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This Supplement contains further experiments relating to hyperparameters and computational com-
plexity, the proofs of all statements made in the main body of this paper, implementation details for
all methods compared and finally, further details on the genetic data used for illustrating the use of
our conditional independence test.

A. Discussion on hyperparameter choice

As ground truth information on variable relationships is rarely available, choosing hyperparameters is
challenging. In this section we analyze the GCIT’s performance as a function of hyperparameter con-
figurations of the GCIT and discuss an approximate procedure to guide hyperparameter optimization
on a validation set.

Choice of statistic p

We start by analyzing potential choices for the summary statistic p : (¥ x Y X Z)x (X xYxZ) - R
that summarizes the generated and observed samples into a real-valued scalar. Different choices for p
encode in more or less detail the distributional differences in samples and thus we can expect them to
influence the resulting performance of the test. We considered the following distance and correlation
measures between two samples:

e The Maximum mean discrepancy (MMD) is defined as the largest difference between the
mean function values on two samples in a reproducing kernel Hilbert space. When MMD is
large, the samples are likely from different distributions. For akernel k : X x X — R, a
consistent empirical estimate of the MMD is given by [7],
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e The Pearson’s correlation coefficient (PCC) is a measure of linear correlation between two
variables. It is defined as,
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e The distance correlation (DC) measures both linear and nonlinear association between two
random variables or random vectors. It is defined as,

x _ dCov(x,y)
Py \/dVar(x)dVar(y)

e The Kolmogorov-Smirnov statistic (KS) is defined as the sup-norm between cumulative
distribution functions of two samples as follows,

px,y) = sup, [ F™ (w) — Fy (w)]
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where Fé") and F§”> are the empirical distribution functions of X and Y samples respec-
tively.

e The Randomized Dependence Coefficient (RDC) measures the dependence between random
samples X and Y as the largest canonical correlation between & randomly chosen nonlinear
projections of their copula transformations. It is formally defined an analyzed in [9].

/A)(X,y) = SuI[)& PCC(O[T@XHBT(I)Y)

where PCC is Pearson’s correlation coefficient and @ are nonlinear random projections,
such as sine or cosine projections. See [9] for more details.

We tested the above metrics with simulated data under setting (3) described in the main paper. Type
I error and power results for the GCIT implemented with each one of the above choices for p are
given in Figure[I] Finer differences are given by the MMD, the RDC or the DC that all consider
non-linear relationships between variables; we see in the power computations in the right column
that this results in higher power of the GCIT since the underlying data generating mechanism in
non-linear. However, these statistics will also encode spurious differences between samples when the
null H is in fact true, resulting in higher type I error. We can see this behaviour in the type I error
results on the panels in the left column. The PCC, for example, that encodes only linear differences
between samples is more robust to type I error.
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Figure 1: Power and type I error results for different choices of p.

Remark on the robustness of the GCIT for practical applications. Our fest does depend to some
extent on the hyperparameter configurations of both A and p. Recall that no ground truth is available
to optimize hyperparameters using conventional methods, but we argue that the following procedure
can be used to guide hyperparameter selection. We consider artificially inducing conditional indepen-
dence (X LY'|Z) by permuting variables X and'Y such as to preserve the marginal dependence in
(X,Z)and (Y, Z), as in [6] (further details are also described in our related work section). On this
data, a well calibrated test is expected to produce uniformly distributed p-values, i.e. the empirical
distribution of p-values should be approximately uniform. Our recommendation would be to choose
GCIT’s hyperparameters with lowest Kolmogorov-Smirnov statistic in comparison to the uniform
distribution. This ensures the resulting test produces "well-behaved" p-values and thus prevents to
some extent p-value cheating. We will discuss this further in the revised manuscript, thank you for
raising this point.



B. Further experiments and complexity analysis

In this section we present results on the type I error of the GCIT and all baseline algorithms for
the synthetic simulations considered in the main body of this paper, and analyze computational
complexity as a function of sample size and data dimensionality.

