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1 Proofs of theorems

Proposition 1. We assume that the probability density po(z) of the squared input |x(0|? =

vazol xEO) is known. Then, the distribution p(z) of the squared signal vector |xV|? depends only on
the distribution of the previous layer as transformation by a linear operator Ty : L*(R,) — L'(R )
so that py = Ti(pi—1). T is defined as

Ti(p)[2] = / ki, 2)py)dy, M

where k(y, z) is the distribution of the squared signal z at layer | given the squared signal at
the previous layer y so that k;(y, z) = p;](\;';)lz (), where * stands for convolution and py )2 (2)
denotes the distribution of the squared transformed pre-activation h,,, which is normally distributed
as hy ~ N (0, o2 y? + Uf). This distribution serves to compute the cumulative distribution function

(cdf) of each signal component xf as

o] —1
Fyo(z) = /0 dzpi—1(2)® (%) ; 2)
(%) Ub

where ¢~ denotes the generalized inverse of ¢ and ® the cdf of a standard normal random variable.
Accordingly, the components are jointly distributed as

oo

Fmgz) I(z) (I) = dzpl_l(z)Hiv:ll(b (

IR 0

o), o

Oz

where we use the abbreviation o, = \/c%z + 0.

Proof. Let’s focus on a signal vector x conditional on the signal of the previous layer x . As

—1
explained in the main manuscript, a single signal component is distributed as z; ~ ® ((bT()) with

0? = o |x|> + o given |x|?. As the weights and biases are independent in the computation of

?
different components, also the components z; given |x|? are independent. Their joint distribution is
therefore just the product of the marginal distributions. Their distribution depends on the previous
signal only via the squared norm |x|?, which is distributed as p; 1. According to Bayes’ theorem,
we only need the knowledge of the distribution p;_1(+) of the squared norm at the previous layer
to determine the signal distribution by Equation |3} We receive p; of the next layer by successive
conditioning on the previous layer and the application of Bayes’ Theorem that states

pi(y) = /0 p‘x‘2‘|§|2pz_1(y) dy. 4)
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Equation (1| follows with the definition k;(y,2) = p ) z). Thus, the kernel k;(y, z) is
q Ix[2||x[2=y

defined as the density of the random variable |x|? given the squared norm |x|? of the previous
layer. We have to deduce its distribution to conclude the proof. [x|2 = SIM 22 = SN ¢(h;)?,
where the random variables ¢(h)? are independent and the pre-activations are normally distributed

2 |4]2 4 2 i : 2 ¢ (/)
as h; ~ N (0,02 |x|> 4+ 02) conditional on the previous layer. Thus, the z? ~ @(\/W)
are also identically independently distributed and so that their sum is given by their convolution:
Proposition 2. For rectified linear units, the linear operator T' in Theorem([l|is defined by

I (N 1 z
ki(y, ) = 0.5" <5o(2) > ( kl) o2 bxt (ﬁ)) ©®)
y

k=1 y

. ' * Ny
|x|? ~ F~1 (]—" (D(m)) , where F denotes the Fourier transformation. O

with 0, = \/o2y + o;. For oy, = 0, the functions fn(y) = y™ 19 o0)(y) are eigenfunctions of
T, for any m € R (even though they are not elements of L*(R. ) and thus not normalizable as
probability measures) with corresponding eigenvalue A, € R: T} fry, = Ay fin, with

Ny
o1 NN\T(k/2 —m —1)
_ Ny—m—1 t\t\wja—im—1)
Am = 0.5 s ;—1(’“) T ©)

Ow

Proof. We specialize Prop.to rectified linear units, i.e. ¢(x) = max(0, z). Thus, the components
x; = ¢(h;) are the sum of a ¢ distribution in 0, i.e. dy, and a truncation of a normal distribution with
mean 0 and variance o, given the previous layer |x|* = y.

