
A Appendix410

A.1 Proof of Correctness for Sampling with a Fixed Partition411

Algorithm A.1 specifies a method for sampling from a weight function given a fixed partition tree412

and a bound that provably nests. Its proof of correctness is given in PropositionA.1. Note that413

a simple property that follows from recursively applying the definition of a nesting bound is that414 P
i2S w(i)  Z

UB
w (S). More generally, given any node v in T associated with the subset Sv ✓ S,415

we have
P

i2Sv
w(i)  Z

UB
w (Sv).416

Proposition A.1 (Huber [25], Law [32]). Algorithm A.1 samples an element i 2 S from the normal-417

ized weight function i ⇠ w(i)P
j2S w(j) .418

Proof. The probability of sampling leaf node vi at depth d in the partition tree, with ancestors vad�1,419

. . . , va0 (where v
a
d�1 is the parent node of vi and v

a
0 is the root node) and associated ancestor subsets420

S
a
d�1, . . . , Sa

0 is421

1

paccept
⇥ Z

UB
w (Sa

1)

ZUB
w (Sa

0)
⇥ Z

UB
w (Sa

2)

ZUB
w (Sa

1)
⇥ · · ·⇥ Z

UB
w (Sa

d)

ZUB
w (Sa

d�1)

=
1

paccept
⇥ Z

UB
w (Sa

d)

ZUB
w (Sa

0)
=

Z
UB
w (S)
Zw

⇥ w(i)

ZUB
w (S) =

w(i)P
i2S w(i)

422

Algorithm A.1 Sample from a Normalized Weight Function
Inputs:

1. Non-empty state space S = {1, . . . , N}
2. Partition tree T of S
3. Unnormalized weight function w : S ! R�0
4. Nesting upper bound Z

UB
w (S) for w with respect to T

Output: A sample i 2 S distributed as i ⇠ w(i)P
j2S w(j) .

Algorithm:
1. Set v to the root node of T and S = S .
2. Sample a child of v (denoted v1, . . . , vk with associated subsets S1, . . . , Sk of S) or slack

with probabilities:

p(vl) =
Z

UB
w (Sl)

ZUB
w (S)

p(slack) = 1�
Pk

l=1 Z
UB
w (Sl)

ZUB
w (S)

3. If a child was sampled with an associated subset containing a single element then return this
element.

4. If a child, vl, was sampled with an associated subset containing more than one element then
set v = vl, S = Sl, and go to step 2.

5. If the slack element was sampled then go to step 1.

A.2 Adaptive Rejection Sampling423

We can improve the efficiency of ADAPART by tightening the upper bounds Z
UB
w whenever we424

encounter slack. This is done by subtracting the computed slack from the associated upper bounds,425

which still preserves nesting properties. The resulting algorithm is an adaptive rejection sampler [19],426

where the “envelope” proposal is tightened every time a point is rejected.4427

4The use of ‘adaptive’ here is to connect this section with the rejection sampling literature, and is unrelated
to ‘adaptive’ partitioning discussed earlier.

12

Formally, for any partition P of S, we define a new, tighter upper bound as follows:428

Z
UB
w (S) = min

(
X

Si2P

Z
UB
w (Si), Z

UB
w (S)

)
. (4)

This is still a valid upper bound on Z
UB
w (S) because of the additive nature of Zw, and is, by definition,429

also nesting w.r.t. the partition P . If we encounter any slack, there must exists some S for which430

Z
UB
w (S) < Z

UB
w (S), hence we can strictly tighten our bound for subsequent steps of the algorithm431

(thereby making ADAPART more efficient) by using Z
UB
w (S) instead of ZUB

w (S). Empirically we432

find that bound tightening is most effective for small matrices. Sampling matrices uniformly from433

[0, 1), we find that after 1000 samples we improve our bound on the permanent to roughly 64%, 77%,434

and 89% of the original bound for matrices of size 10, 15, 25 respectively. Bound tightening may be435

more effective for other types of large matrices.436

A.3 Estimating the Partition Function with Adaptive Rejection Sampling437

The number of accepted samples, a, is a random variable with expectation E[a] =
PT

i=1
Z

ZUB
i

, where438

Z
UB
i is the upper bound on the entire state space S when the i-th sample is drawn. This gives the439

unbiased estimator Ẑ = a/

⇣PT
i=1

1
ZUB

i

⌘
for the partition function. We use bootstrap techniques440

[12] to perform Monte Carlo simulations that yield high probability bounds on the partition function.441