Type I error versus dimensionality of 2

Next we show in Figure [2]type I error as a function of dimensionality of Z for each one of the three
synthetic simulations considered in the main body of this paper. We observe that in all cases, type I
error is approximately controlled at the chosen level o = 0.05 when the distributional assumptions
underlying each method holds. This is not the case otherwise, the CRT fails to control type I error in
the non-linear setting when a Gaussian approximation to the joint distribution of the variables is not
appropriate.
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Figure 2: Type I error results for the synthetic simulations.

Computational complexity analysis

We give in Figure [3|the run times in seconds of all algorithms for a single conditional independence
test for data generated under setting (1) in the main body of this paper. We vary both the number
of samples (fixing the dimension of Z to 100) and the dimensionality of Z (fixing the sample size
to 100). The GCIT scales very well with both sample size and conditioning set size, even if each
iteration requires training a new GAN. In contrast, the running times of KCIT for sample sizes above

1000 and those of CCIT in higher dimensional samples are prohibitive in practice.
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Figure 3: Running times in seconds as a function of sample size and dimension of Z.

Experiments as a function of sample size and stability of generated p-values

We investigate the influence of sample size on the three leftmost panels of Figure[d] The GCIT, as
well as most competing tests, have slightly higher type I error in low sample sizes but control type
I error successfully with 500 samples or more. In terms of power, our experiments show that we



can expect the GCIT to outperform competing tests with 500 samples or more (for dimension of
Z = 100). Next, we investigate the stability of p-values as a function of sample size; the variance of
the empirical p-values quickly drops to 0. This means that for say 500 samples, we can expect the
p-values of two independently trained GCITs to be within 0.005 of each other with approximately
95% confidence. The last panel on the right illustrates how quickly the p-value approximation (eq. 3
in the main body of this paper) converges to its population quantity as a function of the number of
samples used to compute the approximation i.e. M in eq. 3. The convergence should be at least of
order M ~'/2 by the central limit theorem.
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Figure 4: Leftmost and middle-left panel: Type I error and power as a function of sample size
for data generated under scenario (3) with dimensionality of Z set to 100; Middle-right panel:
Empirical p-value variance of the GCIT as a function of sample size (computed by generating 100
p-values for each GAN trained on data with the specified size); Rightmost panel: Illustration of the
convergence of the GCIT’s p-values as a function of generated samples.



C. Theoretical results

Proof of Proposition 1. A sequence of random variables is said to be exchangeable if its distribution
is invariant under variable permutations. We make use of the "representation theorem" for
exchangeable sequences of random variables, first stated by de Finetti and extended by Diaconis and
Freedman for finite sequences [4}|5]. They show that every sequence of conditionally ¢.7.d. random
variables can be considered as a sequence of exchangeable random variables. With our definition
of the generator we start from i.i.d. sequence of noise random variables {V,, }}_, and define, for
every m, X (M) = ¢(Z, Vi) where Z is a random variable independent of V,,, and ¢ is a measurable
function, such as a neural network in our case. By construction, the resulting random sequence of

data sets (X (m) 'y, Z)M_, is exchangeable and therefore also the sequence of statistics (p;)M,

m=

(measurable functions of (X (™Y, Z)M_. ) is exchangeable. O

The theoretical results that follow are proven only for the version of the generator loss given in
equation (5) in the main body of this paper, Lc (D) = Ezngy, Dy(Z) — Ezngyy, Dy(w) though
we do believe that the theorem holds more generally with the addition of the power maximizing
procedure - this is backed up by our empirical results demonstrating Type I error control while using
the power maximizing procedure. We prove the bound on the excess Type I error in two parts. First
we show in the following lemma that an optimal discriminator exists, and second we prove the bound
on the Type I error.

