A Remarks
In this section we present some remarks about our work.

Alternative protocol The protocol investigated in [33] updates the iterates via wiy1,y

> wev Powwiw — 77,5% Z;n:l ((wtyv,xi,wH - yiyv)xiyv. The original motivations for this pro-
tocol are that it is fully decentralised, that agents are only required communicate locally, and that it
reduces to a distributed averaging consensus protocol when the gradient is zero. The protocol (3]
that we consider preserves these properties while making the analysis easier. For a discussion on the
difference between the two protocols we refer to [41].

Network error The network error terms (3)) and (6)) track the error between the distributed protocol
and the ideal single-machine protocol. In the case of a complete graph the deviation is zero so the
network terms vanish and the convergence rates for Single-Machine Gradient Descent are recovered.
Following the literature on decentralised optimisation, we present our final results (cf. Theorem [2)
in terms of the spectral gap, so plugging in the spectral gap of a complete graph in the bound in
Theorem [2does not immediately yield the Single-Machine Gradient Descent result.

Parameter tuning The choice of parameters in Theorem [T]depends on the quantities r and ~y that
are related to the estimation problem. In practice, these quantities are often unknown. In the single-
machine setting, this lack of knowledge is typically addressed via cross-validation [48]]. Investigating
the design of decentralised cross-validation schemes is outside of the scope of this work and we leave
it to future research. However, we highlight that as we consider implicit regularisation strategies and,
in particular, early stopping, model complexity can be controlled with iteration time and this yields
computational savings for cross-validation compared to methods that required to solve independent
problem instances for different choices of parameters.

Accelerated gossip Accelerated gossip schemes can also be considered to yield improved depen-
dence on the network topology, depending on the amount of information agents have access to about
the communication matrix P. Accelerated gossip can be achieved by replacing the matrix P by a

polynomial of appropriate order, e.g. k, leading to P := Ze , agPY. The weights {a},—1,.

can be tuned to increase the spectral gap i.e. (1 — O'Q(P))_ < (1 — 02)~t. We highlight that the
algorithm that we consider only needs to have access to the number of nodes n and the second
largest eigenvalue in magnitude oy of the matrix P. Within this framework, one can use Chebyshev

polynomials to obtain the improved rate (1 — o5(P))~!/2, and more information on the spectrum of
P yields better rates on the transitive phase [11} 15].

Additional requirements in Theorem 2] Theorem [2]includes two additional requirements over
single-machine gradient descent, which we briefly explain the origins of. The requirement § < 3/4
is purely cosmetic and serves to yield a cleaner bound. For more details, see the proof of Lemmal9]in

Section The requirement ¢/2 > %ﬁgm, on the other hand, often arises when analysing

Distributed Gradient Descent, see [[18] for instance. In particular, it ensures sufficient iterations have
been performed to reach the mixing time of the Markov chain associated to P. See Section

Communication model We include additional details on the communication model. Consider a
lockstep communication model where each round lasts for 7 units of time. Within each round, agents
send/receive the messages to/from their neighbours in order to implement a single update of algorithm
(3). With a gradient evaluation costing 1 unit of time, each iteration of Distributed Gradient Descent
takes the following amount of time m + 7 + Deg(P): m gradient evaluations; 7 in communication
delay; Deg(P) for each agent to aggregating their neighbours and own gradients, as the sum in
algorithm (3) } \, Py, has computational cost O(Deg(P)). The delay 7 can depend on factors
arising from: noisy transmission, compressing or decompressing messages and synchronizing with
neighbours. One particular model for 7 is studied within [S0] and discussed in the following remark.

Comparison to speed-up and communication model within [S0] The work [50] assumes the
delay 7 is a linear function of the network degree and some transmit time Tryansmis > 0 S0 7 =
TrvansmitDeg(P). In our work, for sufficiently many samples m, the speed-up under this model for
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nm
m+Deg(P) Prransmit
(1 — 09), that is, same as ours but scaled by the spectral gap of the

any network topology is of the order . Meanwhile, the speed-up seen within [50]

nm
7 mADeg(P) Trransmit
communication matrix P.

iﬂ of the order

B Proof scheme

In this section we illustrate the main scheme for the proof of Theorem 2] from which Theorem [I]
follows. Section @] presents the error decomposition into bias, variance, and network terms. Section
[B.2] presents the sketch of the statistical analysis for these terms, which is given in full in Section [C]

B.1 Error decomposition

The error decomposition is based on the introduction of two auxiliary processes used to compare the
iterates of Distributed Gradient Descent (3).

The first auxiliary process represents the iterates generated if agents were to know the marginal
distribution pyx. Initialised at 13 = 0, the process is defined as follows for ¢ > 1:

Hea1 = e — /X (s 01 — fol))wdpx (a).

This device has already been used in the analysis of non-parametric regression in the single-machine
setting [27].

The second auxiliary process represents the iterates generated if agents were to be part of a complete
graph topology and were to use the protocol given by P = %11T. Initialised at &; ,, = O for all
v € V, the process is defined as follows for ¢ > 1:

m

1 1
£t+1,v = Z E <£t,w - 771‘% Z(<£t,w» Ii,w>H - yi,w)xi,w> .

weV i=1

The analysis of iterative decentralised algorithms typically builds upon the introduction of a device
analogous to this one [33}[18]). Initialised at £&; = 0, Single-Machine Gradient Descent is defined as
follows for ¢t > 1:

1 m
1 =& — M SN iw) i — Vi) Tiw-

weV i=1

It is easy to see that we have §; ,, = & fort > 1 and v € V. This allows us to produce an analysis of
Distributed Gradient Descent that relies upon known results for Single-Machine Gradient Descent.

Let us introduce the linear map S, : H — L?(H, px) defined by S,w = (w, - ) ir. The following
error decomposition holds.

Proposition 1. Foranyt > 1 and v € V we have
Elweo) — inf E(w) <2|Sppe — Frll3 +4018, (& — po)ll2 +4 1Sy (wiw — &) 2 -

(Bias)? Sample Variance Network Error

Proof. From the work in [40], £(w) — inf,ecq E(w) = [|S,w — fu |3 for any w € H. Adding and
subtracting S,p; and using ||z — y||2 < (|||, + |yll,)* < 2[|]|2 + 2[ly]|2 we get

E(wip) = Inf E(w) = [ISpwre = Sppte + Sppe = fully < 201Spwr0 = Spully + 2/ Sppe = fully-
Following the same steps, adding and subtracting S,&;,.,, we find

1Spwt,0=Sphelly = ISpwt,o=Spéew + Sp€ew—Sphelly < 2018, (weo = &)l +201Sp (& — pe)ll;

where we used the equality of {; , }s>1 and {&s}s>1. O

3 The units of time within [50, Section 3.2] are in terms of the time taken to compute a gradient for nm
samples, and as such, can be translated into units per gradient computation by multiplying by nm.
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Propositiondecomposes the error into three terms. The first term || S, — frr H% is deterministic
and corresponds to the square of the Bias in the single-machine setting [57]. The second term
S, (& — put)||2 aligns with what is called the Sample Variance in the single-machine setting, and
in this case matches the sample variance obtained for Single-Machine Gradient Descent run on all
nm observations. The third term ||S,(w;,, — & )| accounts for the error due to performing a
decentralised protocol and we call it the Network Error.

