δ > δ?, where δ? is the unique solution to the following
nonlinear equation,

x ·Q−1

(
2x− s
2− 2s

)
= (1− s)φ

(
Q−1

(
2x− s
2− 2s

))
, (9)
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Model Penalty function f(·) No. of required measurements
k sparse matrix ‖ · ‖`1 n2δ? defined in (9)
Rank-r PSD matrix Tr(·) 3nr
S&L (k, r) matrix Tr(·) + λ‖ · ‖1 O(min(k2, rn))

Table 1: Summary of the parameters that are discussed in this section. The last row is for a n× n
rank-r matrix whose smallest sub-matrix with non-zero entries is k by k. The third column shows the
number of required quadratic measurements for perfect recovery.

where φ(x) = exp(−x2/2)/
√

2π and Q−1(·) is inverse of the Q-function.

Figure 3b compares the empirical result with the theoretical phase transition derived from Corollary 4
Each plot shows the norm of the error with respect to the sparsity of the matrix X0 and the ratio
δ = m

n2 . A comparison between the two plots indicates that the phase transitions of the two
estimators (7) and (8) with f(X) = ‖X‖`1 match.

(a) (b)

Figure 3: Phase transition regimes for both estimators (7) and (8), with f(X) = ‖X‖`1 , in terms of the
oversampling ratio δ = m

n
and s = ‖X0‖0

n2 , for the cases of (a) estimator (7) with quadratic measurements and
(b) estimator (8) with Gaussian measurements. The blue lines indicate the theoretical estimate for the phase
transition derived from equation (9). In the simulations we used matrices of size n = 40. The data is averaged
over 20 independent realization of the measurements.

4.3 Conclusion

We have investigated an estimation problem under linear observations. We aimed to characterize
the minimum number of observations that are needed for perfect recovery of the unknown model.
Our main result indicated that this phase transition, only depends on the first two statistics of the
measurement vector. Therefore, it remains unchanged as we replace these vectors with the Gaussian
one, with the same mean vector and covariance matrix. The later can be analyzed through existing
frameworks such as CGMT. As one of the applications of this universality, we investigated the case
of matrix recovery via the so called quadratic measurements, and derived the minimum number of
observations required for the recovery of a structured matrix. Due to the space constraint, we moved
the discussions regarding the case of simultaneously structured matrices to the appendix. Table 1,
summarizes these results for the cases of three structures.
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5 Simultaneously Sparse and Low-rank Matrices
Another interesting example is where the unknown matrix X0 � 0 is simultaneously sparse and low
rank. To recover X0, we would like to simultaneously minimize the penalty functions f (1)(X) =
‖X‖`1 and f (2)(X) = ‖X‖?, for all feasible matrices X ∈ S that align our measurements in (6).
Here, each function f (i)(·) enforces one of the structures on X. So, a natural choice for the regularizer
function in (7) would be f(X) = f (1)(X) + λf (2)(X), where λ is a regularizing parameter. Oymak
et al [21] studied phase transition for perfect recovery of simultaneously structured matrices. Their
results are based on Gordon’s comparison lemma which is only applicable to the cases of linear
Gaussian measurements. We can use the result of Corollary 2 to extend their result to settings with
quadratic measurements, as the phase transition regime is equivalent in both cases. Let X0 ∈ Rn×n be
a rank-r PSD matrix. Also assume that the largest sub-matrix in X0 that contains all non-zero entries
is k by k. If we choose f(X) = ‖X‖`1 + λTr(X), they show that O(min(k2, rn)) measurements is
required for perfect recovery.

