
Spectral Modification of Graphs
for Improved Spectral Clustering

Ioannis Koutis
Department of Computer Science

New Jersey Institute of Technology
Newark, NJ 07102
ikoutis@njit.edu

Huong Le
Department of Computer Science

New Jersey Institute of Technology
Newark, NJ 07102
hyl4@njit.edu

Abstract

Spectral clustering algorithms provide approximate solutions to hard optimization
problems that formulate graph partitioning in terms of the graph conductance. It
is well understood that the quality of these approximate solutions is negatively
affected by a possibly significant gap between the conductance and the second
eigenvalue of the graph. In this paper we show that for any graph G, there exists
a ‘spectral maximizer’ graph H which is cut-similar to G, but has eigenvalues
that are near the theoretical limit implied by the cut structure of G. Applying then
spectral clustering on H has the potential to produce improved cuts that also exist
in G due to the cut similarity. This leads to the second contribution of this work:
we describe a practical spectral modification algorithm that raises the eigenvalues
of the input graph, while preserving its cuts. Combined with spectral clustering on
the modified graph, this yields demonstrably improved cuts.

1 Introduction

Spectral Clustering is a widely known family of algorithms that use eigenvectors to partition the
vertices of a graph into meaningful clusters. The introduction of spectral partitioning methods goes
back to the work of Donath and Hoffman [7] who used eigenvectors for partitioning logic circuits,
but owes its popularity to the work of Shi and Malik [28] who brought it in the realm of computer
vision and machine learning, subsequently leading to a vast amount of related works. Several other
clustering methods have since emerged, including of course methods based on neural networks. But
spectral clustering remains a frequently used baseline, and a serious contender to state-of-the-art
graph embedding methods, e.g. [23, 11, 31, 25].

The remarkable performance of spectral clustering is possibly due to the fact that it produces outputs
with theoretically understood approximation properties. Roughly speaking, spectral clustering
computes the second eigenvalue λ of the normalized graph Laplacian as an approximation to the
graph conductance, i.e. the value of the optimal cut. Cheeger inequality shows that while λ is never
greater than φ, it can be as small as φ2 [5]. That implies that the approximation can be a factor of
(φ/λ) away from the optimal value, which can be up to O(n) even for unweighted graphs. While
this may be often a pessimistic estimate, there are known families of graphs where the estimate is
realized; in such graphs, spectral clustering computes cuts that are far from optimal [12]. It is thus
understood that the ratio (φ/λ) affects directly the quality of spectral clustering, a fact that is viewed
as an inherent limitation.

This paper shows that this limitation can be greatly alleviated via spectral modification: a set of
operations that approximately preserve the cut structure of the input while ‘raising’ its spectrum, in
effect suppressing the ratio (φ/λ) and improving the output.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

2 Spectral Modification: High-level Overview and Context

This section collects a number of required notions from spectral graph theory and puts spectral
modification in perspective with important recent discoveries that inspire it. It also describes the
motivation for our work and gives a high-level overview that may be useful for the reader before we
delve into more technical details.

2.1 Cut and Spectral Similarity

Let G = (V,E,w) be a weighted graph. The Laplacian matrix LG of graph G is defined by: (i)
LG(u, v) = −wuv and (ii) LG(u, u) = −

∑
u 6=v LG(u, v).

The quadratic form of a semi-positive definite matrix A is defined by R(A, x) = xTAx. For a
subset of vertices S ⊆ V , we denote by cutG(S) the total weight of the edges leaving the set S.

Let G and H be two weighted graphs. We say that the two graphs are ρ-cut similar, if there exist
numbers α, β with ρ = α/β, such that for all S ⊂ V , we have α·cutH(S) ≤ cutG(S) ≤ β ·cutH(S).
We say that the two graphs are ρ-spectral similar, if there exist numbers α, β with ρ = α/β such that
for all real vectors x, we have α · R(LH , x) ≤ R(LG, x) ≤ β · R(LH , x).

It is well understood that ρ-spectral similarity implies ρ-cut similarity, but not vice-versa [29].

2.2 Low-diameter Cut Appproximators and Spectral Maximizers

Let G = (V,E) be the path graph on n vertices, and for the sake of simplicity assume that n is
a power of 2. Let T = (V ∪ I, E) be the full binary tree, where V is the set of leaves being in
one-to-one correspondence with the path vertices as illustrated in Figure 1a, and I is the set of internal
vertices. An interesting feature of T is that it provides a cut-approximator for G, i.e. it contains
information that allows estimating all cuts in G, within a factor of 2. In section 3, we describe how
the cut approximator T gives rise to a weighted complete graph H = (V,E,w) on the original set
of vertices V , via a canonical process of eliminating the internal vertices of T ; figure 1b provides a
glimpse to the edge weights of H . Graph H is O(1)-cut similar with G, but with a very different
eigenvalue distribution, as illustrated in Figure 1c. More specifically, the second eigenvalue λ of the
normalized Laplacian of G is Θ(1/n2), while that of H is Ω(1/(n log n)), essentially closing the
gap with the conductance φ = Θ(1/n). An alternative way of viewing this is that H has a second
eigenvalue which –up to an O(log n) factor– is the maximum possible, since the eigenvalue is always
smaller than φ. In some sense, the same is true for all eigenvalues of H , which leads us to call H a
spectral maximizer of G. These properties of H can be proved using only the logarithmic diameter
of T and the fact that T is a cut-approximator.