B.2 Statistical analysis of error terms

In this section we illustrate the main ideas of the statistical analysis used to control the error terms in
Proposition[T] Full details are given in Section [C]

Notation Let ¢ and k be positive natural numbers with t — 1 > k£ > 1. For any operator
L : H — H, define Hpp11(L) == (I — L) — 1 L)+ (I — ng+1L), with the conven-
tion ;.1 (L) := I, where I is the identity operator on H. Let wi.py1 = Wiwi—q ... Wiyl =
(wg, w1, ..., Wkt1) € Vt=F denote a sequence of nodes in V. For a family of opera-
tors indexed by the nodes on the graph {L,},cv, define Ly, ., = (Luw,s---,Luw,,,) and
Ht:k+1(£wt:k+l) = (I - ﬁtﬁwt)(f - "7t—1£wt_1) T (I - ﬂk+1£wk+1)’ with Ht3t+1(£wt:t+1) =1
Let Pu,ipr = Pujwiy Pw,_1we_s * Pujyowin,, b€ the probability of the path generated by a
Markov Chain with transition kernel P. For each agent v € V, let Ty, : H — H with
Tx, = % E:i1< -, T;w) HTi, be the empirical covariance operator associated to the agent’s own
data x,, and let 7;%“1 = (Txwy s 7;Wk+1 ). Fork > 1,v € V, let N;, € H be a random
variable that only depends on the randomness in z, and that has zero mean, E[Ny ,] = 0. The
random variable Ny ,,, formally defined in (8) in Section|C.3} captures the sampling error introduced
at iteration k of gradient descent by agent v. For the discussion below it suffices to mentioned the
two above properties.

The following paragraphs discuss the analysis for each of the error terms.
Bias The analysis follows the single-machine setting and is given in Proposition [2]in Section

Sample Variance The analysis follows the single-machine setting [27], although the original result
yields a high probability bound with a requirement on the number of samples nm. We therefore
follow the result in [26] which yields a bound in high probability without a condition on the sample
size. The bound for this term is presented in Theorem [3]in Section|C.2]

Network Error Unraveling the iterates (Lemma[3]in Section|[C.3) we get, forany v € V,¢ > 1:

[Sp(wet1,0—=Et41,0)llp =

t
1
E Nk E (Puwt;k - nt’”l) 7;,1/2Ht:k+1(7;<wt:k+1 )Nk,wk
k=1

= wy.p EVE—k+1 H

This characterisation makes explicit the dependence of the network error on both the communication
protocol used by the agents, via the dependence on the mixing properties of the gossip matrix P
along each path vw;., and on the statistical properties of the problem, via the product of empirical
covariance operators held by the agents along each path wy.; 1. As the randomness in the quantities
N, w, might depend on the randomness in the empirical covariance operators, we further decompose
the network error into two terms so that we can use the property E[Nj ,,] = 0. By adding and
subtracting the terms IT;.;,11(7,) inside the sums we have

t

1
an Z (Pmut:k — ,,th—k+1)7;;1/2Ht:k+1(7;)Nk7wk

2
[Sp(Wt1,0 — Et41,0)]% < 2

k=1 Wy EVE—k+1 H
(Population Covariance Error)?
t 1 2
+2 Pow = =5 ) T (Mo (Tx, ) — Maania (T5))N,
Mk VWi K Tlt_k+1 P t:k+1 Xwy g1 t:k+1\/p k2w
H

k=1 Wy €VE—k+1

(Residual Empirical Covariance Error)?
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From a statistical point of view, the Population Covariance Error term only depends on the
population covariance via the quantities II;.;11(7,), and the only source of randomness is given by
N w,- Using concentration for Ny, ,,, , the square of this error term can be bounded by a quantity

that decreases as 6(1 /m), as announced in Section alongside the discussion of Theorem On
the other hand, the Residual Empirical Covariance Error term depends on deviations between the
empirical covariance and the population covariance via the quantities IT;.5 1 (7;‘%&“ ) =ikt (T,)-
Exploiting the additional concentration of these factors allows us to bound the square of this error
term by a higher-order quantity that decreases as 6(1 /m?).

We now present a separate discussion on the analysis for these two error terms, emphasizing the

interplay between network topology (mixing of random walks on graphs) and statistics (concentration).
The final bound for the network error is presented in Theorem []in Section [C.3]

Population Covariance Error Expanding the square yields a summation over all pairs of paths:

t
E E ak,wt:k E E § <ak7wt:kak/vw;:k/>H

k=1 w,eVt—k+tl ki k'=1wy., €VE—ktly, W EVET k41

for properly defined quantities ay .., (the dependence on v is neglected). When taking the expec-
tation, as the random variables { Ny, ,, } x>1,0c1 have zero mean and are independent across agents
v € V, the only paths left are those that intersect at the final node, i.e. wy., wg: i such that wy, = wyy.
Moreover, as all agents have identically distributed data, the remaining expectation no longer depends
on the final node of the paths. The remaining quantity is then analysed by bounding the probability
of the two paths intersecting at the final node in terms of the second largest eigenvalue in magnitude
of P and by bounding the inner product by the norm product. This yields

t 2
E[(Pop. Cov. Error)?] < E [ ( > ot g | T g1 (T,) N, ) } .
k=1

Denoting the mixing time associated to P as t*, the series is divided into well-mixed and poorly-

mixed terms, respectively, k£ < ¢t — t* and k > t — t*. The well-mixed terms are controlled by
05 k+1 Meanwhile, for the poorly-mixed terms begin by taking for A > 0 maxg—1,. . {H(Tp +
)Y/ 2N kel H} outside of the series. The expectation of this maximum is controlled through

concentration and becomes O(

w7y + —57) forv" € [1,7]. The remaining series is controlled

through the contraction of the term ||7;, Ht:kﬂ(ﬁ)(ﬁ + AI)'/2?| and choosing A ~ 1/(nt*).
These two steps lead to this term being of the order O(% + %), which dominates the well-
mixed terms and contributes to the dependence on the inverse of the spectral gap of P. The free

parameter v’ € [1, ] is left open as a smaller step size 7 is used to control this term when m < n?"/7.
The final bound is given in Lemma[§]in Section[C.3.1]

Residual Empirical Covariance Error The analysis of this term is based on the following identity
(Proposition [5in Section|C.3.2), for any ¢ — 1 > k and any wy.j.1 € V*~*:

Wekr1 (T, ) — Menra (7, Z 0 e541(To)(Tp = T, Mjmvekr (T, )-
j=k+1

The above decomposition has two key properties. Firstly, it depends upon differences between the
empirical covariance operators ’7;wj and its expectation 7,. This allows concentration to be used,
and, alongside the concentration for Ny ,, it ensures that (Resid. Emp. Cov. Error)? is of order
O(1/m?). Secondly, it is of the form Z;:kﬂ njHe.j41(7,)[- - -], where [- - -] indicates the right
most factors and the quantity shown aligns with the filter function for gradient descent [26, Example
2]. Once again the contractive property of the quantity IT;.;,1(7,) allows to give sharper rates with
respect to the step size and number of iterations. Without it, the choice of step size 1, = nt~% would
yield a bound for (Resid. Emp. Cov. Error)? of the order (Y _, nx Z] fi1 77]) (ntt=9)4,
The contraction allows to show that (Resid. Emp. Cov. Error)? grows at the reduced order (¢! )3,
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and the addition of the capacity assumption allows it to be further reduced to the order (nt!=%)%*+7,
The final high-probability bound is given in Lemmad]in Section|C.3.2] This being stronger than the
bound in expectation required for Theorem 2}

C Proofs

Before going on to present proofs for the main result some notation is introduced following [40l [27].
Some notation is repeated from the previous sections, as additional details are included. Adopt the

convention for sums Ei;:tﬂ = 0. For a given bounded operator £ : L2(H, px) — H, let | L||
denote the operator norm of £, i.e. || || = supser2(m o) |if),=1 1L |1 Let S, H — L?(H,px)
be the linear map w — (w, - ) i, which is bounded by x under Assumption Consider the adjoint
operator S} : L?(H,px) — H, the covariance operator 7, : H — H givenby T, = S,8,, and the
operator L, : L?(H,px) — L*(H,px) given by L, = S,55. We have S%g = [ zg(x)dpx (z)
and 7, = [, (-, z)gxdpx (x). For any w € H the following isometry property holds [48]