6 Proofs

6.1 Proof of Theorem 1

Consider the following optimization

Φ1 = min
Ax0=Ax

f(x) , (10)
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Without loss of generality, assume that f(0) = 0. We change the variable to w = x − x0, which
gives the following

Φ1 = min
Aw=0

f(w + x0) , (11)

This optimization has perfect recovery, iff ŵ = 0, or equivalently iff Φ1 = 0. We would like to show
that if Φ1 = 0 with probability converging to 1, then the same holds if we replace the measurements
vectors ai, with another set of measurement vectors with the same mean and covariance. We rewrite
this optimization in the form of this min-max optimization,

Φ1 = sup
λ>0

min
w

λ

2
‖Aw‖2 + f(w + x0)

= sup
λ>0

min
µ>0

min
w

λ

2
‖Aw‖2 + f(w + x0) +

1

2µ
‖w‖2

= sup
λ>0

λ ·min
µ>0

min
w

1

2
‖Aw‖2 +

1

λ
f(w + x0) +

1

2λµ
‖w‖2 (12)

Informally, we first show that for fixed values of λ and µ, the values of last minimization remains
unchanged as we change the random measurement vectors inside it (as m and n grow to infinity).
Next, we use Lemma ?? (See [29] Section A.4 and B.5) to switch the min-max over µ and λ, with
the limit over m and n.
By fixing the values of λ and µ, from now on, we redefine the function f(·) to be
1
λf(w + x0) + 1

2λµ‖w‖
2, which is strongly convex. Note that we would like the following

assumptions holds for these two set of random measurement vectors.
Assumption 1: Assume A = [a1, . . . ,am]T ∈ Rm×n and B = [b1, . . . ,bm]T ∈ Rm×n are two
random matrices, such that

e = E [ai] = E [bi] ∀i
Σ = E

[
aia

T
i

]
= E

[
bib

T
i

]
∀i

lim
n→∞

‖e‖2

n2
= 0, (13)

Besides, there exists τ > 0 such that for any matrix M ∈ Rn×n such that ‖M‖2 ≤ κ, there exists
some c that only depends on κ that

1

n2
Var
(
aT
i Mai

)
≤ c · n−τ and,

1

n2
Var
(
bT
i Mbi

)
≤ c · n−τ . (14)

Now we want to investigate equivalence of the following two optimizations. Let A = [a1, . . . ,am]
and B = [b1, . . . ,bm] be m by n measurement matrices and

ΦB = min
w

1

2m

m∑
i=1

(
zi −wTai

)2
+ f (w + x0) ,

ΦA = min
w

1

2m

m∑
i=1

(
zi −wTbi

)2
+ f (w + x0) . (15)

Theorem 2. Consider the optimizations in (??). If

lim
n,m→∞

|E [ΦB − ΦA]| = 0 , (16)

and if for constants C and δ > 0,

Pr (|ΦA − C| > δ)
P−→ 0 , (17)

as n,m→∞. Then,

Pr (|ΦB − C| > 3δ)
P−→ 0 , (18)
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Proof. We first define the function g : R→ R as follows.

g(x) =


0 if |x| ≤ 1,
(|x| − 1)2 if 1 < |x| ≤ 2,
2− (|x| − 3)2 if 2 < |x| ≤ 3,
2 if |x| > 3 .

(19)

Note that g(.) is continuously differentiable with its first derivative bounded by 2. Now,

Pr {|ΦB − C| > 3δ} = Pr
{
g

(
ΦB − C

δ

)
> 2

}
≤ 1

2
E
[
g

(
ΦB − C

δ

)]
≤ 1

2
E
[
g

(
ΦA − C

δ

)]
+

1

2

∣∣∣∣E [g(ΦA − C
δ

)
− g

(
ΦB − C

δ

)]∣∣∣∣
≤ Pr {|ΦA − C| > δ}+

1

2

∣∣∣∣E [g′(ζ) ·
(

ΦA − C
δ

− ΦB − C
δ

)]∣∣∣∣
≤ Pr {|ΦA − C| > δ}+

1

δ
|E [ΦA − ΦB]| n,m→∞−−−−−→ 0 (20)

Theorem 3. Consider the optimizations in (??). If A, B and f(.) satisfy Assumption 1 and 2,
respectively, then

lim
n,m→∞

|E [ΦA]− E [ΦB]| → 0 . (21)

Proof. For k = 0, . . . ,m, we define

Φk := min
w

1

2m

k∑
i=1

(
zi − aT

i w
)2

+
1

2m

m∑
i=k+1

(
zi − bT

i w
)2

+ f (w + x0) . (22)

We have

|E [ΦA − ΦB]| = |E [Φm − Φ0]| ≤
m∑
k=1

|E [Φk − Φk−1]| . (23)