zi|[x[? = y ~ 0.560(") + 1jo,00) ()N (7) /oy, where py(z) = exp(—22/2)/v/2r denotes the

Y
density of a Standard normal random variable. The squared component 22 = (¢(h;))? ~ ps(-) =
0.50(+) + 0.5(%pr2 (07) is thus either 0 with probability 0.5, i.e. the probability ®(0) = 0.5 that
h; is negative or, in case that h; is positive with probability 0.5, it follows a x? distribution as a
squared normal random variable with mean 0. As the squared components are independent and
identically distributed given the previous layer, their sum (given the previous layer) is distributed as
the N;th convolution of the squared component distribution, i.e. p; | |x|? ~ px™Nt, Tts functional form
is provided by Equation (3], which adds all possible cases where N; — k of the components are zero,
i.e. 2 = 0 and the remaining k are positive and x? distributed. As the sum of k independent x>
distributed random variables is x3 distributed, Equation (5)) follows.

To show that T)f,, = fooo ki(y, 2) fm()dy = Amfm(z), we focus on the summands

Jo” 00(y) fm(y) dy and [ %gpxi (p) fm(y) dy separately. First, we have [~ 6o(y) fm (y) dy =
fm(0) = 0. Second, we note that o = yo?, for o;, = 0 and integrate

fo's) 1 P 05k/2 ) Zk/2—1
e [ Z) fly) dy =
| o2 (ffz)f W &= 7 | P

z m 2™ 0.5k e
S (2afuy> U= S D T (k) /0 e (/2]
2mtL T(k/2 — (m+ 1))
oo™t ['(k/2)

after use of the definition of the y? density and a variable transformation = = z/(02y). Accordingly,
the integration of the product with the full kernel k(y, z) leads to

xk/Q—(m—&-l)—l dr = 2™

gm-+1 N NN\ T(k/2 — (m+1))
o2t —\k I(k/2)
— Z"L)\l,wr



Corollary 3. For rectified linear units, the expectation value of the squared signal conditional on the
squared signal of the previous layer is given by:

_ Ny
E (|X(z)|2“x(z D2 = g) = (ony+ 05)7, (7)

Consequently, the expectation of the final squared signal norm depends on the initial input as:
(L)12]]+(0)]2 (0)277L Nla?u,l 2
E (x®)2 [ [2) =x© Pk, =52 +of S

+Z b12 Iy 2w’n

()

The expectation value and variance of a single signal component conditional on the squared signal
norm of the previous layer are given by:

1
E(mi||§|2:y)zﬁq/05g+af, )

-1
V (1] lx* = y) = T~ (ohy +op). (10)

The last layer depends on the input as:

2
E (" x) <‘% [xO P Stz
7 = 2r = w,

2
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Proof. Prop.states that [x(D]2|[x( =D |2 = y ~ k(y, ) as given by Equation . Using the linearity
of expectation and the knowledge of the average of a x? distribution fooo = P2 (U%) dz = Img,

al Nl > z
E (|xO2|x D2 = y) =05M Y ( N ) /0 P (ﬂ)

we receive

k=1
—de_o5Nl 22( ) 0.5N 2N 2N~
y
Ny Ny
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Iterative application of this result leads to Equation (8), since we have

E (|X(L)|2‘|x(0)|2> = / . vl ki (y yie) dy

ye]RJr
= / E <|X(L)\2|\X(L_l)\2 = yL—1) HlL:_llkl(ylayl—l) dy
yERi’l

2 / RLfl(givLyL—l + o ) Ry, i) dy
yeRr:

N, N,
= S0 1 (xR xO)) + et

where we define y € RE asy = (y1,...,yr) and yo = |x(9)|2. This leads to Equation (8).
As shown in the proof of Prop. [1] a single component is distributed as z;|(|x|? = y) ~ 0.560(-) +
10,001 ()P (0—) /oy. Thus, its average is

1
V2T

and is identical to Equation @]) according to the definition of o,. The variance reads as