ISpwllp = v/ Towllar-
The following notation was utilised in the analysis of Single-Machine Gradient Descent [40, [27]].
In this case it aligns with all of the observations in the network y := {y;  }i=1,....m vev € R™VI
and x = {2, }i=1,....m wev. Define the sampling operator Sx : H — R™VI by (Sxw) (i) =
(w, ;) p, fori =1,...,m,v € V. Let || - ||gmiv| denote the Euclidean norm in in R™!V! times
the factor 1//nm. Its adjoint operator S} : R™VI — H, defined by (S}y,w)n = (¥, SxwW)pm|v|

fory € R™VI is given by Siy = L3 > y; ,2; .. Define the covariance operator with
respect to all of the samples 7x : H — H such that 7x = S;Sx. We have

Tx = % Z Z< S Tiw) HE -

veV i=1

The following notation is analogous to the single-machine notation just introduced, although now
with respect to the datasets held by individual agents, i.e. x, and y,, forv € V. Let Sx, : H — R™
with (Sx,w); = (w,; p)g fori =1,...,m. Let| - |gm be the Euclidean norm in || - ||g= times
1/y/m. Its adjoint operator S5 : R™ — H, defined by (S} y.,w)n = (yu, Sx,w)rm fory, € R™,
is given by S} 'y, = % > Yi.wTi,p. The empirical covariance operator Tx, : H — H is such that
Tx, = S;,,Sx,,’ with 7;1, =1 Z£1< : 7xi,U>H$i,v-

Using this notation, the processes { i }+>1, {we,v }+>1, and {& }+>1 can be rewritten as follows.
The population process reads
Her1 = Ht — Tt (7;% - S;fp)'
The gossiped process reads
Wtt1,0 = Z Py (wt,w — Tt (7;(wwt,w - S;wa)> .
weV

The single-machine process reads

Civ1 =& — e (Tx&e — Sky).

The next three sections present bounds for the three error terms introduced in Proposition[I} Section
@] presents a bound for the Bias term, which follows directly from the results in [27] and references
therein. Section@]establishes a bound for the Sample Variance term, which follows from results in
[26]. Section develops bounds for the Network Error term, which are a novel contribution of this
work. Section|C.4]brings the results of the previous three sections together to establish the proofs of
Theorem 2] and Theorem [I] respectively. Section includes useful inequalities that are needed to
establish our results.

C.1 Bias

The following bound on the Bias term || S, — fr || is taken from [27), inspired by [57, 40).

17



Proposition 2. /271 Appendix C Proposition 2] Under Assumption |2} let ns? < 1. Then for any

teN,
1Somte = <R( ’ )
,Ltt— H >~ D E— .
’ g 22;:1771’

In particular, if n, = nt =% for allt € N, withn € (0,57 2] and § € [0, 1) then
HSpNt - fH”p < Rrrn_rtr(g_l)-

C.2 Sample Variance

In this section we establish a bound for the expectation of the Sample Variance term E[||S,, (& — ) [12].
The following lemma summaries a number of intermediary steps in [27]] for bounding the Sample
Variance term. It arises from representing the iterates {£;, — i, }+>1 in terms of the stochastic sequence
{Nj}r>1 which characterises the sample noise introduced in the iterations of gradient descent.
These terms are controlled via the empirical covariance operator 7 and the population covariance
operator 7, while introducing the pseudo-regularisation parameter A > 0 and utilising the contractive
property of the gradient updates. For the following, let us introduce the notation 7, » = 7, + Al and
Tax=Tx + AL

Lemma 1. Let 771&2 <1land0 < \. Foranyt € N we have
(1S (&1 — 1) Il

— 771c||7;}1/2Nk||H = ~1/2 1/2 1/2 -1/2
<(Z; A T, Nl + T2 (Tl + VY201 T, Nth)
=1 2D ik M k=1

—1/2 —1/241/2
< NTx TN T T2,
where

Ni = (Topr — Sy fp) = (T — Sxy),  Vk € N )

Proof. The proof of this result follows the proof of [27, Proposition 3]. O

The two quantities left to control are ||7;_/\1/2Nk\|H for k € N as well as ||(7x + )\1)71/277,1/2”2.

The first of these quantities is controlled by [27, Lemma 18] which is summarised in the following
lemma.

Lemma 2. /27, Lemma 18] Let Assumptions|[I} 2| Bl hold with r > 1/2 and { Ny };>1 be as in ().
For any A > 0, with probability at least 1 — §, the following holds Vk € N

2\/ve 4
Tp +M)7V2N, §4R/€2r—|—\/M( "+ ”)10 —.
The next lemma from [26, Lemma 19 Remark 1] controls ||(7x + )\I)’l/27;1/2||2.
Lemma 3. [26] Lemma 19, Remark 1] Let § € (0,1) and A\ = (nm)~P for some p > 0. With
probability at least 1 — § the following holds
1T (T + N 7V212 < (Tp + MDY (T + 2) 722

4K%(cy + 1) 1
< 24,‘$2<10g7 + pymin (Jognm)) 1V (nm)P~1).
ST, | A—p)s v )

Bringing together the three previous results yields the following high-probability bound for the
Sample Variance term.

Proposition 3. Fix 6 € (0,1) and p € (0,1). Let Assumptions|[l} 2| and 3| hold with r > 1/2 and
ne =t~ withnk? < 1, 0 € [0,1). The following holds with probability at least 1 — § for any t € N

1Sp (&1 — pe1)llp

1
og(t) (1V (nm) " Pyt'=% v nt=%) log? %,

1
= ™) Gy

~ 2 1/2 1/2(R2r wdr /2T me ~
Wlth dl _ 768 H7_/JH (”7—0”"!‘1) iljg +\/M)( + Q\f w) and d2 — 8(1 V; KZ2 (C'y"rl)).

< 671 min(
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Proof. Fix § € (0,1) and set A = (nm) P with p € (0, 1). Lemma[2]implies that with probability at
least 1 — % the following holds for any k € N

log %
(nm)(1*P7)/2 ’

(T, + M) 7Y% Ny || g < 4(RK?" + VM) (m + 2\5@)

Similarly, Lemmaimplies that the following holds with probability at least 1 — g

T2 (T + AL 722 < T3 (T 4+ AT 7122
1 8k%(cy + 1)
< 482 min (, log nm) log —= L2,
e(l—p)+ 5|75
Following [27]], the series can be bounded as follows

t—1 t—1

Tk
Do g A e I AT+ 0 o
=1 2 ick T k=1

<91 Ant' =0 1/2 /20

< 210g(t) + M 4 T, (T |+ 1)
TN TH |+ 1) 2 log(t _ _

< H P” (H 1P[9 ) ()(1\/()\77151 0))\/(77t 0))7

where we used A = (nm)~? < 1to get (||7,] + N2 < (||T,| + 1)*/2. Plugging everything

into Lemma [I] and using a union bound we obtain that the result holds with probability at least

1-2 -2 —-1-35. O
272

Proposition 3] gives a bound that holds with high probability. We make use of the following lemma to
derive a bound in expectation.

Lemma 4. [7| Appendix Lemma C.1] Let F' : (0,1] — R4 be a monotone, non-increasing, continu-
ous function and V' a non-negative real-valued random variable such that

PV > F@)] <t Vte(0,1].
Then we have E[V] < fol F(t)dt.

The following theorem presents the final bound for the expected value of the Sample Variance term.