Now it suffices to show that there exists a constant c, such that for any k,

|E [Φk − Φk−1]| ≤ c m−(1+τ/2) , (24)

for some positive constant τ . Since, then combining (??) and (??) yields,

|E [ΦA − ΦB]| ≤
m∑
k=1

|E [Φk − Φk−1]| ≤ c m−τ/2 → 0 . (25)

Let

Mk = [a1, . . . ,ak−1,bk+1, . . . ,bm]T ∈ R(m−1)×n, and,

zk = [z1, . . . , zk−1, zk+1, . . . , zm]T ∈ Rm−1 . (26)

This helps us rewrite Φk and Φk−1 as

Φk = min
w

1

2m
‖zk −Mkw‖2 +

1

2m

(
zk − aT

kw
)2

+ f (w + x0) ,

Φk−1 = min
w

1

2m
‖zk −Mkw‖2 +

1

2m

(
zk − bT

kw
)2

+ f (w + x0) . (27)

As of this point, we fix k and drop the subscript k from zk, zk, Mk, ak and bk for simplicity. The
expectation in (??) is over the randomness in z, z, M, a and b, which can be written as

|E [Φk − Φk−1]| =
∣∣E{M,z}

[
E{z,a,b}

[
Φk − Φk−1

∣∣{M, z}
]]∣∣ ≤ E{M,z}

[∣∣∣∣E{z,a,b}∣∣{M,z}
[Φk − Φk−1]

∣∣∣∣] .
(28)
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We first fix M and z, and bound the inner expectation in (??). Now let,

φ(a, z,w) =
1

2m
‖z−Mw‖2 +

1

2m

(
z − aTw

)2
+ f (w + x0) ,

Φ(a, z) = min
w

φ(a,w) ,

Φ̄ = Φ(0, 0), and, w̄ = arg min φ(0, 0,w) . (29)

With these new definitions, we have Φk = Φ(a, z) and Φk−1 = Φ(b, z) and thus,∣∣E{z,a,b} [Φk − Φk−1]
∣∣ =

∣∣E{z,a,b} [Φ(a, z)− Φ(b, z)]
∣∣

≤

∣∣∣∣∣E{z,a}
[

Φ(a, z)− Φ̄−
σ2 + ‖w̄‖2

m

2m(1 + E[bTΩb])

]∣∣∣∣∣
+

∣∣∣∣∣E{z,b}
[

Φ(b, z)− Φ̄−
σ2 + ‖w̄‖2

m

2m(1 + E[bTΩb])

]∣∣∣∣∣ (30)

So since E[bTΩb] = E[aTΩa], it remains to show that for positive constants c and τ ,∣∣∣∣∣E{z,a}
[

Φ(a, z)− Φ̄−
σ2 + ‖w̄‖2

m

2m(1 + E[aTΩa])

]∣∣∣∣∣ ≤ c m−(1+τ/2) , and,∣∣∣∣∣E{z,b}
[

Φ(b, z)− Φ̄−
σ2 + ‖w̄‖2

m

2m(1 + E[bTΩb])

]∣∣∣∣∣ ≤ c m−(1+τ/2) . (31)

We show the later, and the proof of the first is similar. Define v = ∂f(w̄+x0)
∂w and V = ∂2f(w̄+x0)

∂w2

and

ψ(b, z,w) =
1

2m
‖z−Mw‖2 +

1

2m

(
z − bTw

)2
+ f (w̄ + x0) + vT(w − w̄) +

1

2
(w − w̄)TV( w − w̄) ,

Ψ(b, z) = min
w

ψ(b, z,w) , and, w̃ = arg min ψ(b, z,w) . (32)

Note that by writing the optimality conditions, it is easy to show that Ψ(0, 0) = Φ(0, 0) = Φ̄. Thus,

E{z,b}

∣∣∣∣∣
[

Φ(b, z)− Φ̄−
σ2 + ‖w̄‖2

m

2m(1 + E[bTΩb])

]∣∣∣∣∣ ≤ E{z,b} [|Φ(b, z)−Ψ(b, z)|]

+

∣∣∣∣∣E{z,b}
[

Ψ(b, z)−Ψ(0, 0)−
σ2 + ‖w̄‖2

m

2m(1 + E[bTΩb])