Lemma 1 An optimal discriminator D* minimizing Lp = Eyrgy, D(2) + Egzgy,, (1 — D(z))
over all measurable functions D such that D € (0,1) exists and it is given by

Proof. To see this note first that the sign(x) function is defined as +1 or —1 depending on the sign
of . Then,
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for any D in the mentioned space and with equality if and only if D = D*. Eq (5) follows from
the Kantorovich-Rubinstein dual representation for general f divergences, proven for example in
(13]. O

Corollary 1 For a generator GG with infinite capacity converging to the true conditional distribution
qu, (z), Lo (D*) attains its minimum value of 0.



Proof By setting D* in the loss of the generator L we observe that,

La(DY)=1— Lp- (10)
1
=5 [ i@ - any 2o (1
X

Hence, for a generator with infinite capacity converging to the true conditional distribution gy, (),
the last term is 0 which implies L5 (D*) = 0.

Proof of Theorem 1. Our derivation is similar to [3]. By definition the statistic p results in

a p-value p < « if and only if the observed variable x is contained in the set A, := {x :
Zﬁle 1{p(z™ y,2) > p(x,y,2)}/M < a}. Consider generating a new sample # from the

generator G under the estimated conditional distribution and let x ~ g3, be sampled from the true
conditional. Then it holds that,

Le(D*) = Egngyy D™ (2) = Egngyy D™ (2) (12)
= [ lan@) = @)l (13)
= sup 10246 (A) — G, (A)] (14)
> Pr(z € Ay) — Pr(Z € Ay) (15)
> Pr(p > co|Ho) — (16)

where by expanding the expectations, eq. (13) follows from similar arguments to those presented in
Lemma 1. Next eq. (14) follows from a well known equivalent representation of the total variation
divergence between probability measures, proven for example in Proposition 4.2, page 48 of [§].
Eq. (15) follows by standard properties of the supremum operator. Finally we arrive at eq. (16)
given the fact that, by definition of A,, Pr(x € A,) = Pr(p > co|Ho) and, since given y and z
the set (z, M xM )) is conditionally independent and therefore exchangeable, we have that
Pr(z € Ay) < o O

Proof of equation (9). Let g3, and g%, be the true conditional distributions of X |Z under the null
hypothesis Hy : X 1L Y|Z and its alternative H; : X )L Y|Z respectively. Denote by A the event
that samples x result in a p-value below the level a. Then,

Type I error+Type II error = g4, (A) + g3, (A°) (a7
= 1+ 3, (4) = a3, (A) (18)

> 1+inf (au,(A) — a1, (4)) (19)

=1- st}lqp (g3, (A) — g3, (A)) (20)

= 1_6TV(q'Hoaq'H1> (21)

O



D. Implementation details

GCIT

In all our experiments we have set the depth of the generator, the discriminator and information
network to 3. The number of hidden nodes in each layer is d/10 and d/16 for the generator and
discriminator respectively (d the number of inputs). For the information network, we use 2 diagonal
matrices for each layer to make two hidden nodes for each feature separately. We use ReLu and tanh
as the activation functions for each layer except for the output layer where we use a linear activation
function for the information network, and sigmoid activation function for the discriminator and
generator network given that we require its output to be constrained in the (0, 1) interval and re-scale
the data in the (0, 1) interval prior to training. The number of samples in each mini-batch is 128 for
the synthetic experiments and 64 for the genetic experiment. The GCIT and all experiments have been
implemented and carried out in tensorflow and python. Pseudocode for the GCIT is given in Algorithm
[T]and a python implementation is given at https://github.com/alexisbellot/GCIT.