A.4 Runtime Guarantee of ADAPART442

Law [32] prove that the runtime of Algorithm A.1 is O(n1.5+.5/(2��1)) per sample when using443

their upper bound on the permanent [32, p. 33], where � controls density. ADAPART has the444

same guarantee with a minor modification to the presentation in Algorithm 1. The repeat looped445

is removed and if the terminating condition ub  Z
UB
w (S) is not met after a single call to Refine,446

Algorithm A.1 is called with the upper bound from and fixed partitioning strategy from [32] as shown447

in Algorithm A.2.448

A.5 Additional Experiments449

Figure 5: Accuracy results on randomly sampled nxn block diagonal matrices constructed as
described earlier, with blocks of size k = 10. We plot the exact permanent, our estimate, and our
high probability bounds calculated from 10 samples for each matrix.

While calculating the permanent of a large matrix is generally intractable, it can be done efficiently450

for certain special types of matrices. One example is block diagonal matrices, where an nxn matrix is451

13

Algorithm A.2 ADAPART: Sample from a Normalized Weight Function using Adaptive Partitioning
with Polynomial Runtime Guarantee for Dense Matrices
Inputs:

1. Non-empty state space S
2. Unnormalized weight function w : S ! R�0
3. Family of upper bounds ZUB

w (S) : D ✓ 2S ! R�0 for w that are tight on single element
subsets

4. Refinement function Refine : P ! 2P where P is the set of all partitions of S

Output: A sample i 2 S distributed as i ⇠ w(i)P
i2S w(i) .

if S = {a} then Return a

ub Z
UB
w (S)

{{Si
1, · · · , Si

`i
}}Ki=1 Refine(S)

for all i 2 {1, · · · ,K} do
ubi

P`i
j=1 Z

UB
w (Si

j)
j argmini ubi
P {Sj

1, · · · , S
j
`j
}

ub ub � Z
UB
w (S) + ubj

if ub > Z
UB
w (S) then

Return the output of Algorithm A.1 called on S and w with the bound and fixed partition of [32]
else

Sample a subset Si 2 P with prob. ZUB
w (Si)

ZUB
w (S) , or sample slack with prob. 1� ub

ZUB
w (S)

if Sm 2 P is sampled then
Recursively call ADAPART (Sm, w, Z

UB
w ,Refine)

else
Restart, i.e., call ADAPART (S, w, ZUB

w ,Refine)

composed of bnk c blocks of size kxk and a single nmod k block along the diagonal. Only elements452

within these blocks on the diagonal may be non-zero. The permanent of a block diagonal matrix is453

simply the product of the permanents of each matrix along the diagonal, which can be calculated454

efficiently whenever the block size is sufficiently small. We plot the exact permanent, our estimate,455

and our high probability bounds for randomly sampled block diagonal matrices of various sizes in456

Figure 5.457

A.6 Multi-Target Tracking Overview458

The multi-target tracking problem is very similar to classical inference problems in hidden Markov459

models, requiring the estimation of an unobserved state given a time series of noisy measurements.460

The non-standard catch is that at each time step the observer is given one noisy measurement per461

target, but is not told which target produced which measurement. Brute forcing the problem is462

intractable because there are K! potential associations when tracking K targets. The connection463

between measurement association and the matrix permanent arises frequently in tracking literature464

[45, 35, 36, 38], and its computational complexity is cited when discussing the difficulty of multi-465

target tracking.466

As brief background, the computational complexity of multi-target tracking has led to many heuristic467

approximations, notably including multiple hypothesis tracking (MHT) [37, 15, 31] and joint proba-468

bilistic data association (JPDA) [18, 38]. As heuristics, they can succumb to failure modes. JPDA is469

known to suffer from target coalescence where neighboring tracks merge [9].470

Alternatively, sequential Monte Carlo methods (SMC or particle filters) provide an asymptotically471

unbiased method for sequentially sampling from arbitrarily complex distributions. When targets472

follow linear Gaussian dynamics, a Rao-Blackwellized particle filter may be used to sample the473

measurement associations allowing sufficient statistics for distributions over individual target states474

to be computed in closed form (by Kalman filtering, see Algorithm A.3 in the Appendix for further475

details) [41]. The proposal distribution is a primary limitation when using Monte Carlo methods.476