]∣∣∣∣∣ .
(33)

So we have to bound the two terms on the right hand side of (??). We start with bounding
E{z,b} [|Φ(b, z)−Ψ(b, z)|]. Note that for any w we have

|ψ(b, z,w)− φ(b, z,w)| ≤ Cf
m
‖w − w̄‖33 . (34)

Besides, due to strong convexity of f̄(.) we have,

|ψ(b, z,w)−Ψ(b, z)| ≥ ε

m
‖w − w̃‖22 . (35)

We have two cases.
First if ‖w̃− w̄‖3 ≤ ε

9 Cf
. Consider the set S = {w : ‖w− w̃‖3 = ‖w̃− w̄‖3}. For any w in the

set S we have

φ(b, z,w)− φ(b, z, w̃) ≥ ψ(b, z,w)− ψ(b, z, w̃)− Cf
m

(
‖w − w̄‖33 + ‖w̃ − w̄‖33

)
≥ ε

m
‖w − w̃‖22 −

Cf
m

(
‖w − w̄‖33 + ‖w̃ − w̄‖33

)
≥ ε

m
‖w − w̃‖23 −

Cf
m

(
4 ‖w − w̄‖33 + 5 ‖w̃ − w̄‖33

)
=

9 Cf
m
‖w̃ − w̄‖23

(
ε

9 Cf
− ‖w̃ − w̄‖3

)
≥ 0 . (36)
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This means that the optimal value of φ(b, z,w) lies within S. Now if wφ = arg minφ(b, z,w),
Ψ(b, z)− Φ(b, z) = (ψ(b, z, w̃)− ψ(b, z,wφ)) + (ψ(b, z,wφ)− φ(b, z,wφ))

≤ (ψ(b, z,wφ)− φ(b, z,wφ)) ≤ Cf
m
‖wφ − w̄‖33

≤ 4 Cf
m

(
‖wφ − w̃‖33 + ‖w̃ − w̄‖33

)
≤ 8 Cf

m
‖w̃ − w̄‖33 . (37)

And,
Φ(b, z)−Ψ(b, z) = (φ(b, z,wφ)− φ(b, z, w̃)) + (φ(b, z, w̃)− ψ(b, z, w̃))

≤ (φ(b, z, w̃)− ψ(b, z, w̃)) ≤ Cf
m
‖w̃ − w̄‖33 . (38)

Thus, (??) and (??) implies that

|Φ(b, z)−Ψ(b, z)| ≤ 8 Cf
m
‖w̃ − w̄‖33 . (39)

Case 2 if ‖w̃ − w̄‖3 ≥ ε
9 Cf

.

Φ(b, z)−Ψ(b, z) = (φ(b, z,wφ)− φ(b, z, w̄)) + (φ(b, z, w̄)− φ(0, 0, w̄))

+ (ψ(0, 0, w̄)− ψ(b, z, w̄)) + (ψ(b, z, w̄)− ψ(b, z, w̃))

≤ ψ(b, z, w̄)− ψ(b, z, w̃) ≤ 1

2m

(
z − bTw̄

)2
. (40)

Ψ(b, z)− Φ(b, z) ≤ (ψ(b, z, w̃)− ψ(b, z, w̄)) + (ψ(b, z, w̄)− ψ(0, 0, w̄)) + (φ(0, 0, w̄)− φ(0, 0, w̄))

≤ 1

2m

(
z − bTw̄

)2
. (41)

So finally,

|Ψ(b, z)− Φ(b, z)| ≤ 1

2m

(
z − bTw̄

)2
. (42)

So by combining the two cases, we get

|Φ(b, z)−Ψ(b, z)| ≤ 1‖w̃−w̄‖3≤ ε
9 Cf

(
8 Cf
m
‖w̃ − w̄‖33

)
+ 1‖w̃−w̄‖3> ε

9 Cf

(
1

2m

(
z − bTw̄

)2)
.