These observations set the backdrop for the idea of spectral modification, which aims to modify the
input graph G in order to bring it spectrally closer to its maximizer H . It is worth noting that, in some
sense, spectral modification is an objective countering that of spectral graph sparsification, which
aims to spectrally preserve a graph [2].

(a) (b) (c)

Figure 1: (a) The path graph G and the cut-approximating binary treeR. The binary tree is depicted
with weights that are discussed in section 3. (b) Heatmap of the log-entries of the adjacency matrix
for n = 8196 of the spectral maximizer H . It can be seen that H is a dense graph that inherits the
tri-diagonal path structure, but also has other long-range edges. (c) Ratios of the first 30 normalized
eigenvalues of H and G, for n = 8196. H has significantly larger eigenvalues.

2

2.3 Contributions and Perspective

A key contribution of this paper is the observation that every graph G has a spectral maximizer H .
The path-tree example of the previous section is merely an instantiation of our central claim, but a
vast generalization is possible (with a small loss), using the fact that all graphs have low-diameter cut
approximators, as shown by Räcke [26]. Technically, this is captured by a Cheeger-like inequality that
we present in Section 3.3. We show that the inequality applies not only for the standard normalized
cuts problem, but also for generalized cut problems that capture semi-supervised clustering problems.

The original result of [26] has undergone several subsequent algorithmic improvements and re-
finements [3, 14, 27, 22]. It is currently possible to compute a cut approximator in nearly-linear 1

time [22]; this implies a similar time for the construction of a maximizer. As discussed in the previous
section, the approximator is a compact representation of all cuts in a graph, and thus it is likely that its
computation is a waste, when we only want to compute a k-clustering. Indeed, all existing algorithms
are complicated and far from practical.

On the other hand a significant strength of spectral clustering is its speed, due to the existence of
provably fast linear system solvers for graph Laplacians [17, 19]. A theoretical upper bound for the
computation of k eigenvectors is O(km log2m), where m is the number of edges in the graph; in
practice, for a graph with millions of edges, one eigenvector can be computed in mere seconds on
standard hardware, without even exploiting the ample potential for parallelism.

This motivates the second contribution of the paper: a fast algorithm that modifies the input graph G
into a graphM which is spectrally closer to the maximizer H , and thus more amenable to spectral
clustering. The emphasis here is in the running time of the modification algorithm and the size of
its output. These are kept low in order to not severely impact the speed of spectral clustering. We
present the algorithm, and discuss its properties in Section 4.

Finally, applying spectral clustering on graphM and mapping the output back to G has the potential
to ‘discover’ dramatically different and improved cuts. One such case is illustrated in Figure 2, on a
known bad case of spectral clustering taken from [12].

(a) 2-way partitioning on G (b) improved partitioning based onM

Figure 2: Input G is a direct graph product of: (i) the path graph, (ii) a graph consisting of two binary
trees with their roots connected [12]. The modification of G sways the lowest eigenvector away from
the cut computed in G. The asymptotic improvement in the value of the cut is O(n1/4).

We note that another graph modification idea has appeared in the context of ‘regularized spectral
clustering’. More specifically it has been observed that adding a small copy of the identity matrix
or the complete graph onto the input graph G, improves the quality of spectral clustering [1, 24].
The improved performance has been partially explained for block-stochastic models and stochastic
social network graphs [13, 32] . In the latter case, the improvement is attributed to the ‘masking’ of
unbalanced sparse cuts in the graph caused by altering their cut ratio [32]. It is conceivable that the
theoretical results of this paper will help shed additional light on regularized spectral clustering. It is
clear though, that regularized spectral clustering does not yield improvement such as that in Figure 2.

3 Cut Approximators, Spectral Maximizers and Cheeger Inequalities

In this section we prove our main claim that for every graph G there exists another graph H which is
cut-similar to G but satisfies a tight Cheeger inequality. We will first state our claims, and give the
proofs in subsection 3.4.

1O(m logcm) time, where m is the number of edges in G and c is a fairly large constant.

3

3.1 Definitions of Graph Objects

Definition 3.1 (Hierarchical Cut Decomposition). A hierarchical cut decomposition for a graph
G = (V,E,w) is represented as a rooted tree T = (V ∪ I, E′, w′), with the following properties:

(i) Every vertex u of T identifies a set Su ⊆ V .
(ii) If r is the root of T then Sr = V .
(iii) If u has children v1, . . . , vt in T . then Svi ∩ Svj

= ∅ for all (i, j).
(iv) If u is the parent of v in T then w′(u, v) = cutG(v).

Definition 3.2 (α-Cut Approximator). We say that a hierarchical decomposition T = (V ∪I, E′, w′)
for G is an α-cut approximator for G if for all S ⊆ V there exists a set IS ⊆ I such that

cutG(S) ≤ cutT (S ∪ IS) ≤ α · cutG(S).

Given a graph G and an associated cut approximator T we now define the spectral maximizer for
G – the choice of terminology will be justified subsequently.
Definition 3.3 (Spectral Maximizer). Let T = (V ∪ I, E′) be a cut approximator for a graph
G = (V,E,w) and let

LT =

(
LI V
V T D

)
ordered so that its first |I| rows are indexed by I in an arbitrary order, and its last |V | rows are
indexed by V in the given order. We define the graph maximizer H to be the graph with Laplacian
matrix LH = D − V TL−1I V .

The matrix D − V TL−1I V in the above definition is known as the Schur complement with respect
to the elimination of the vertices/variables in I , and given the fact that LT is Laplacian, it is well
known to be a Laplacian matrix (e.g see [8]). Graph theoretically, the elimination of a vertex v from
a graph introduces a weighted clique on the neighbors of v. The elimination of a set of vertices I can
be performed as a sequence of vertex eliminations (in an arbitrary order).