Theorem 3. Let AssumptiOns Izl hold withr > 1/2,p € (0,1) and n, = nt=? for all t € N with
n € (0,572, 8 € [0,1). Then for following holds for all t € N:

E[[[S, (& — po)I7]

2 2
< d3min ( ,log nm) ( log”(*)

W (1 v ((nm)ipntlfe)z v t2(nt10)2) )

-
e(l—p)+

with Jg = 6467% log4 672 and with 671, 672 defined as in Proposition

Proof. Consider the term [|S,(&; — p)]|%. Utilising the high-probability bound in Proposition as
well as Lemma[d] the expectation of the squared norm can be bounded as

E[[|S, (& — ue)|l7]

< d?min (e(l)Jr, lognm>2(log2(t)) (1 V ((nm) Pt =%)% v t_2(0t1_9)2>

1-— P nm)(l—PV
L ~
d
X / log? =2 ds.
O 6
The result follows by using the bound fol log? %dé <64 10g4(J2). O
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C.3 Network Error

In this section we develop the bound for the Network Error term. The following lemma shows that
the error can be decomposed into terms similar to { N; } yen defined in (7)) for the Sample Variance.

Lemma 5. Forallt € N we have
HS,O(WHl o= &4l ”p an Z (vam m)T Ht k+1(7;(wt:k+1 )Nk w,

)

Wik EVE—kF1 H
where
Niw := (Topr — Sy fo) = (Tay btk — Sk, ¥0), VkeN, veV. (8)
Proof. Fort > 1 the difference between the iterates w41, — f4¢41 can be written as follows
Wt1,0 = Bt41 = Z va (Wt,w — Mt + Ut{(%ﬂt - S;fp) - (7;cu,wt,w - S;wa)}>
weV
= 3 P (T = 0 Toe) @i = 10) + 1 {(Tppts = S5.) = (Tatte = S,3)} )
weV Nrw
= Z va((I = M Tx, ) (Wi — 1) + TItNt,w)-
weV

Unravelling the iterates and using w; = p; = 0 yield

t
Wil — M1 = Z PmumHt:l(wa1 (w1 —p1) + Z Nk Z vat;kHt:k+1(7;cwt:k+l )Nk,

w1 €V'E k=1 wyreV?t

t
= Z Mk Z R)wt;k Ht:k—i—l (7;“’t:k+1 )Nk,wk .

k=1 wyp €VETEFL

The iterates ;41,, — ft¢++1 are similarly written and unravelled using &, = O:

Er10 — P41 = Z n((I N T ) Etow — 1t) +77tNt,w)

weV

t
1
= E Nk § nt*kJrl Ht:k+1(7;(wt:k+1 )Nk,wk .
ki

Wi EVE—kFL

The deviation w¢41 — &+41,, can then be written as follows

t
1
Wit1,o — 1,0 = E Mk E <vat;k - nthrl>Ht:k+1(7;<wt:k+1)Nk,wk~
k=

Wi EVE—kFL

Applying S,, taking norm || - ||, on both sides and using the isometry property yields the result. [J

For v,w € V and k > 1, we want to exploit that the random variables N}, ,, and Ny, ,, have zero
mean, E[N}, ,] = 0, and are independent for v # w. To do so we add and subtract IT;.;1(7,) inside
the norm so the following upper bound can be formed:

1Sp (Wet1,0 — Etg1,0) |12 )

t 2
dom Y (vat:k_m)T k1 (T5) Ni

k=1  wy,eVi-k+1

H

(Population Covariance Error)?
2

1
Z Mk Z (Powg — W)ﬁlm (Ht:k+1(7;cwt:k+l) — ek 11(7,)) Nk ywy,

k=1 Wep EVE—R+1

H

(Residual Empirical Covariance Error)?
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The Population Covariance Error (Pop. Cov. Error) will be controlled by using the independence
of the terms { Ny, ., }.wev . The Residual Empirical Covariance Error (Resid. Emp. Cov. Error)
will be analysed by decomposing it into terms that concentrate to zero sufficiently quickly.

The following lemma, similar to Lemma 2] for the sample variance, gives concentration rates for the
quantities held by the individual agents.

Lemma 6. Fixv € V. Let Assumptions hold withr > 1/2 and { N, }sen be defined as in
). For any A > 0, with probability at least 1 — 0, the following holds for all k € N:

: 2\/ve 4
T 4+ AD)"V2N, <4R2’+\/M< S ’*)1 . 10

Let || - || s denote the Hilbert-Schmidt norm of a bounded operator from H to H. The following
holds with probability at least 1 — 6:

_ 2K V/C 4
1/2 _ v Yy =
I(Tp + M)~ "(Tp = T, s < 2”<mﬁ + m) log . (11

Proof. Both inequalities arise from concentration results for random variables in Hilbert spaces used
in [12]] and based on results in [36]. Inequalities (TO[TT)) come directly from [27, Lemma 18], where
in particular (IT]) was used to prove (I0). O

We now move on to establish bounds for the Population Covariance Error term and the Residual
Empirical Covariance Error term within the following two sections, Section m and Section
[C.3.7] respectively. Section[C.3.3]then brings together the previously developed results to establish a
bound for the Network Error term.

We will need the following lemma, taken from [27, Lemma 15], which itself follows [58] |49].

Lemma 7. Let L be a compact, positive operator on a separable Hilbert Space H. Assume that
n||L|| < 1. Fort € N, a > 0 and any non-negative integer k < t — 1 we have

a a
ML (£)2%) < () .
e Zj:kﬂ 15

Proof. The proof in [27, Lemma 15] considers this result with a = r. The proof for more general
a > 0 follows the same steps. O

C.3.1 Analysis of Population Covariance Error

In this section we develop a bound for the Population Covariance Error term in (9). The final result
is presented in Lemma ]

The following proposition bounds the expectation of (Population Covariance Error)? by a series

involving the products of (deterministic) operators {Tpl/ s (7,)}. as a function of the step size,
the largest eigenvalue in absolute value of the gossip matrix P, and the random variables { Ny, ,, }.

)

Proposition 4. Foranyt € Nand v € V we have

i

t
1
an Z (P'th:k - ntk+1>7;1/2nt:k:+1<7—P)Nk;wk
k=1

wyp EVE—E+L

t 2
B\ (X o el T s ()Nl ) |
k=1

IN
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Proof. Fix t € Nand v € V. Let us introduce the notation A(wgk) = (Pyw,, — 7rt1)-
Expanding the square and taking the expectation we get

2

A

t
1
E[ an Z (vat;k - tkH)T in k+1(7;))Nk-,wk
k=1
t
= > e Y Awer) AW ) BT i1 (T5) N Ty Tk 11 (To) Nir ot Vit
kok'=1 wepe ViR

Wik €V IR
’ t—k/ 41
wy.. €V

t
= Z nknk/EU;,l/sz,:kH(Tp)Nk,m 7;1/2Ht:k’+1(7;))Nk’,v>H z A(wpg ) A(wh g ).
k,k'=1 Wi €VETRTL
w;:k, EVt_k,'*'1
wk:w;c,
The last identity follows from the fact that the samples held by agents are independent and identically
distributed. As the agents’ datasets are independent, the inner products are zero for k, k' € {1,...,t}
whenever the final elements of the paths wy. and wy,,, do not coincide, i.e.

E<7;,1/2Ht:k+1(7;))Nk,wka7;1/2Ht:k’+1(7dp)Nk/,w;Q,>H = 0if wy # wyy.