(43)
Therefore,

E [|Φ(b, z)−Ψ(b, z)|] ≤ E
[
1‖w̃−w̄‖3≤ ε

9 Cf

(
8 Cf
m
‖w̃ − w̄‖33

)]
+ E

[
1‖w̃−w̄‖3> ε

9 Cf

(
1

2m

(
z − bTw̄

)2)]
≤ 8Cf

m
E
[
‖w̃ − w̄‖33

]
+

1

2m

√
Pr
{
‖w̃ − w̄‖3 ≥

ε

9 Cf

}
E[(z − bTw̄)

4
]

≤ 8Cf
m

E
[
‖w̃ − w̄‖33

]
+

1

2m

√
E [‖w̃ − w̄‖33]

( ε
9Cf

)3
E[(z − bTw̄)

4
]

≤ C

m5/4
(44)

On the other hand, it is easy to see that

Ψ(b, z)−Ψ(0, 0) =
(z − bTw̄)2

2m(1 + bTΩ−1b)
, (45)

where Ω = V + MTM. Note that∣∣∣∣∣E
[

Ψ(b, z)−Ψ(0, 0)−
σ2 + ‖w̄‖2

m

2m(1 + E[bTΩb])

]∣∣∣∣∣ =

∣∣∣∣∣E
[

(z − bTw̄)2

2m(1 + bTΩ−1b)
−

σ2 + ‖w̄‖2
m

2m(1 + E[bTΩb])

]∣∣∣∣∣
≤ 1

2m
E
[
(z − bTw̄)2

∣∣bTΩb− E[bTΩb]
∣∣]

≤ 1

2m

√
E [(z − bTw̄)4] E

[
(bTΩb− E[bTΩb])

2
]

≤ C

m1+τ/2
. (46)
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Now putting (??) and (??) in (??), results in∣∣∣∣∣E{z,b}
[

Φ(b, z)− Φ̄−
σ2 + ‖w̄‖2

m

2m(1 + E[bTΩb])

]∣∣∣∣∣ ≤ 8Cf
m

E
[
‖w̃ − w̄‖33

]
+

27C
3/2
f

2mε3/2

√
E [‖w̃ − w̄‖33] E[(z − bTw̄)

4
]

+
1

2m

√
E [(z − bTw̄)4] E

[
(bTΩb− E[bTΩb])

2
]

(47)

c m−(1+τ/2) (48)

It remains to bound E
[
(z − bTw̄)4

]
and E

[
‖w̃ − w̄‖33

]
. For the first one, let 1

ne = E[b] and
b̃ = b− 1

ne. Then,

E
[
(z − bTw̄)4

]
= E[z4] + 6E[z2] E[(bTw̄)2] + E[(bTw̄)4]

= E[z4] +
6E[z2]

n
(E[(b̃Tw̄)2] + (eTw̄)2) + E[(b̃Tw̄)4] + 6E[(b̃Tw̄)2](eTw̄)2 + (eTw̄)4

≤ C1 + C2‖w̄‖2 + C3‖w̄‖4 . (49)

On the other hand, let Ω−1 = [ω1 . . . , ωn]T. Since Ω−1 � 1/ε,

E
[
‖w̃ − w̄‖33

]
= E

[∥∥∥∥ (z − bTw̄)

(1 + bTΩ−1b)
Ω−1b

∥∥∥∥3

3

]
≤ E

[∥∥(z − bTw̄) Ω−1b
∥∥3

3

]
≤ 4 E

[∥∥∥(z − bTw̄) Ω−1b̃
∥∥∥3

3

]
+

4

n3
E
[∥∥(z − bTw̄) Ω−1e

∥∥3

3

]
≤ 4

√
E [(z − bTw̄)6] E

[∥∥∥Ω−1b̃
∥∥∥6

3

]
+

4

n3

∥∥Ω−1e
∥∥3

3

√
E [(z − bTw̄)6]

≤ 4

√√√√E [(z − bTw̄)6] E

[∑
k

|ωT
k b̃|3

]2

+
4

n3

∥∥Ω−1e
∥∥3

2

√
E [(z − bTw̄)6]

≤ (
C

nε3
+

4‖e‖32
ε2n3

)
√

E [(z − bTw̄)6] (50)

which concludes the proof.