Important Remark: We use the term ‘spectral maximizer’ for brevity and simplicity. It should be
made clear that the spectral maximizer is not a unique graph, as it depends on T .

3.2 Properties of Spectral Maximizers

In order to state our claims we fix a triple (G, T (α), H), where G is a graph, T is an associated
α-cut approximator and H is the spectral maximizer corresponding to T . We will also denote by
diam(T) the diameter of the tree, i.e. the number of edges on the longest path in T .

We first introduce some required notation additional to that from Section 2.1. Let G and H be two
graphs on the same vertex set, with the requirement that G is connected. In particular, H may be
not connected, or not even using a susbet of V . Then we say that G spectrally dominates H , if for
all vectors x we haveR(LG, x) ≥ R(LH , x). We denote spectral domination by G � H . We also
write α ·G to denote the graph G with its weights multiplied by α.

Theorem 3.1 (Spectral Domination of Cut Structure). Given a triple (G, T (α), H), let G̃ be an
arbitrary graph which is ρ-cut similar to G. Then, we have diam(T) · ρ ·H � G̃.

Theorem 3.2 (Cut Similarity of Spectral Maximizer). Given a triple (G, T (α), H), the maxi-
mizer H is α · diam(T)-cut similar with G. In particular, we have cutH(S)/α ≤ cutG(S) ≤
diam(T)cutH(S).

We are now ready to discuss the justification for the term ‘spectral maximizer’. The reader should
think of the parameters diam(T) and α as small, i.e. of size Õ(1)2. Then, Theorem 3.1 shows that
–up to a Õ(1) factor– H spectrally dominates every graph that is Õ(1)-cut similar with G. This
directly implies that –up to the same factor– the ith eigenvalue of LH is greater than that of LG̃, for
every graph G̃ which is cut-similar to G. Combined with Theorem 3.2, we get that LH has nearly the
maximum possible eigenvalues that any graph with similar cuts can have. In the particular case of λ2

2We use the ˜O(·) notation to hide factors logarithmic in n, that we do not attempt to optimize.

4

we show that it is is actually within Õ(1) from the graph conductance. This extends to a generalized
notion of conductance with algorithmic implications for supervised clustering; we discuss this in
the supplementary material.

3.3 Cheeger Inequalities for Spectral Maximizers

Definition 3.4 (Generalized Conductance). Let A and B be two graphs on the same set of vertices
V . We define the generalized conductance φ(A,B) of the pair as: φ(A,B) = minS⊆V

cutA(S)
cutB(S) .

Definition 3.5 (Second Generalized Eigenvalue). The smallest generalized eigenvalue of a pair of
graphs (A,B) is given by λ2(A,B) = minx

xTLAx
xTLBx

.

The generalized definition encompasses the standard conductance of a graph. Concretely, let K be the
complete weighted graph, where the weight of edge (u, v) is set to be wK(u, v) = volA(u)volA(v),
i.e. the product of the degrees of u and v in A. Also, let λ2 denote the second eigenvalue of the
normalized Laplacian of A, i.e. L̂ = D−1/2LAD

−1/2, where D is the diagonal matrix of the vertex
degrees in A. Then, it is easy to show that:

φ(A,K) = φ(A) = minS⊆V
cutA(S)

volK(S)volK(V−S) and λ2(A,K) = λ2.

The Cheeger inequality [5] states that λ2 ≥ φ2/2. A Cheeger inequality is also known for the
generalized conductance [6]: λ2(A,B) ≥ φ(A,B)φ(A)/8.

We prove the following Theorem.
Theorem 3.3 (Extended Cheeger Inequality for Cut Structure).
For any graph G, there exists a graph H such that (i) H is Õ(1)-cut similar with G, and (ii) H
satisfies the following inequality for all graphs B:

λ2(H,B) ≤ φ(H,B) ≤ Õ(1)λ2(H,B).

A consequence of Theorem 3.3 is that the actual performance of spectral clustering on a given graphG
ultimately depends on its ‘spectral distance’ from its maximizer H . This is captured in the following
Corollary.
Corollary 3.1 (Actual Cheeger Inequality).
Let G be a graph and H be the graph whose existence is guaranteed by Theorem 3.3. Further,
suppose that G and H are δ-spectral similar. Then, for all graphs B, G satisfies the following
inequality: λ2(G,B) ≤ φ(G,B) ≤ Õ(δ)λ2(G,B).

3.4 Proofs

In this section we simplify the notation and sometimes use G to mean both a graph and its corre-
sponding Laplacian LG.
Lemma 3.1. (Edge-Path Support [4]) Let P be an unweighted path graph on k vertices, with
endpoints u1, uk. Also let Eu1uk

be the graph consisting only of the edge (u1, uk). Then we have
kP � Eu1uk

.
Lemma 3.2 (Quadratic form of Schur complement). Let H and T be the graphs matrices appearing
in Definition 3.3. We have

R(H,x) = min
y∈R|I|

R(T ,
(
y
x

)
).

We finally need the following (adjusted) Lemma from [26, 3]:

Lemma 3.3. Every graphG has an Õ(1) cut-approximatorR. The diameter of T isO(log n), where
n is the number of vertices in G.

We are now ready to proceed with the proofs.