As the agents’ datasets are identically distributed, the expectation of the inner products can be taken
outside the sum over the paths. The sum over all pairs of paths that intersect at the final node can be
simplified as follows:

!
> Aw:r) A(wppr)
wep €VITETE
’
Wy g eyt
wk:w;,

1 1
= ) Z (vat:k - ntk+1> (va;:k, - ntm)

wk,wk/EVwr kbt EVETF qpr L eViEsk
wr=wy,

_ Z Pt k+1 B l (Ptsz’ﬂ) B l
n eon )t
weV

For each v € V let e, € R™ denote the vector of all zeros but a 1 in the place aligned with agent
v. The summation can be further simplified by utilising the assumption that P is symmetric and
doubly-stochastic, i.e. PT = P and P1 = 1. By the elgendecomposition of the gossip matrix P,
recall Sectlon L for any s > 0 we have (P*)y, = >;_; Ajui, = = + >/_, Ajuf,. This yields
the bound |(P*),, — H| =Y, )\fulvv\ <osdl, uiv < 0§ where o9 := max{|\a|, |\n|} is
the second largest eigenvalue in absolute value. Bringing everything together, the expected norm of
(Pop. Cov. Error)? can be written and bounded as follows:

2

A

1

t
1
E{ S Y (PM‘W)ﬁ”mzmmmm
t
> e BT o1 (T) N T W1 (T5) N o) (Pﬁi hok2 )

k=1  wy,eVt—k+l
n
k,k'=1

Y 1
< Z Mt BT P g (T, )NkU,Tl/QHt;kf+1(7'p>NkI,v>H|’(Pfﬁ g “2—”)’
k,k'=1

IN

t
Z nknk/EU|7—pl/2Ht:k+1(7—p)Nk,v||H||7;1/2Ht:k/+1(T)Nk’UHH} 2t—k—k'+2
kel =1

t 2
E[(anag S e VY ,,>Nk,v||H> ]
k=1
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where we used Jensen’s inequality and the Cauchy-Schwarz inequality. O

The following lemma presents the final bound for the Population Covariance Error. This result
is established by utilising the series bound in Proposition [4| to split the error into well-mixed and
poorly-mixed terms, i.e. for k such thatt —k 2> 1/(1 —o2) andt — k < 1/(1 — 03). The well-mixed
terms are controlled using that ot ™" is small. The poorly-mixed terms (there are ~ 1/(1 — o3) of
them) are controlled using both the concentration of the error terms { N, } x>1,wev as well as the

contractive nature of the gradient updates, i.e. the operator norm of {Tpl/ 1 P (7,)} in Lemma

The contractive terms arising from the gradient updates are decreasing in the step size: larger steps
achieve a faster contraction. However, each term within the Network Error series is scaled by the

step size {7y x>1, i.e. the Network Error takes the form 3" _, o ¥ "1y [-- -] where |- - -] indicates
the right most terms. To exploit this trade-off we introduce two free parameters « € [0,1/2] and
~" € [1,~], which describe the degree to which the contraction is utilised. Specifically, & = 0 and
~" = 7 is the large step regime and, & = 1/2 and ' = 1 is the small step regime.

Lemma 8. Let Assumptions E] hold withr > 1/2, n; = nt~? for t € N with ns?> < 1 and
6 € [0,1). The following holds for any v € V, t/2 > (%ﬁg(tw =:t*, a € [0,1/2] and
v e LAk

t 2
1
E{ > <vat:k - W)ﬁmnt:kﬂ(ﬁ)%,wk ]
k=1 Wi EVE—k+1 H
@log®(4n) log? (t* /
S a 10g ( n) 0og ( ) (7)2t72r vV (mfl(frlt*)1+2a) v (nt*)'y +2a>’

m

where
~  1152(Re2" VM) (k++/2vve, )2 (| T, I V1)? T2t f g (etvDo ey o 2
a= [EANEARA . s [6( s A /24« =Vt ||Tp||)]l{a;é0}+10} .

Proof. Consider the bound of Population Covariance Error in Proposition[4} Let || 7,/ > A > 0,
A > 0 and for ¢ > 0 introduce the cutoff t* = (“’iig(t)] Fork=1,...,tand v € V we have

1/2 —1/2
1T * Weer (T) N i < 1Ty (7T, ) /HH /NMHH

,,,,,

and similarly for X. Letus split the summation at £ < ¢t —¢* — 1 and k > t — ¢* using the bound
above to obtain

t 2
<Z oy "y ||7;1/2Ht:k+1(773)Nk,v ||H)

k=1

t—t*—1
<2 X0 A T e (7T) ”2') max {I17,"*Nols }

k=1

‘Well-Mixed Network Error

t 2
+2< Z 05k+177k7;1/2ﬂt;k+1(7;)7:§2|> max {||’7-_1/2

k=t—t*

Poorly-Mixed Network Error

The Well-Mixed Network Error is controlled through o %! being small for k < t — t*.
From ||I;.541(7,)|] < 1and XA < ||7,] we have |7, I/QHt;kH(T) 1/2HH < 2||7,]|, and from

1/log(1/02) < 1/(1—03) we have t* > _cllsgg((;)z) . These two facts allow the Well-Mixed Network
Error to be bounded as follows:

t—t* t—t* ¢ log(t)
Well-Mixed Network Error < 2[[7,]n > oy * k=0 < 2| T, Y oy ™2 < 29| T, |1t~
k=1 k=1
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For the Poorly-Mixed Network Error let us consider the two cases o € (0,1/2] and & = 0
separately. Consider « € (0, 1/2] first. Using Lemmamwe have, fort — 1>k > 1,

17, P e (T,) T, 1/2|| < T k1 (To)]| + VAT M (7,)]
< IR NT Tk (T + VAT T2 T (T,

< n7;W|(1") +»x/u7“ﬂ|(1/2)1/2a.

eZ] k+1 " Z] k+1 7l

When plugging the above into the Poorly-Mixed Network Error, summations of the form
- 1t - ﬁ appear for 3 = 1 —a and § = 1/2 — o. To bound these consider the
k1
following for 8 € [0,1) and ¢ > 2¢*:

t—1 -0
Yot Y
t B
k=t—t* (Z;‘:k+1 773) k=t—t* (ZJ kt1J )
t—1 —0
1—-8,608 k
n t B
peige (t— )
0! B8 L 1 1
(=t 2=, (- k)
0t 8468 1
S (t—t) kP

08 40(-1)
)7 T (1—fye =
2t9(3=1) from ¢ > 2t*. Splitting the summation at k = ¢, plugging the above two bounds into the
Poorly-Mixed Network Error term and using (nt*)® > 7 from 7 < k=2 < 1 yields a bound for

a e (0,1/2]:

where the last inequality follows from an integral bound as well as using that i

Poorly-Mixed Network Error

2||7~aHt7a6 2% (a+1/2)0”7~aH
< P ) \/7 t* 1/24a t— 0
< S ) + V2t~ | T, |
HTaHt—ae t—(a+1/2)9||7'a|| —
6( -2 v L2y ¢? )V VA () /2.
(P2 —— Tl ) () v v Ry V)

Now consider the case & = 0. The summation for 5 = 1 in this case is bounded following the
previous steps

t—1

Nk 9 1 1 *
Z (Z§:k+1 nj) = (t - t*)a Z (t _ k/’) < 2 +6 log(t )’

k=t—t*

leading to the Poorly-Mixed Network Error bounded as for o = 0 from 7|7, || < 1:

Poorly-Mixed Network Error < 2'%% log(t*) + 4t=%/2 \ﬁ(m*)l/2 + V2t~ T, ||
< 101og(*)(1 V (VA(t) /).