14

Ideally it should match the target distribution as closely as possible, but this generally makes it477

computationally unwieldy.478

In the case of a Rao-Blackwellized particle filter for multi-target tracking, the optimal proposal479

distribution [17, p. 199] that minimizes the variance of each importance weight is a distribution480

over permutations defined by a matrix permanent (please see Section A.10 in the Appendix for481

further details). We implemented a Rao-Blackwellized particle filter that uses the optimal proposal482

distribution. We evaluated it’s effectiveness against a Rao-Blackwellized particle filter using a483

sequential proposal distribution [41] and against the standard multiple hypothesis tracking framework484

(MHT) [37, 15, 31].485

Our work can be extended to deal with a variable number of targets and clutter measurements using a486

matrix formulation similar to that in [3].487

A.7 Optimal Single-Target Bayesian Filtering488

In this section we give a brief review of the optimal Bayesian filter for single-target tracking. Consider489

a hidden Markov model with unobserved state xt and measurement yt at time t. The joint distribution490

over states and measurements factors as491

Pr(x1:T ,y1:T) = Pr(x1) Pr(y1|x1)
TY

t=2

Pr(xt|xt�1) Pr(yt|xt)

by the Markov property. This factorization of the joint distribution facilitates Bayesian filtering,492

a recursive algorithm that maintains a fully Bayesian distribution over the hidden state xt as each493

measurement yt is sequentially observed. Given the prior distribution p(x1) over the initial state, the494

Bayesian filter consists of the update step5495

Pr(xt|y1:t) =
Pr(yt|xt) Pr(xt|y1:t�1)R
Pr(yt|xt) Pr(xt|y1:t�1)dxt

and the prediction step496

Pr(xt|y1:t�1) =

Z
Pr(xt|xt�1) Pr(xt�1|y1:t�1)dxt�1.

In the special case of linear Gaussian models where the state transition and measurement processes497

are linear but corrupted with Gaussian noise, the above integrals can be computed analytically giving498

closed form update and predict steps. The distribution over the hidden states remains Gaussian and is499

given by the Kalman filter with update step500

Pr(xt|y1:t) = N (x̂t|t,Pt|t) (5)
and prediction step501

Pr(xt|y1:t�1) = N (x̂t|t�1,Pt|t�1). (6)

A.8 Optimal Multi-Target Bayesian Filtering502

In this section we give a brief review of the optimal Bayesian filter for multi-target tracking problem503

with a fixed cardinality (fixed number of targets and measurements over time) [36, pp. 485-486] and504

its computational intractability.505

Given standard multi-target tracking assumptions , the joint distribution over all target states X ,506

measurements Y , and measurement-target associations ⇡ can be factored as6507

Pr(X,Y,⇡) = Pr(X1) Pr(⇡1) Pr(Y1|X1,⇡1)

⇥
TY

t=2

Pr(Xt|Xt�1) Pr(⇡t) Pr(Yt|Xt,⇡t).
(7)

5Where we have abused notation and the initial distribution is Pr(x1|y1:0) = Pr(x1).
6For a tracking sequence of K targets over T time steps, X is an array where row Xt = (X1

t , . . . , X
K
t)

represents the state of all targets at time t and element Xk
t is a vector representing the state of the kth target at

time t. Likewise Y is an array where row Yt = (Y 1
t , . . . , Y

K
t) represents all measurements at time t and element

Y k
t is a vector representing the kth measurement at time t. Measurement-target associations are represented by

the array ⇡ where the element ⇡t 2 Sk is a permutations of {1, 2, . . . , k} (Sk denotes the symmetric group).

15

The optimal Bayesian filter for multi-target tracking is a recursive algorithm, similar to the standard508

Bayesian filter in the single target tracking setting, that maintains a distribution over the joint state509

of all targets by incorporating new measurement information as it is obtained. It is more complex510

than the single target Bayesian filter because it must deal with uncertainty in measurement-target511

association. As in the single target tracking setting the filter is composed of prediction and update512

steps. The prediction step is513

Pr(Xt|Y1:t�1)

=
X

⇡1:t�1

Pr(Xt|Y1:t�1,⇡1:t�1) Pr(⇡1:t�1|Y1:t�1)

=
1

k!t�1

X

⇡1:t�1

Pr(Xt|Y1:t�1,⇡1:t�1)

=
1

k!t�1

X

⇡1:t�1

Pr((X1
t , . . . , X

K
t)|Y1:t�1,⇡1:t�1)

=
1

k!t�1

X

⇡1:t�1

Z
· · ·

Z
Pr(X1

t |X1
t�1) Pr(X

1
t�1|Y1:t�1,⇡1:t�1)

⇥ Pr(XK
t |XK

t�1) Pr(X
K
t�1|Y1:t�1,⇡1:t�1)dX

1
t�1 . . . dX

K
t�1

=
1

k!t�1

X

⇡1:t�1

Z
Pr(X1

t |X1
t�1) Pr(X

1
t�1|Y1:t�1,⇡1:t�1)dX

1
t�1

⇥ · · ·⇥
Z

Pr(XK
t |XK

t�1) Pr(X
K
t�1|Y1:t�1,⇡1:t�1)dX

K
t�1.