Proof. (of Theorem 3.1) We first show the intermediate claim diam(T) · T � G. The technique
uses elements from support theory [4]. Let Euv be an arbitrary edge of G of weight wuv . Let Puv be

5

the unique path between u and v inR; notice that by definition the path has length at most diam(T).
We observe that, by construction ofR, we have T =

∑
(u,v)∈G wuvPuv. Let y, x be arbitrary vectors

of appropriate dimensions, and z = [y, x]T . We have

R(T , z)
R(G, z)

=

∑
(u,v)∈G wuvR(Puv, z)∑
(u,v)∈G wuvR(Euv, z)

≥ min
(u,v)∈G

R(Puv, z)

R(Euv, z)
≥ 1/diam(T).

The first inequality is standard for a ratio of sums of positive numbers, and the second inequality is
an application of lemma 3.1. This proves the intermediate claim. Notice now that since the claim
holds for all vectors z = [y, x]T for arbitrary y, it also holds for vectors where y is defined as in
Lemma 3.2. That implies T (H,x) ≥ T (G, x)/diam(T), i.e. diam(T) ·H � G.

To prove the claim for a G′ which is ρ-cut similar to G, we observe that the above proof can be
repeated if we replace T with T ′ =

∑
(u,v)∈G w

′
uvPuv . Thus we get diam(T) · T ′ � G′ (A). Notice

that T ′ keeps the same edges of T but with different weights. Observe now that if v is a vertex
in T ′ then the edge to its parent has weight equal to cutG′(Sv), where Sv is the set identified by
v according to the definition of the cut approximator. However by the cut similarity of G and G′
we know that cutG′(Sv) ≥ cutGSv/ρ. It follows that the edges of T ′ have weight at most ρ times
smaller than their weights in T , which directly implies that T � ρT ′. Substituting into inequality
(A) above, we get that ρ · diam(T) · T � G′. Then applying lemma 3.2 one more time gives the
claim.

Proof. (of Theorem 3.2) The proof is a relatively easy consequence of lemma 3.2 and definition 3.2.
We include it in the supplementary material.

Proof. (of Theorem 3.3) Let (G, T (α), H) be the given triple. Also, let B = (V,E,w) be an
arbitrary graph. The first part of the inequality is trivial. Let x be the eigenvector corresponding
to the smallest non-zero eigenvalue of the generalized problem LHx = λLBx. Using the standard
Courant-Fischer characterization of eigenvalues, we have

λ2(H,B) =
R(LH , x)

R(LB , x)
=
R(LT , z)

R(LB , x)
, (1)

where z is the extension of x described in lemma 3.2. For an edge Euv, let Puv denote the (unique)
path connecting u and v in T . Using lemma 3.1, we get:

R(LB , x) =
∑

(u,v)∈B

wuv(xu − xv)2 ≤
∑

(u,v)∈B

wuvR(LPuv
, z) =

∑
(u,v)∈B

R(wuvLPuv
, z)

Note that we now get the quadratic form of the graph T ′ =
∑

(u,v)∈B wuvPuv . Because T ′ is a sum
of paths on T , it has the same edges with T . Denote by wT (q, q′) the weight of the edge (q, q′) on
T , where q′ is the parent of q. Continuing then on inequality 1, we get

λ2(H,B) ≥ R(LT , z)

R(LT ′ , z)
=

∑
(q,q′)∈T wT (q, q′)(zq − zq′)2∑
(q,q′)∈T wT ′(q, q′)(zq − zq′)2

≥ min
q∈T

wT (q, q′)

wT ′(q, q′)
(2)

If Sq ⊆ V is the set identified by q, we have

wT (q, q) = cutG(Sq) ≥ cutH(Sq)/α,

where the inequality comes from Theorem 3.2. Observe now that (q, q′) appears on T ′ exactly on the
paths Puv such u ∈ Sq and v ∈ S′q . It follows that the edge (q, q′) receives in T ′ a total weight equal
to the total weight of the edges leaving Sq on B, i.e. wT ′(q, q′) = cutB(Sq). Further continuing on
inequality 2, we get that

λ2(H,B) ≥ min
q∈T

wT (q, q′)

wT ′(q, q′)
≥ min

q

cutH(Sq)

α · cutB(Sq)
≥ min

S

cutH(S)

α · cutB(S)
= φ(H,B)/α.

The Theorem then follows by invoking lemma 3.3 and Theorem 3.2.

6

4 A Spectral Modification Algorithm

The goal of spectral modification is to construct a modifier M of the input graph G = (V,E,w),
which is spectrally similar to the maximizer described in Section 3. Then Corollary 3.1 shows that
improved Cheeger inequalities also hold for M , up to the spectral similarity factor. Echoing the
construction of the maximizer in Section 3, we will construct a graphM on a set of vertices V ∪Vadd,
where Vadd is a set of additional vertices. The modifier M is then defined as the Schur complement of
M with respect to the elimination of the nodes in Vadd. We solve the generalized eigenvalue problem
LMx = λDx, where D is the diagonal of LG. The modifier M is a dense graph, but we effectively
use onlyM. We accomplish that using standard techniques that we discuss in the supplementary file.

Cut Approximators for Trees. Towards designing a modification algorithm, we observe that
computing a low-diameter cut approximator of a tree T is can be carried out with a recursive top-
down analysis of the cut structure of T , in O(n log n) time, essentially following the algorithm
in [26]; key to the algorithm is a linear time algorithm for computing the sparsest cut on a tree. A
low-diameter cut approximator for a tree can also be constructed in a bottom-up fashion in O(n)
time, using the decompositions from [16]. Our code implements the linear time algorithm.