* The operator norm can be bounded |\7}1/2Ht:k+1(77,)7;17§2|| < SUPLe(0,12) {:cl/2(x+>\)1/2 Hf{:k_‘_l(lf

nex)} < SUD, ¢ (0,42 {z szkﬂ(l —nex)} + ﬁsung(oyﬁz) {:rl/2 szkﬂ(l — nex) }. Using techniques
used to prove [27, Lemma 15], these terms can be bounded as shown.
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Combining the two bounds for & = 0 and « € (0,1/2] gives
Poorly-Mixed Network Error

||T04Ht—049 t—(a+1/2)9H7~a”
< log(t*) |6 —2 % £
< log( ){ ( 1/2+a

vt-%) 1{a¢o}+m} (") v VA ()24,

We now consider the terms maxkzl,___7t{||7;_/\1/2Nk7v||%,} for both A and X. We use the high-
probability bounds of Lemma@to uniformly control H’7;_A1 /2N, koll3 forallk =1,...,tandv € V.
Forw € V,letd,, = % With probability at least 1 — d,, the following holds forall k = 1,...,t and

v € [1,9]:

_ K 2 /ey \° 4n
T1/2Nw2§16R52r+\/M2( + ”) log? —.
|| P k, HH ( ) m\/X \/W g 5
We note that if the capacity assumption holds for ~, then it also holds for all 4" € [1,~]. Applying
a union bound, we get that the above holds with probability at least 1 — >~ _, §, = 1 — ¢ for all
weVandk =1,...,t Using Lemmaf] the expectation of the maximum can be bounded for any
v € Vandy € [1,7] as follows:

E[ max {|7,/* Nl }]

2V \2 1
<16(R/<o2r+\/M)2( A ﬁc”) / log® 2 45
0

mvA vVm\Y 0
< 96(RK>" + \/M)2< A 2yvey )2 log? 4n,
mv/\ vm\Y

where we used f01 log? %"dé < 6log? 4n.
Bringing together the bounds for the Poorly- and Well-Mixed Network Error with the above bound

for the quantity E [ maxj—,....; {|| pj)\l/QNk,vH%,H yields

t 2
E K Z 0;_k+177k||7;)1/2Ht:k+1(77>)Nk,u ||H) ]

k=1
< 961log?(4n) log? (t*) (Rk*" + v/ M)?

K 2y/ve,\2 e
x<87p||2( + 1) -0

mvA vVm\Y
| Tellee0 et i@oay 20 K eyy?
rolo( T VT ) oy +10] (— + YRET)
a 12+« mvVx  Vmz

x ()2 v X(nml“a)) .

Let A = || 7, and A = 72l The bound

nt*

1 1 2 1 1
+ < — Vi - .
o oo i AT Tp||w2<nt*>—v/2>
2 /7
< t=/m v (nt*)"/?
< T (VY o))

allows the expected squared series to be bounded as follows:

t 2
E K Z oy "y ||7;1/2Ht:k+1(777)Nk,v ||H) }

k=1

< Zilog2(47210g2(t*) ((ntl_c)2 v (m—l(nt*)1+2a) v (nt*)'y/-i-Qa)
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where

~  1152(Re*+VM)? (k++/2vve, )2 (I T, V1)? N A aad L N 2
] HTpH{\HTpH”/ [6( . a v 1/2+4« =M ||Tp||) 1{(1#0}4_10} )

The choice ¢ = 1 4 r yields the final result. O

C.3.2 Analysis of Residual Empirical Covariance Error

In this section we develop a bound for the Residual Empirical Covariance Error term in (9). The
final result is presented in Lemma 9}

The following proposition writes the Residual Empirical Covariance Error in terms of a series of
quantities that will be later controlled.

Proposition 5. Lett > k + 1. For any wy.,+1 € V™% we have

t
et (Teupy ) = Wenst(To) + D 0l (To)(To = T, -1 (T,

j=k+1

—1:k+1).

Proof. Adding and subtracting (I — 7, 7,)I1;—1.511(7x

S ) and unravelling yields the following:

Weik1 (T, ) — M1 (Tp)

= =0 Tew Mmrik1 (Tew, ) = I =0 Tp) 1041 (T)

= = Tew Memrii1(Tew, 1) = =0T emripo1 (T, )
+ (= neTp) 141 (Tx - (I -

77t7;>)Ht71:k+1(7;)
=n(Tp — Txu, )Ht71:k+1(7;<u,1,71:k+1) + I = nT,) [Ht71:k+1(7;c

t
Z 77th:3‘+1(779)(7; - 7;<wj)ijl:k+1(7:<wj,1:k+1)'

j=k+1

“’t—l:k+1)

) = My 1k41(7p)]

Wi —1:k+1

O

Applying Proposition [5] to the Residual Empirical Covariance Error term, using the triangle
equality, yields

t
Z Nk Z A(wt:kﬂ;l/2 (Ht:k+1(7;<u,t:k+1 ) — Ht:k+1(7;))Nk,wk
k=1

wyp €VETEHL H
t—1 t
<Dome Y Al Y
k=1  w,,eVi-h+l j=k+1
XN P Mg (To)(Tp = Toewr, Mgttt (T, N L1 (12)

where the quantity is zero in the case k = ¢. For j € {2,...,t — 1} the above includes the quantity
I1;.541(7,). This can be interpreted in a similar manner to the filter function associated for gradient
descent, see for instance [26, Example 2]. In this context it is used to control the growth of the above
error term, which is absent in the case j = ¢. This yields the following proposition.

Proposition 6. Let Assumptions hold withr > 1/2 and n; = nt~? for t € N with nr? < 1,
0 € (0,1). Fix \, A > 0 and 6 € (0,1). With probability at least 1 — § the following hold: for any
t—1> 4> k+1and path we.;, € VP51 we have

17,2 e (To)(Tp = T, Mttt (T, ) Nl
1 A Y2\ 7 og Ve 4n
< 2/€|71£2||( + ( ) ) ( + = ) log ()
pA Z§=j+1 i Z§=j+1 T mvA - VmAY 0
—1/2
x max {[|7 5" Newlln ), (13)
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foranyt —1 >k > 1 and nodes w;,wy, € V

1T 2(To = T, ) Nicsor | 11

T1/2 1/2 c in _1/2
< | TN (2 + 2 Y tow w171 Vel 14

Proof. Fixt —1>j > k+ 1and wy; € VI~**1 Begin by proving (T3). Expanding the norm,

172 e (To) (T = Tow, Wit (T, YNl

= 1T P ey (T AT 2 (T = T Myt (T, DT T N

< IT 2 M TTRNT (T = T I ta (T, NI, 2 N
< e a (T TR NT, A (T = T MIT 5T, 37 N

< W Mg T TN T = T DT, 5l s (17,5 Nl

where we used, from nr? < 1 and || Tx, || < 1 forany v € V, that ||IL;_. ;<;+1(7§(wJ s )| < 1for

j > k + 2. The first operator norm is bounded as follows by using techniques similar to those used to
prove Lemmal[7}

1 A\ 1/2
1732 M (T TR < _< +< > )
62 i=j+1 i 262 i=j+1 7l
1 A\ 1/2
(o))
D i1 i Dimj1 M
We proceed to construct a high—probability bound for the quantity ||(7, + X\ )~Y/%(T, — W)l for
any w; € V. Forv e V, let¢, = and apply (TI) from Lemma|§|to obtain the followm‘ P| with
probability at least 1 — §,:
_ _ 2K N 4dn
To + M) YAT, = T ) < (T + AD)VA(T, - T §2n(+ )10 —.
(7, ) (T I =T, ) (To s s g 5
Applying a union bound yields the following with probability at least 1 — > _, 6, = 1 — 0:
_ 2K ey 4n
T+ N "Y2(T, — Tx SQH( + )10 — YoeV. (16)
(T, + AL, = Tl < 20—+ S 10g

The result (T3) then comes from plugging (T3) and (T6) into the expanded quantity at the start of the
proof.

To prove (T4), fix t —1 > k > 1 and w¢, wy, € V. Expanding the norm we get
I7,72(T5 = Tow )Nk it = I TP TR0, 3 (T = T VT T 3 Nio
1/2 —1 2 1/2 —1/2
< T 2T 2T, 2 (T = T T ZNT 2 Nl

2 2 2 —1/2
<\ TM2TENT, ”( xwt>||HT” e {173 Niaoll 1}

The result follows by using (T6) to bound |7, 1/2(7;, — Taew, )l O

The following proposition utilise the previous proposition to bound the summation (12).