Algorithm 1 GCIT

Input: batch size n;, data D = (x,y, z) of size N, statistic p, iterations M, parameter A
Initialize: neural network model parameters ¢, n, 0
while convergence criteria not satisfied do
1. Update Discriminator
Sample z1, ..., z,, from D and vy, ..., v,,, ~ p, a batch from the real and latent samples
Xi < Gy(zi,v;) fori=1,....np
Update 7 by stochastic gradient descent with,

1 & N
V"nT) > Dy(xi,2:) + (1 — Dy(%i,2:))
i=1

2. Update Information Network

Sample z1, ..., zy, from D, vy, ..., vy, ~ p, and x a permutation of 1, ..., np
X; G¢(ZZ‘,V1‘) fori = 1,....,1

Update 6 by stochastic gradient ascent with,

1 &, 1 & 5
Vo (nb ; Ty(Xi, %) — log[n—b ; exp(Typ(X;, xﬁ(i)))]>
3. Update Generator
Sample z1, ..., z,, from D and vy, ..., vy, ~ Dy
X; G¢(ZZ‘,V2‘) fori = 1,....,np
Update ¢ by stochastic gradient descent with,

Vo(La(D) + ALrngo.)

end while
form=1,.... M do
Sample vy, ..., VN ~ Py
B Go(z,vp) forj =1, N
P p(x(™)y, 7)
end for
P pxy,2)
D= Yoy 1A > p}/M
Output: p-value p

Baseline algorithms

We implemented the KCIT and RCoT with code provided by the authors in [L1] in
their R package RCIT, available at https://github.com/ericstrobl/RCIT.
The CCIT [10] was implemented with the code provided by the authors at



https://github.com/rajatsen91/CCIT/blob/master/CCIT. The CRT was
implemented in python with our own code.



E: Genomics experiment details

The Cancer Cell Line Encyclopedia (CCLE) is a compilation of gene expression, chromosomal copy
number and sequencing data from 947 human cancer cell lines. A cancer cell line can be understood
as a string of cancer cells that keep dividing and growing over time under certain conditions in a
laboratory. Then, using high-throughput sequencing technologies, the molecular characteristics of
cancer cell lines, such as gene expression or mutation data, can be extracted. These genetic predictors
were coupled with measures of drug sensitivity for PL.X4720: a drug used against cancer whose
response is available for 474 of the above cancer cell lines. By correlating the genetic information
with the corresponding sensitivity to drug response, the data in principle allows for the identification
of relevant genetic markers which could then lead to personalized treatment therapies depending on a
patients genetic makeup. We illustrate this procedure in Figure 3]

Except for the conditional independence test to report significant genetic variables, our experiments
followed similar procedures to those detailed in [[12] and [1]. We choose to analyze dependence of
drug response with 466 genetic mutations observed on each cancer line. We give summary statistics of
the final data used in Table[T|below. This is a very high-dimensional problem that makes conditional
independence testing unfeasible with traditional tests.

As in the original study in [1l], we proceeded by fitting an elastic net model to predict drug response
from genetic features with 10-fold cross-validation to optimize hyperparameters. Influential features
were then ranked by their heuristic importance score given by the magnitude of fitted parameter values.
The random forest model was used with default hyper-parameters in the python library sklearn
and the CRT was implemented with a Gaussian approximation like in all other experiments. We ran
the GCIT and the CRT considering each feature separately with drug response and all remaining
features as confounders.

Remark. For a more systematic biological evaluation of features reported by the GCIT, we would use
a more principled feature selection procedure such as Benjamini-Hochberg’s correction for false
discoveries [2].

Cancer cell lines in vitro acquired

. Administration of
from a variety of sources

PLX4720 in a controlled

o ®
Genetic features
Mutations
Copy number variations Response to PLX4720
Expression profiles * Sensitivity / Resistance levels

Figure 5: Diagram illustrating the data used in the Genetic experiment.

Table 1: Summary statistics of the final genetic data used from [[1].

Statistics Values

No. of cancer cell lines 474

No. of genetic mutations 466

Pearson correlation with drug response min: 0.05, max: 0.51, mean: 0.07, var: 0.001
Drug response distribution min: —97.9, max: 43.3, mean: —17.2, var: 633.3
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