We consider the following general framework for spectral modification. Given a graphG = (V,E,w):

(a) Compute a set of weighted trees T1, . . . , Tk on vertex set V . [tree decomposition step]
(b) Compute a cut approximatorMj for each tree Tj .
(c) Form the graphM = αG+M1 + . . .Mk.

The cut approximators Tj in step (b) share the same set of leaves V , but each Tj has its own set of
additional internal vertices Vaddj

. Thus, the weighted graphs in the sum of step (c) have mutually
disjoint edge sets, and the sum simply denotes the union of all these edges. The vertex set ofM is
V ∪ Vadd, where Vadd =

⋃
j Vaddj

.

Tree Decomposition Step. In this step we aim to process the input graph G in order to compute a
set of trees, such that the sum of their maximizers is spectrally close to the maximizer of G. There
exist several potential ways to perform that. We now give an algebra-based heuristic algorithm that
we have implemented and used in our experiments.

1: procedure ENERGY_TD(G, k)
2: z ← approximate second eigenvector of LGx = λDx . D is the diagonal of LG

3: G′ ← (V,E,w′), where w′uv = wuv(zu − zv)2

4: for j = 1 : k do
5: Rj = (V,Ej , w

′)← maximum weight spanning tree of G′
6: Tj ← (V,Ej , w) . Tree with edge set Ej with weights from G
7: For each e ∈ Ej , let w′e = w′e/df . Update weights in G′
8: end for
9: return {T1, . . . , Tk}

ENERGY_TD is based on the following reasoning. Assuming that the graph G is spectrally away
from its maximizer H , we expect the second eigenvector z to be “bad” in the sense that the associated
Rayleigh quotientR(G, z)/zTDz is significantly lower than it would have been for the maximizer
H . Steps 4-7 find k trees in G that yield most of the ‘energy’ R(G, z). Adding the maximizers
of these trees attempts to directly ‘push’ the Rayleigh quotient for z higher in the spectrum of the
modified graph M . At the same time, because the trees Tj are subtrees of G, and their maximizers
have similar cuts, the modifier M has cuts similar to those in G. We further discuss some properties
of ENERGY_TD and its running time, in the supplementary file.

4.1 Implementation and Experiments

We provide a MATLAB implentation. We plan to provide a Python implementation in the near future.
The submitted code and all future updates can be found in: https://github.com/ikoutis/spectral-modification

Remark on Baseline Spectral Clustering: We use the baseline spectral clustering implementation
from [6]. We solve the eigenvalue problem LGx = λDx, which yields the standard embedding.
A differentiation is that we further process the embedding by projecting the points onto the unit
hypersphere, as analyzed in [20]. This actually yields a significant improvement of the baseline.

7

https://github.com/ikoutis/spectral-modification

Parameter Settings: For all our experiments we set k = 3, df = 1/2, and α = 1 in ENERGY_TD.

Synthetic Datasets. The synthetic example described in Figure 2 highlights the potential of spectral
modification to induce the computation of asymptotically better cuts in graphs with ‘elongated’
features, or high diameter. The output has been computationally verified for a range of values for
n (up to millions). In the supplementary file we also describe a synthetic example of a weighted
where spectral modification yields a cut smaller by a Θ(1/n) factor. In Figure 3, we also give a
synthetic example taken from [6], where spectral modification clearly outperforms even a supervised
method. We also present two examples of challenging images; these were obtained with just one
run of k-means++ after the eigenvector computation. Standard spectral clustering outputs discon-
nected segments, whereas our proposed improved returns connected and visually more meaningful
components.

(a) Standard spectral (b) Supervised spectral [6] (c) Modified spectral

Figure 3: (a) The ‘4-moons’ example from [6]. (A)RI is the Adjusted Rand Index.

Social Networks. We performed experiments with four graphs (BlogCatalog, PPI, Wikipedia,
Flickr) used as a benchmark in the recent literature [23, 25]. We compare against NetMF [25] as it
has previously reported an improvement over DeepWalk [23] and other competing methods. The
evaluation methodology is identical to that in [25]. The second normalized eigenvalue λ of these
graphs are quite high (0.43,0.49, 0.20, 0.06 respectively) and so there is little room for improvement.
Nevertheless we observe improvements in the standard Micro-F1 scores. We cannot however attribute
them directly to our theory, as it is not sensitive to Õ(1) factors. The dimension of the embedding
is equal to the number of clusters, except for the Flickr data set which is set to 128 because NetMF
method is too expensive to be run on dimension 195 (# clusters). We also wish to highlight the fact
that the implemented version of baseline spectral clustering performs much better than standard
version. A more detailed discussion is given in the supplementary file.

4
Figure 4: Micro-F1 scores in 10x cross-validation using LIBLINEAR [9].

Conclusion. The performance of spectral clustering depends crucially on spectral properties of
its input graph, which most often force it to output clusters of poor approximation quality. This has
been viewed as an inherent limitation of spectral clustering. We show however that for any input
graph, there exists a ‘maximizer’ graph with similar cuts, but with an eigenvalue distribution which
is favorable for spectral clustering. We propose a spectral modification algorithm that attempts to
exploit this fact via fast operations that improve the eigenvalue distribution of the input without
changing its cut structure. The implemented spectral modification algorithm is heuristic and subject
to various improvements. Nevertheless, it yields demonstrable asymptotic improvements in a number
of adversarial instances. In future work we will explore the performance of spectral modification on
larger and more diverse sets of instances, and the implementation of modification algorithms with
theoretical guarantees

Acknowledgements. This work has been partially supported by grants CCF-1149048, CCF-1813374.