3 For an operator L note that ||L|| = ||[LL*||*/? where L* is the adjoint of L. The Hilbert-Schmidt norm
bounds the operator norm as we have ||L||* = ||[LL*|| < Tr (LL*) = ||L|/%s.
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Proposition 7. Let the assumptions of Proposition[6|hold. For any v € V, with probability at least
1 — 6 we have

2K V/Cy 4n
Resid. Emp. Cov. Error < 8/<;< ) log — {Bl +B2} ,
m\f vm

where
t—1
1/2 1/2 —1/2
= IR o e {17, 5Nl
k=1

t—1

t—2 1/2
1 A
B, — 1£2 ) N w
. ”ﬁA”zth:m<zLHNh+<zt ) )ﬁ%“” ol

k=1  j=k+1 i=j+1"h

Proof. Splitting the sum in (I2) at j = ¢ and otherwise, directly applying (I3) and (14) from
Proposition[6]allows Resid. Emp. Cov. Error to be bounded as follows:

Resid. Emp. Cov. Error

t7
< Z Mk Z ‘A(wt:k)|||7;;l/2(77) = T, Me—1:k41 (T, s MV 112
k=1 wp,eVi—k+1
-1

2
A ey 1A Dl g (To) (T =T Tyttt (T, ) Nk i

k=1 wg €V ikl j=k+1

2K \/Cy 4n
<2k| ——= lo
o (m\ﬁ vVm\Y > &%

><[rr“?T”?n|’r”2||ntznkmax{||7 PNewlat YD [AGw)|

Wy €VETRHL

B

» t—2 -1 1 A\ 1/2 e
+ \\7;; Han Z Wj(zt -+ (Zt ) )glgé{{HT Ni,wll '}

k=1 j=k+1 i=j+1"h i=jt1 T

B>

S SN}

wyp €VETEHL

The result is then arrived at by applying the following bound for the summation
Zwt;kevtfkﬂ |A(wy.k)| for each k < ¢:

Y A= Y

wy,p EVETRFL wyp €VETETL

1 1
= Z <P7Jwt:k - nt_k‘*‘l) - Z <P’th:k - nt—k-i-1> <4.

Wy EVETETL wep EVITRTL

>p—(t—k+1) vat:k<n—(t7k+1>

1

Powyy = nt—k+1

P,

VW Z

Given Proposition 7|we can now plug in a high-probability bound for max,,cy {H7:X1/ 2N, el H}
and bound the resulting summations. This is summarised in the following lemma.
Lemma 9. Let the assumptions ofProposition@hold with0 < 6 < 3/4,0 < X < ||7,] and
0 < X< |7, Given 6 € (0,1), the following holds with probability at least 1 — 6:

Resid. Emp. Cov. Error
~ log® 81 Jog(t)

<b ————(1V (gt ) v VA )P v (¢ (%)),
my/ ((mA) A X ((mA) A X)
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~ K l{27 K ve. 1/2
where By = 28R V) Gty Bes PIT G,

Proof. Consider Propositionwith 9. so the following holds with probability at least 1 — %

2k Ve ) 8n
Resid. Emp. Cov. Error < 8x log —(B;1 +B
P ( f \/W g 5( 1 2)

/ 1 8n
- SE 12//{ +)\ A )\WCV O§> (B1 +By),
m

where we used that v > 1. Proceed to bound both B; and Bs. Start by constructing a high-probability
bound for the term max,, ¢y {||7;7X1/2Nk’w||H} k=1,...,t. Forv e V,letd, = 2. Lemma@
states with probability at least 1 — &/, the following holds for any k& € N:

_ K 2\/ve Sn
7T }/QN,C,UH < 4(RK* + \/M)( — + ”) log
P2 m\f)\ \/7

Applying a union bound so the following holds with probability at least 1 — > _, 6, =1 — § for
any k € N:

m ~ R 2\/;C 8TL
ax {72/ Niwlla} < 4(Rs?" + JM)( _ 4 v> log
e o ﬂlw/i \/;;X;

(anr + VM) (28 + \/2/ve,) log 32
(mA) A X vin

a7)

where we used that x > 1. The terms B; and B are now bounded in the following two paragraphs.

Term B;  Using the high-probability bound (T7), the following holds with probability at least 1 — %:

2 4 VM) (26 + /2yvey) lo 1
B, < |77 A it 2 ) los T
(mX) A XY
2r / 8n
< H7.1/2T1/2”H7-1/2H 4(RE*" + ~M)(E’f+\/2ﬁcw) log 55 t_l(nt1_9)2,
(mX\) A XY (1= ) m

where we have applied the integral bound t Zf L0 < t , see for instance [27, Lemma 12], on
the following summation:

2,0 0 - e Ut ?)?
man—nt Z’f e =~ 1.9

Term B,  Similarly, using the high-probability bound (I7)), the following holds with probability at

5.
least 1 — 5

By < HTl/QH 4(RK* + VM) (25 + \/2\/v Vvey)l
(mX) A X m

t—2 t—1 1 A 1/2
o Y (st () ).
k=1 j=k+1 Dimjpr M Dimji1 i
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We proceed to bound the remaining terms by utilising results from Section[C.5] Firstly, switching the
order of sums and applying an integral bound yields

t—2 t—1 t—1 _
_ 0 J
S S S S
k=1 j=k+1 —g+1’71 G4l 2ai=j+1
z I z
=n k_
Z—J—HZ ’
t—1 ._ . _
U i - 1)

< . (18)
= + .
1-6 i i1’

At this point use "} _ —it1 i~ > t79(t — j) as well as Lemmato obtain

t— jfe - -2 )= 26
gt" L < gt min 1D o0 (1) = 40 Tog(t).
=2

1
j=2 z j+1Z j=

For the second term follow the steps to (I8) and use Lemma [TT]as follows:

t—1 t—1 . _
ST DS ML U S
172 = 9 _ — 1/2
= j=k+1 (Z_g+1771) 1-¢ j=2 (t—17)
< 4773/2t9/2 trnax(3/2—29,0)
- 1-90
_ /2 ymax(3(1-0)/2,0/2)
1—-0

This results in the following bound for Bo, which holds with probability at least 1 — g:
RK* 4+ VM) (26 + \/2y/ve,) log log(t)

\/(m)\)/\)ﬂ(l—ﬂ) Vi

The final bound arises by bringing everything together with a union bound implying it holds with
probability at least 1 — § — § = 1 — 4. Constants are then cleaned up using A < ||7,|| as well as

1 2 1 2 1/2 1/2
X < |7, ]l o say |7,/ p,é HIIT/ | < 415172 and | 757 < 2| ]|/ O

B, < ||7;17§2|| ( (4,’72&170+4\/X(ntmax(170,9/3))3/2).

C.3.3 Network Error bound

In this section we bring together the bounds developed in the previous two sections for the Population
Covariance Error term and Residual Empirical Covariance Error term to construct the final
bound on the Network Term as presented in the following theorem.

Theorem 4. Let Assumptions hold withr > 1/2, and n, = nt*(’for t € N with 17/{2 <1
and 0 € (0,3/4). Assume t/2 > (%}f’ml =: t* The following bound holds for any v € V,
a€l0,1/2] and~" € [1,7]:

E[||S,(wit1,0 — ft+1,v)H;2>] < 2510g (4210g &) (772t72r v (mil(nt*)wza) v (nt*)V/HQ)
iy D 1 e st () v ),

where 52 =64 %E with 51 defined as in Theorem@and a defined as in Lemma@

Proof. Use decomposition (J). Taking the expectation, note that the first term E[(Pop. Cov. Error)?]
is controlled by Lemmal8] We now proceed to control the term E[(Resid. Emp. Cov. Error)?].
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Begin by using the high-probability bound for Resid. Emp. Cov. Error in Lemma@ with A = 17,1l
and A = || 7, || (nt*~%)~L. The following upper bound holds for the quantity that appears in Lemma@

1 1
(mA) AN ([ Tpllm(ntt=2)=1) A ([T, (nt?=#)=7)

1 B 1-6\y
SW((W (nt' =) v (nt 0))-

Plugging the above into Lemma [9] for the Resid. Emp. Cov. Error allows the expectation to be
bounded with Lemma [4}

E[(Resid. Emp. Cov. Error)?]
< T+ log’()
—_ 2

(T AT ) m?