Theorem 4. let WA and WB bt the optimal solutions to (??). If for any function f(.), that satisfies
our conditions,

ΦA − ΦB → 0 , (51)

then,

1

n2
‖WA‖2F −

1

n2
‖WB‖2F → 0 . (52)

Proof. Assume that 1
n2 ‖WA‖2F and 1

n2 ‖WB‖2F converge to difference values of CA and CB.
Choose C = (CB + CA)/2 and consider the following optimization,

Φ̄A = min
1
n2 ‖W‖

2
F≤C

W∈Hn

1

2m

m∑
i=1

(zi − Tr(Ai ·W))
2

+ f (W) ,

Φ̄B = min
1
n2 ‖W‖

2
F≤C

W∈Hn

1

2m

m∑
i=1

(zi − Tr(Bi ·W))
2

+ f (W) . (53)

We show that the two should converge to the same value, which is a contradiction since f(.) is
strongly convex and one should converge to ΦA and the other should be larger that ΦB. Using
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min-max theorem, they can be rewritten as

Φ̄A = sup
λ>0

− λ C + min
W∈Hn

1

2m

m∑
i=1

(zi − Tr(Ai ·W))
2

+ f (W) +
λ

n2
‖W‖2F ,

Φ̄B = sup
λ>0

− λ C + min
W∈Hn

1

2m

m∑
i=1

(zi − Tr(Bi ·W))
2

+ f (W) +
λ

n2
‖W‖2F . (54)

Due to the assumption of the theorem, the two inside converge to the same value for any fixed λ. So
the concave version of Lemma ?? shows that Φ̄A and Φ̄B also converge to the same value which is a
contradiction.

Lemma 1. Consider a series of convex functions fn : R>0 → R that converges point-wise to
the function f : R>0 → R. Besides, there exists M > 0 such that for any x > M , we have
f(x) > infs>0 f(s). Then f(.) is also convex and infs>0 fn(s)

p−→ infs>0 f(s).
Lemma 2. Let w̄ be the optimal solution to the optimization

min
w

1

2
‖z−Aw‖2 + f(w + x0) , (55)

where f(.) is strongly convex with constant ε. Then

‖w̄‖ ≤ 2

ε
(‖ATz‖+ ‖∇f(x0)‖) (56)

Proof. let

φ(A,w) =
1

2
‖z−Aw‖2 + f(w + x0) . (57)

We have
0 > φ(A, w̄)− φ(A, 0) ≥ w̄T

(
−ATz +∇f(x0)

)
+
ε

2
‖w̄‖2 .

Therefore,
ε

2
‖w̄‖2 ≤

∣∣w̄T
(
−ATz +∇f(x0)

)∣∣ ≤ ‖w̄‖ (‖ATz‖+ ‖∇f(x0)‖
)
, (58)

which concludes the proof. Now let w̄ be the optimizer of φ(A,w) and E[A] = 1eT. Due to
optimality we have,

0 = AT(Aw̄ − z) +∇f(x0 + w̄) (59)

Lemma 3. Let w̄ be the optimal solution to the optimization

min
w

1

2
‖z−Aw‖2 + f(w + x0) , (60)

where f(.) is strongly convex with constant ε and A ∈ Rm×n is a random value with E[A] = 1et

and B = A− 1et. Then

‖w̄‖ ≤ 2

ε
(‖ATz‖+ ‖∇f(x0)‖) (61)

Proof. We have,

φ(A, 0) ≥ φ(A, w̄) =
1

2
‖z−Bw̄ − 1eTw̄‖2 + f(w̄ + x0) ≥ m

2
(eTw̄)2 + (eTw̄) · 1T(Bw̄ − z)

(62)
Therefore,

(eTw̄)2 +
2

m
(eTw̄) · 1T(Bw̄ − z)− 2

m
φ(A, 0) ≤ 0 (63)

This results in

|eTw̄| ≤ 2

m

∣∣1T(Bw̄ − z)
∣∣+

2

m
φ(A, 0) ≤ 2

m
|1Tz|+ 2

m
‖w̄‖ · ‖BT1‖+

2

m
‖z‖2 + f(x0)

≤ 2

m
|1Tz|+ 4

mε

(
‖ATz‖+ ‖∇f(x0)‖

)
· ‖BT1‖+

2

m
‖z‖2 + f(x0) (64)
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