8

References
[1] Arash A. Amini, Aiyou Chen, Peter J. Bickel, and Elizaveta Levina. Pseudo-likelihood methods for

community detection in large sparse networks. Ann. Statist., 41(4):2097–2122, 08 2013. doi: 10.1214/
13-AOS1138. URL https://doi.org/10.1214/13-AOS1138.

[2] Joshua Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral sparsification of
graphs: Theory and algorithms. Commun. ACM, 56(8):87–94, August 2013. ISSN 0001-0782. doi:
10.1145/2492007.2492029. URL http://doi.acm.org/10.1145/2492007.2492029.

[3] Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. A practical algorithm for constructing
oblivious routing schemes. In Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’03, pages 24–33, New York, NY, USA, 2003. ACM. ISBN 1-58113-661-7. doi:
10.1145/777412.777418. URL http://doi.acm.org/10.1145/777412.777418.

[4] Erik G. Boman and Bruce Hendrickson. Support theory for preconditioning. SIAM J. Matrix Anal. Appl.,
25(3):694–717, 2003. ISSN 0895-4798.

[5] F.R.K. Chung. Spectral Graph Theory, volume 92 of Regional Conference Series in Mathematics. American
Mathematical Society, 1997.

[6] Mihai Cucuringu, Ioannis Koutis, Sanjay Chawla, Gary Miller, and Richard Peng. Simple and scalable
constrained clustering: a generalized spectral method. In Arthur Gretton and Christian C. Robert, editors,
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, volume 51 of
Proceedings of Machine Learning Research, pages 445–454, Cadiz, Spain, 09–11 May 2016. PMLR. URL
http://proceedings.mlr.press/v51/cucuringu16.html.

[7] W.E. Donath and A.J. Hoffman. Algorithms for partitioning graphs and computer logic based on eigenvec-
tors of connection matrices. IBM Technical Disclosure Bulletin, 15(3):938–944, 1972.

[8] David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, and Sushant Sachdeva. Sampling random
spanning trees faster than matrix multiplication. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, pages 730–742, New York, NY, USA, 2017. ACM.
ISBN 978-1-4503-4528-6. doi: 10.1145/3055399.3055499. URL http://doi.acm.org/10.1145/
3055399.3055499.

[9] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A
Library for Large Linear Classification. Technical report, 2008. URL https://www.csie.ntu.edu.tw/
~cjlin/papers/liblinear.pdf.

[10] Shayan Oveis Gharan. Cse 521: Design and analysis of algorithms, class notes, 2016. URL https:
//courses.cs.washington.edu/courses/cse521/16sp/521-lecture-12.pdf.

[11] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages
855–864, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939754.
URL http://doi.acm.org/10.1145/2939672.2939754.

[12] Stephen Guattery and Gary L. Miller. On the quality of spectral separators. SIAM J. Matrix Anal.
Appl., 19(3):701–719, jul 1998. ISSN 0895-4798. doi: 10.1137/S0895479896312262. URL http:
//dx.doi.org/10.1137/S0895479896312262.

[13] Antony Joseph and Bin Yu. Impact of regularization on spectral clustering. Ann. Statist., 44(4):1765–1791,
08 2016. doi: 10.1214/16-AOS1447. URL https://doi.org/10.1214/16-AOS1447.

[14] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time algorithm
for approximate max flow in undirected graphs, and its multicommodity generalizations. In Proceedings
of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages 217–226,
Philadelphia, PA, USA, 2014. Society for Industrial and Applied Mathematics. ISBN 978-1-611973-38-9.
URL http://dl.acm.org/citation.cfm?id=2634074.2634090.

[15] Andrew V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned
conjugate gradient method. SIAM Journal on Scientific Computing, 23(2):517–541, 2001. doi: 10.1137/
S1064827500366124. URL https://doi.org/10.1137/S1064827500366124.

[16] Ioannis Koutis and Gary L. Miller. Graph partitioning into isolated, high conductance clusters: Theory,
computation and applications to preconditioning. In Symposiun on Parallel Algorithms and Architectures
(SPAA), 2008.

9

https://doi.org/10.1214/13-AOS1138
http://doi.acm.org/10.1145/2492007.2492029
http://doi.acm.org/10.1145/777412.777418
http://proceedings.mlr.press/v51/cucuringu16.html
http://doi.acm.org/10.1145/3055399.3055499
http://doi.acm.org/10.1145/3055399.3055499
https://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
https://courses.cs.washington.edu/courses/cse521/16sp/521-lecture-12.pdf
https://courses.cs.washington.edu/courses/cse521/16sp/521-lecture-12.pdf
http://doi.acm.org/10.1145/2939672.2939754
http://dx.doi.org/10.1137/S0895479896312262
http://dx.doi.org/10.1137/S0895479896312262
https://doi.org/10.1214/16-AOS1447
http://dl.acm.org/citation.cfm?id=2634074.2634090
https://doi.org/10.1137/S1064827500366124

[17] Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for sdd linear systems. In
Proceedings of the 2011 IEEE 52Nd Annual Symposium on Foundations of Computer Science, FOCS ’11,
pages 590–598, Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-4571-4. doi:
10.1109/FOCS.2011.85. URL http://dx.doi.org/10.1109/FOCS.2011.85.

[18] Ioannis Koutis, Gary L. Miller, and David Tolliver. Combinatorial preconditioners and multilevel solvers
for problems in computer vision and image processing. Computer Vision and Image Understanding,
115(12):1638 – 1646, 2011. ISSN 1077-3142. doi: https://doi.org/10.1016/j.cviu.2011.05.013. URL
http://www.sciencedirect.com/science/article/pii/S1077314211001627. Special issue on
Optimization for Vision, Graphics and Medical Imaging: Theory and Applications.