) —E (wi]Ix]* = )’

E (z|lxP = 4) = o, / pa(2) dz =

Oy

V(zi|x]* =y) =E (|lx]* =y

o) 2 2
_ _&_Uy _7T—1 9
_ay/o pn(2)z dz = 5 " or = 9 v

To derive the respective expressions conditional on the input, we combine these results with Equa-
tion (§). Yet, we cannot compute the average in closed form. But applying Jensen’s inequality (for

the concave function /o2 - o7 yields the simplification
1
E (ol |x0) = ——E (\/U%U L2 3+ o2 ’Xm))
7 | GE; | | b

1
< ——/o2E ( x(L-1)|2 ‘x(0)> + o2,
- \/271'\/ ! | | b

For the variance, we receive exactly

\% (xi’x(0)> = oﬁjE (|X(L71)|2 ‘X(O)) + ag.

1.1 Joint signal propagation for multiple inputs

Proposition 4. The same component of pre-activations of signals h1,...,hp corresponding to
different inputs X§0)7 e X([?), are jointly normally distributed with zero mean and covariance matrix

V' defined by
vij = Cov(hi, hj) = o7, < x;,%; > +03, (11)

(0)

%

fori,j =1,..., D conditional on the signals x; of the previous layer corresponding to x

Proof. Let’s assume two different inputs x§°), x;o) to the same neural network. We study a the same

component c of signal pre-activations (at layer ) given the previous layer and denote them by h;, h;.
They are given by h; = ij:ll WekL; ), +be and correspondingly h; = ZkN:ll Wer; 1 +be, are thus
normally distributed, and depend on the same mutually independent, normally distributed random



variables wck, b.. As we know, E(h; / j) = 0 so that their covariance conditional on the previous layer
is

vij = Cov(h;, hyj) = E (h;h;) = Z%,k%,nE (WekWen,)
k.n

+ Z(L‘,k + 2, 1 )E (werbe)
k

_ 2 2
= E T; 12 k0 T O
%

= (7721; <§i7§j > +U§7
because of the mutual independence of weights and biases w¢x, b.. Since hq, ..., hp are jointly

normally distributed, they are completely determined by their mean and covariance matrix. O

Theorem 5. Assume rectified linear units as activation functions. Let two signals x1 = ¢(h1),z2 =

@(h2) of the same neuron correspond to two different inputs Xgo), Xéo)' The variables y; = 23,

Yo = X35, Y3 = x1X2 are jointly distributed as:
P(y1,y2,43) =9(p)0(0,0,0) (Y1, Y2, ¥3) + f1(y1)d(0,0) (v2,y3)
+ fa(y2)0(0,0) (Y1, y3) (12)
+ pw (Y1, 42, ¥3) L ps (Y1, ¥2,3)

conditional on |x|3, |x|3, <X;,Xy > of the previous layer. g(p) is defined as g(p) =

\/% @ \/1p_7u) exp (—3u?) dufor p# 1and g(1) = 1/2.

fl(y1)

_ 1 Vol VUi
NeZze PN 1= Vim

X exp <—1 I )
2 \/v22
is the density of |x1|? for zero |xa|%.  f2(y2) is defined accordingly. pw refers to the density
pw (y1,Y2,y3) = ﬁphhhz (VY1,VY2)0 /5= (Y3), where pp, pn, denotes the density of the

pre-activations, i..e. two jointly normally distributed random variables with zero means and covari-
ance matrix V', while p refers to the correlation of the two components: p = v13/,/V11022. The

variables [x1|?, [x2|?, < x1, %2 >||x, |%, |x,|%, < x,, %, > are distributed as 3-dimensional convo-
lutions p***N and determine the joint signal distribution of the next layer.