1
></ log* 8—nd5.
0 5

The result is arrived at by using fol log? %"dé <64 10g4(8n) and bringing together the two bounds
for E[(Pop. Cov. Error)?] and E[(Resid. Emp. Cov. Error)?]. O

(1v =2 v (2= (m~ e =0) v (e =0)7)

C.4 Final Bound

In this section we bring together the bounds from the previous sections to construct the final bounds
in Theorem 2] and Theorem [I]in the main body of the work. The main result is the following.

Theorem 5. Let Assumptions [Z] hold withr > 1/2 and 1y = nt=? for all t € N with nr? < 1
0 € (0,3/4). The following holds for all t/2 > f%} =t anyv €V, a € [0,1/2] and
7 e LAk

Ef(wi)] = inf Ew) < 2R (")

+ dy(nm) =2/ @) (1 V (nm) = Cren (g =0y2 v t’z(nt1’9)2> log?(t)

@log?(4n) log? (t*)
32 10g4(i?2) IOgQ(t) (1 Vv (nt176)2 V. t72(nt170)4) ((mflntlft‘)) vV (ntpe)y),

where dy = 4(231:11 )2512 with ds defined as in Theorem

+8

(2672 v (= () 2 v () )

+ 8

Proof. Begin with the decomposition in Proposition [1] and take the expectation E[-]. Plug in the
bounds for each term proven in the previous sections, i.e. Proposition 2| for the Bias, Theorem 3] with
p = 1/(2r + ) for the Sample Variance term and Theorem {4 for the Network Error term. O

Theorem [2] follows directly from Theorem 3}

Proof of Theorem 2] Consider Theorem 5| with constants
o =2R?
g2 = dy
g3 = 16a(log*(4) + 1)
g1 = 24bs(log?(8) + 1)2,

where the sample variance constant dy is defined in Theorem the first network error constant ¢ is
defined in Lemma and the second network error constant by is defined in Theorem lé:ll O

We now go on to prove Theorem T}
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Proof of Theorem[l} Consider the setting of Theorem[5| with # = 0. Begin by setting

e I K

1—09 \m?

and ) = k= 2(nm)Y 77 /t. Tt is clear that nt = x~2(nm)Y/ (37 +7) . We proceed to show that this
choice of iterations ¢ and step size 7) ensures each of the terms in the bound of Theorem 3]are of order

5((nm)—27‘/(2”+’”).
The Bias term is
2R2 (nt)72r _ 2R2/€4T(nm)72T/(2r+7).

The Sample Variance term is bounded as follows:
da(nm) =2/ @ (1 () =2 @D (i) v 2 () ) 1og? (1)

< 4k~ 4dy(nm) "2/ ) Jog?(1).
The first Network Error term is bounded in three parts aligning with the three terms within the quantity
m=H Pt (m (gt )1 H2e) v (n*)Y F29), Firstly, as ¢ > (nm)/ 277 and 5 < 1/k2 we get
9,9 4 9 /(2 1/(2 1 r 0\ 2/((A420) (27 +7))
=2 < k=4 (nm) =2/ Secondly, from t > (nm)'/( ’"*7)—( z )

1—0‘2 W
- 2/((1+2a)(2r+7))
ensuring 7 < £ 2(1 — 09) (m—ﬂ>

nr

we get

(nt*) 142« 72 42 m2(r+'y)/(2r+'y)72
W) < (a4 1) om0 2

= (K722(r 4 1) log(t)) 2% (nm) =2/ r+7),

(nzr ) 1/((v'+2) (2r+7))

m2

Thirdly, from ¢ > (nm)/(?r+v) 1

T we have
p—

) A\ V(3 +20)@2r+7)
n< 31— o) (25

(nt*)“’/”a B ' yoa m/(2r+v) -1
T S (820 + Dlog (1) T

= (5722(,,. 4 1) 1Og(t))'y/+2a(nm)f2r/(2r+y)'

and so

Using the above three bounds we arrive at the first Network term being O((nm) =27/ (2r+7)),

Now consider the second Network Error term. Since nt = x~2(nm)/ (77 and m > N2t >

1—n
n20+1-1 we have
(1v 2 v 2 ) () v 7)< (1v 0> v 2 ).
The second Network Error term then becomes, due to ¢ > (nm)l/ (2’”“’),

by log*(8n) log?(t)
8 2

(1v )7 V2 mn)

(nm) (2+7)/(2r+7)

< 8(/{72)%752 10g4(8n) log? (t) 5

m

(2+v)/(2r+7) . . . .
(HWT S (nm)_QT/(Q""F'Y) which is

satisfied for m > n(27+7+2)/(27+7-2) Now ensure logt( 5 =2 (11:2:2) Note the previous requirements
on the iterations ¢ imply

For this quantity to be O((nm)~2"/2r+7)) we require

(nm)l/(2r+'y) n2r/(2r+’y) n(2r+1)/2r+'y n
t> > .
- 1—o09 my/@r+y) = 1—o09 —1—o09
And since © — z/(log(z)) is increasing for x > 1, the requirement ¢ > 2(1('@7?5(“ is satisfied by
Toa(r =) >2(1+r).
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Now, consider choosing 7" € [1,+] and « € [0,1/2] to minimise the number of iterations t. Consider
the two cases m > n2"/7 and m < n2"/7. When m > n2"/7 we have both - < 1 and L <1
so the number of 1terat10ns t required is minimised by picking 7' = vy and o = O Since 2(r +9)>1

we get % < n2 — " and the number of iterations becomes
n2r/ 1/(2r+7) - ) 2r/ @rn \ 1/
t= (nm)l/(27'+’7)|:(ﬁ(77) )v1i| = (nm)l/(Q +7) {(%) \/1:| When

r

— mY

and further picking o = 1/2. It is clear in this case that the number of iterations required becomes

B > 1, the number of iterations ¢ required is minimised by: setting 7' = 1, noting Ty S

, o 1/(2r+7) . )/ (2 )
t= (nm) /2 () = (nm)!/Cr L
O
C.5 Useful inequalities
In this section we collect useful inequalities used within the proofs.
Lemma 10. The following holds for ¢ € R and t € N witht > 3:
st S
> k<t min(a,1) (1 4 Jog(t)).
k=1
Proof. See Lemma 14 in [27]. ]
Lemma 11. The following holds for ¢ € Randt € Nwitht > 3:
t—1
max(1/2—gq,0
Z 1/2k q < At (1/2—q )_
k— 1
Proof. Begin with
t—1
max(1/2—q,0)
> ok e Z T
k= 1 k= 1

Suppose t is even. The bound arises by splitting the sum and using the integral bounds

t/2 t/2

1 ﬂ 1 \/i t/2 1 V2 t
- - —1/2 el -
];( k)22 = 251/2 Z 2 = t1/2 {1+/ z dz] VP {1+2< B 1)} <2

and
= 2 =t 1/2
1 t—a) 2%
2 (t— 1/2k1/2 = \[ t—k)/2 = \/1 +/t/2+1( 2 wi

k=t/24+1 k= t/2+1

Pl

If ¢ is odd, follow the steps above and split the sumat k = (¢t — 1)/2and k = (t — 1)/2 + 1. O
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