[19] Ioannis Koutis, Gary L. Miller, and Richard Peng. A fast solver for a class of linear systems. Commun.
ACM, 55(10):99–107, October 2012. ISSN 0001-0782. doi: 10.1145/2347736.2347759. URL http:
//doi.acm.org/10.1145/2347736.2347759.

[20] James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and higher-order
cheeger inequalities. J. ACM, 61(6):37:1–37:30, December 2014. ISSN 0004-5411. doi: 10.1145/2665063.
URL http://doi.acm.org/10.1145/2665063.

[21] Bruce M. Maggs, Gary L. Miller, Ojas Parekh, R. Ravi, and Shan Leung Maverick Woo. Finding effective
support-tree preconditioners. In Proceedings of the 17th Annual ACM Symposium on Parallel Algorithms,
pages 176–185, 2005.

[22] Richard Peng. Approximate undirected maximum flows in o(mpolylog(n)) time. In Proceedings of the
Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’16, pages 1862–1867,
Philadelphia, PA, USA, 2016. Society for Industrial and Applied Mathematics. ISBN 978-1-611974-33-1.
URL http://dl.acm.org/citation.cfm?id=2884435.2884565.

[23] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations.
In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, pages 701–710, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2956-9. doi:
10.1145/2623330.2623732. URL http://doi.acm.org/10.1145/2623330.2623732.

[24] Tai Qin and Karl Rohe. Regularized spectral clustering under the degree-corrected stochastic blockmodel.
In Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2,
NIPS’13, pages 3120–3128, USA, 2013. Curran Associates Inc. URL http://dl.acm.org/citation.
cfm?id=2999792.2999960.

[25] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA,
February 5-9, 2018, pages 459–467, 2018. doi: 10.1145/3159652.3159706. URL https://doi.org/10.
1145/3159652.3159706.

[26] Harald Räcke. Minimizing congestion in general networks. In Proceedings of the 43rd Symposium on
Foundations of Computer Science, pages 43–52. IEEE, 2002.

[27] Harald Räcke, Chintan Shah, and Hanjo Täubig. Computing cut-based hierarchical decompositions
in almost linear time. In Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’14, pages 227–238, Philadelphia, PA, USA, 2014. Society for Industrial and Applied
Mathematics. ISBN 978-1-611973-38-9. URL http://dl.acm.org/citation.cfm?id=2634074.
2634091.

[28] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell., 22(8):888–905, August 2000. ISSN 0162-8828. doi: 10.1109/34.868688. URL https:
//doi.org/10.1109/34.868688.

[29] D. Spielman and S. Teng. Spectral sparsification of graphs. SIAM Journal on Computing, 40(4):981–1025,
2011. doi: 10.1137/08074489X. URL https://doi.org/10.1137/08074489X.

[30] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th International Conference on World Wide Web,
WWW ’15, pages 1067–1077, Republic and Canton of Geneva, Switzerland, 2015. International World
Wide Web Conferences Steering Committee. ISBN 978-1-4503-3469-3. doi: 10.1145/2736277.2741093.
URL https://doi.org/10.1145/2736277.2741093.

10

http://dx.doi.org/10.1109/FOCS.2011.85
http://www.sciencedirect.com/science/article/pii/S1077314211001627
http://doi.acm.org/10.1145/2347736.2347759
http://doi.acm.org/10.1145/2347736.2347759
http://doi.acm.org/10.1145/2665063
http://dl.acm.org/citation.cfm?id=2884435.2884565
http://doi.acm.org/10.1145/2623330.2623732
http://dl.acm.org/citation.cfm?id=2999792.2999960
http://dl.acm.org/citation.cfm?id=2999792.2999960
https://doi.org/10.1145/3159652.3159706
https://doi.org/10.1145/3159652.3159706
http://dl.acm.org/citation.cfm?id=2634074.2634091
http://dl.acm.org/citation.cfm?id=2634074.2634091
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/34.868688
https://doi.org/10.1137/08074489X
https://doi.org/10.1145/2736277.2741093

[31] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis. In
Proceedings of the 33rd International Conference on International Conference on Machine Learning -
Volume 48, ICML’16, pages 478–487. JMLR.org, 2016. URL http://dl.acm.org/citation.cfm?
id=3045390.3045442.

[32] Yilin Zhang and Karl Rohe. Understanding regularized spectral clustering via graph
conductance. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages
10631–10640. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
8262-understanding-regularized-spectral-clustering-via-graph-conductance.pdf.

11

http://dl.acm.org/citation.cfm?id=3045390.3045442
http://dl.acm.org/citation.cfm?id=3045390.3045442
http://papers.nips.cc/paper/8262-understanding-regularized-spectral-clustering-via-graph-conductance.pdf
http://papers.nips.cc/paper/8262-understanding-regularized-spectral-clustering-via-graph-conductance.pdf

5 Supplementary Algorithms and Theory

5.1 Missing Proofs

Proof. (of Theorem 3.2) From Theorem 3.1 we get directly that cutS(G) ≤ diam(T)cutS(H) (A) for all sets
S ⊆ V . Now, let us fix some S ⊆ V . We define xS to be the indicator vector of S with: xS(v) = 1 is v ∈ S
and xS(v) = 0 otherwise. For any graph G, we have

R(G, xS) =
∑

u∈S,v 6∈S

wuv(xu − xv)2 = cutG(S). (3)

Definition 3.2 identifies a set IS ⊂ I of internal nodes ofR. We thus construct a vector z = [xS , yIS]
T , where

yIS is the indicator vector for IS . We then get:

cutH(S) = R(H,xS) ≤ R(T , z) = cutT (S ∪ IS) ≤ α · cutG(S) (B)

where the first inequality comes from lemma 3.2 and the last one from definition 3.2. Combining (A) and (B) we
get that cutH(S)/α ≤ cutG(S) ≤ diam(T)cutH(S).