Proof. According to the last theorem, the pre-activation signal components i1, ho are jointly normally
distributed with 2-dimensional covariance matrix V' (and zero means). The shape of the joint
distribution of (y1,y2,ys) can be deduced from that knowledge. The variables of interest are
(y1,v2,y3) = (0,0,0) exactly when hy < 0 and hy < 0. This is the case with probability

/1_p2 0 0
T on /,m/m

g(p)

1
conp (=3 0+ = 2purua) ) s

= \/?/Ooo ® (—pu) exp <—;u2(1 - p2)> du
- \/% /OOO o <\/1p_7p2u> exp (—;ﬁ) du,

where the last equality follows from a change of variable if p # 0. The case that only one of the
marginals, say ho, is negative, the variables y» = 0 and y3 = 0 are both zero and the remaining y;




is distributed with density f;(y;) = ﬁpml (\/1), where p,, denotes the density of the signal
component. p,, is given by integrating out all cases when z2 = 0, i.e. he < 0:

1 0 1 )
Py (21) = %\/W/—oo exp (- W(Un%

+ 'U22h/§ — 2012$1h2)) dh2

1 r
= 7<I>
V27vgg < V1 — p? /22 )
X € 1 x%
X .
P 2 v/ U22

The last case, when both iy > 0, hy > 0 and thus also (y1, ¥, y3) > 0 can be tied to the joint normal

distributions of the pre-activations, since y; = 27 = h?,yo = 25 = h3,y3 = h1hs then. The given
density follows directly from variable substitution.

Since (|x1/?, |x2|?, < x1,%2 >) given the previous layer is the sum of N; independent random vari-
ables that are distributed as (y1, y2, y3), their joint distributions coincides with the N;th convolution
Ofp(y17y27y3)- O

Theorem 6. Assume rectified linear units as activation functions. Let two signals x1 = ¢(h1),x0 =

@(hs) of the same neuron correspond to two different inputs xg ), xg ). Let the correlation p =

v12/+/U11022 Of the pre-activations hy, ho be given, where V' denotes the 2-dimensional covariance
matrix as defined in TheoremH| The correlation after non-linear activation is then

V1 —p* =1+ 2mpg(p) (13)

T—1

Cor(x1,29) =

where g(p) = foooq) (%) 6’5“2/\/27r. The average of the sum of all components
—p

E (< x1,X2 >) conditional on the previous layer is:

\/1—p? 1
E (< x1,%x2 >) = Nj\/v11022 (g(p)p+ 27T,0> ~ Nl\/UHUQQZ(p +1). (14)

Furthermore, conditional on the signals of the previous layer, < X1,Xo > is distributed as f *gld( ),
where

1
Foroalys) = (1= 9(p)) o) + 2=

V12Y3 Vv U11022
K
exp <2det(V)) 0 ( det(V) y3)

and Ko(w) = [;° cos(wsinh(t)) dt denotes the modified Bessel function of second kind.

Proof. The correlation of two random variables can be calculated as Cor (z1,23) =

]E(“\;;)(_E)glm)(”) For the correlation between the same signal component corresponding to two dif-
X1 mz
ferent inputs conditional on the previous layer, we can use our insights about the marginal distributions

in Equation (9) as

E (.’171.%‘2) —E (xl)E (1‘2)
V(21) V (22)
E (z122) 3 1

3 7
271, V11V22 ™ 1

Cor (:131, 3?2) =




After lengthy but not very insightful calculations we obtain

E (l’lafg) =

1 R e 1
- exp — ——
2my/det (V) /0 /0 P ( 2det(V)
(vux% + v22x§ — 2v12x1x2) )xlxg dxy dxo

1/U11V22 2
= T‘/l - p? <pg(p)fp2 + 1) :

which proofs Equation . The average E (< x1, X2 >) conditional on the previous layer is based
on this result:

1
E (< X1,X2 >) = ZE(%l’ixg,i) = NL]E({L‘1$2)

= Ni\/v11v22 <g(p)p + ‘1p2> :

2T

Fig. justiﬁes the approximation of this term by N;,/v11v22 i (p+1).
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Figure 1: E (< x1,%x3 >) with = 1, v92 = 1, N; = 1 in dependence on the correlation p of
pre-activations according to Eq. (14) (black circles) versus the approximation 3 L(p + 1) (red line).