5.2 Other Algorithmic Consequences

Spectral clustering is generally viewed as an unsupervised method. However it has been suggested that it can
also work as a supervised algorithm via computing generalized eigenvectors [6]. Corollary 3.1 shows that the
theoretical performance of this kind of supervised spectral clustering has the potential to be much more accurate
than predicted by the generalized inequality of [6] if the input graph is spectrally close to the maximizer of its
cut structure.

Corollary 3.1 also has consequences for classical algorithmic problems. For instance, the isoperimetric number
of a graph G is often defined as

h = min
S⊆V

cutG(S)/(|S| · |V − S|).

If we let B to be the complete unweighted graph then h = φ(G,B). The isoperimetric number has a weaker
Cheeger inequality, namely λ2(LG) ≥ h2/(2dmax), where dmax is the maximum degree of the graph. Then
inequality 3.1 applies directly and gives a different and usually stronger estimate. A similarly interesting
inequality follows for the minimum s-t cut problem, if we set B to be the graph consisting only of the (s, t)
edge.

5.3 Eigenvsolver for modified graphs.

The modifier M is a dense graph, and we effectively use onlyM. We accomplish this using standard techniques
that enable us to effectively use only M: As observed by Spielman and Teng [29], a nearly-linear time
implementation of the required eigenvector computation via inverse power methods, requires only solving linear
systems of the form LMx = b. In turn, this can be done via solving linear systems of the form LMx

′ = b′,
as M is simply the product of Gaussian elimination onM [21]. More specifically, we set b′ to agree with
b on V , and be equal to 0 on the Vadd. Then x is recovered from the V coordinates of x′. Solving linear
systems on LM can be done in time O(m logm), where m is the number of edges inM, using a fast Laplacian
solver [17, 19]. In practice, we use the Combinatorial Multigrid (CMG) solver [18]. The worst-case time
required for computing the k vectors used in the embedding is at most O(km log2m) when a standard inverse
power method is employed, and assuming that the running time of the linear system solver is O(m logm). In
practice the code is much faster due to the faster than worst-case performance of the linear system solver, and to
the used preconditioned eigensolver lobpcg [15].

12

6 Supplementary Experiments

6.1 A weighted synthetic example

(a) 2-way partitioning on G (b) 2-way partitioning onM

Figure 5: A weighted example. Input G consists of two unit-weight cycle graphs of length n, with
their corresponding vertices connected by edges of weight 100/n2 [10]. Standard spectral clustering
cuts 4 unit edges but modified spectral clustering cuts n edges of weight 100/n2.

6.2 Experiments with social network data

We use 4 labeled datasets that have been widely used as benchmarks [23]. Table 1 summarizes their features.

Dataset BlogCatalog PPI Wikipedia Flickr

|V | 10,312 3,890 4,777 80,513
|E| 333,983 76,584 184,812 5,899,882

Labels 39 50 40 195
λ2 0.4961 0.4316 0.2001 0.0589

Table 1: Dataset features including second eigenvalue λ2

Note that the second eigenvalue λ2 of these networks is quite high, and recall that the theory we developed is
insensitive to Õ(1) factors. Nevertheless we experimented with the implemented version of spectral modification,
following exactly the methodology of [25]: we first compute the embedding and then perform a 10x cross-
validation using LIBLINEAR [9], at various levels of supervision, for the standard Micro-F1 and Macro-F1
metrics. We compare against:

• The baseline spectral clustering method, implemented with the radial projection step proposed and
analyzed in [20]. The step projects the points onto the unit hypersphere the points computed by the
standard embedding.

• The NetMF network embedding method [25] which has been shown to perform better than other
recent network embedding methods (e.g. DeepWalk [23], LINE [30]).

The dimension of the embedding is set to be the number of clusters, except for the Flickr dataset where the
dimension is set to 128 (reported in [25]), as we were not able to run NetMF on dimension 195 on standard
hardware.

Figures 6 and 7 summarize the experiments. Although the numbers are not reported here, we wish to highlight
the observation that baseline spectral clustering with radial projection performs significantly better than the
standard version that was used in previous works.

13

Figure 6: Micro-F1 performance for classification using LIBLINEAR [9] (10x cross validation)

Figure 7: Macro-F1 performance for classification using LIBLINEAR [9] (10x cross validation)

14

	Introduction
	Spectral Modification: High-level Overview and Context
	Cut and Spectral Similarity
	Low-diameter Cut Appproximators and Spectral Maximizers
	Contributions and Perspective

	Cut Approximators, Spectral Maximizers and Cheeger Inequalities
	Definitions of Graph Objects
	Properties of Spectral Maximizers
	Cheeger Inequalities for Spectral Maximizers
	Proofs

	A Spectral Modification Algorithm
	Implementation and Experiments

	Supplementary Algorithms and Theory
	Missing Proofs
	Other Algorithmic Consequences
	Eigenvsolver for modified graphs.

	Supplementary Experiments
	A weighted synthetic example
	Experiments with social network data