Next, we have to derive the distribution of y3 = x122 conditional on the previous layer. Again,
ys = 0 except for the case h; > 0, ho > 0, thus with probability

1

2m4/det(V)

o oo 1
/O /0 exp (— m(vux? + V2275 — 20122172))
1 \/ 1— / / 1

exp 75 u1+u§

_ 2pu1uQ)) duy dug =1 — \/—27_/ /

pu 7%u2 U
of <1—p2> e d <p (p)im + 1)
=1-9(p).

The case y3 = x1x2 > 0 is governed by the joint distribution of 1 = h; and x5 = hy when

hi > 0, he > 0. We note that since xo = y3/x1 with gz; = x%, we can change the variable x5 to ys

fprod(o) :1—P<h1 >0, hy >0):1—

dIl dIQ



to obtain the joint density of z; and y3 as

B 1 1 5 Y3
p(r1,Y3) ~om qet(V) eXP( 2 det(V) (vi12] + va2 2
1
- 2v1zy3))*~
Z1
The marginal density of ys3 is thus for y3 > 0
1 > 1
fro Yys) = 7/ eXp<*7’U 1’2
prod (43) 2m/det(V) Jo Qth(V)( i
2
Y3 1 1
+ vgg =5 — v )— dry = ———
- 3 1243) z 21y/det(V)
o (1293 1/00 exp [ —v — 11022 v3 g
det(V) ) 2 J, det(V) v2
1 v/
_ exp < V123 > KO < V110V22 y3) ]
27+ /det(V) 2det(V) det(V)
O
2 Additional experiments
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Figure 2: Time for training 10* steps on MNIST for different initialization schemes, width N, depth

L, with o, = 1/2/N, 0 = 0. Average time for 100 instances of each configuration is reported along
with a 0.95 confidence interval.

In addition to prediction accuracy, in Fig.[2] we report the time required to train each of the aforemen-
tioned networks for 10* steps. Clearly, the width and depth of a network has a high effect on training
time. Yet, among networks with the same architecture, our proposed orthogonal W), initialization
scheme allows to train feed-forward neural networks faster, in particular, in case of wider networks
with more parameters.

Fig. [3] supports this insight by comparing the learning dynamics of all considered networks on
CIFAR-10. Orthogonal W) initialization achieves a higher accuracy faster (i.e. after a smaller number
of training epochs) and more stable, as the variance between different instances is small. While GSM
(Gaussian submatrix) initialization outperforms He initialization in these aspects, orthogonal W
initialization compares still favorable with GSM. Interestingly, shallow layers always outperform
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Figure 3: CIFAR-10 test accuracy for different initialization schemes, width N, depth L, with
0w = \/2/N, o, = 0. The mean accuracy and 0.95 confidence interval are reported for 30 trials.

deeper layers for orthogonal W initialization at all epochs (on this dataset), while shallow layers train
more slowly in the beginning for GSM initialization and then take over deeper layers in performance
after 8 — 10 epochs. However, we have to note that the overall accuracy is far away from the state of
the art, as we neither use convolutional layers nor do we apply data augmentation or regularization
techniques. In consequence, deeper networks can have the tendency to overfit early. As they also
need longer to train in general, we might also not give them long enough time to develop their full
potential. We focus solely on the effect of the initialization scheme here and observe that deeper
networks become trainable with our initialization scheme than with He initialization.

In summary, the proposed orthogonal W), initialization allows us to achieve dynamical isometry for
deep feed-forward neural networks with ReL U activation and, therefore, improve both accuracy (for
deep networks) and training time (for wide networks).

The code for all experiments is provided as additional supplementary material.
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