(8)

The update step is514

Pr(Xt|Y1:t)

=
X

⇡1:t

Pr(Xt|Y1:t,⇡1:t) Pr(⇡1:t|Y1:t)

=
1

k!t

X

⇡1:t

Pr(Xt|Y1:t,⇡1:t)

=
1

k!t

X

⇡1:t

Pr(Yt|Xt,⇡t) Pr(Xt|Y1:t�1,⇡1:t�1)R
Pr(Yt|Xt,⇡t) Pr(Xt|Y1:t�1,⇡1:t�1)dXt

(9)

Unfortunately the multi-target optimal Bayesian filtering steps outlined above are computationally515

intractable to compute. Even in special cases where the integrals are tractable, such as for linear516

Gaussian models, summation over k!t states is required.517

A.9 Sequential Monte Carlo518

Sequential Monte Carlo (SMC) or particle filtering methods can be used to sample from sequential519

models . These methods can be used to sample from the distribution defined by the optimal Bayesian520

multi-target filter. When target dynamics are linear Gaussian a Rao-Blackwellized particle filter can521

be used to sample measurement-target associations and compute sufficient statistics for individual522

target distributions in closed form [41].523

Pseudo-code for Rao-Blackwellized sequential importance sampling is given in algorithm A.3. We524

use KFu(·) and KFp(·) to denote calculation of the closed form Kalman filter update and prediction525

steps given in equations 5 and 6 respectively.526

A.10 Optimal Proposal Distribution527

While SMC methods are asymptotically unbiased, their performance depends on the quality of the pro-528

posal distribution. The optimal proposal distribution that minimizes the variance of importance weight529

16

ALGORITHM A.3
Rao-Blackwellized Sequential Importance Sampling

Outputs: N importance samples ⇡(i)
1:T ⇠ Pr(⇡1:T |Y1:T) and weights w(i)

T (i 2 1, 2, . . . , n) with
corresponding state estimates X̂(i)

1:T and covariance matrices P (i)
1:T . Note X̂

(i)
1:T and P

(i)
1:T are both

arrays; X̂k(i)
t is the k

th target’s estimated state vector at time t for sample i.

1: for t = 1, . . . , T do // Update particle at time t

2: for i = 1, . . . , N do// Sample particle i
3: ⇡

(i)
t ⇠ q(⇡t|⇡(i)

1:t�1, Y1:t)

4: ⇡
(i)
1:t

⇣
⇡
(i)
1:t�1,⇡

(i)
t

⌘

5: for k = 1, . . . , K do// Iterate over targets
6: X̂

k(i)
t|t , P k(i)

t|t KFu

⇣
X̂

k(i)
t|t�1, P

k(i)
t|t�1, Y

⇡(k)
t

⌘

7: X̂
k(i)
t+1|t, P

k(i)
t+1|t KFp

⇣
X̂

k(i)
t|t , P

k(i)
t|t

⌘

8: X̂
(i)
1:t

⇣
X̂

(i)
1:t�1, X̂

(i)
t

⌘

9: P
(i)
1:t

⇣
P

(i)
1:t�1, P

(i)
t

⌘

10: w
⇤(i)
t w

⇤(i)
t�1

QK
k=1 P

⇣
Y

⇡t(k)
1:t |X̂k(i)

t|t�1
,Pk(i)

t|t�1

⌘

q(⇡t|⇡(i)
1:t�1,Y1:t)

11: for i = 1, . . . , N do// Normalize importance weights
12: w̃

(i)
t

w⇤(i)
tPN

j=1 w⇤(j)
t

13:

w
⇤(i)
t [17, p. 199] is q(xt|x(i)

1:t�1, Y1:t) = Pr(xt|x(i)
t�1, Yt). In our setting we have hidden variables X530

and ⇡, so we need to rewrite this as q(Xt,⇡t|X(i)
1:t�1,⇡

(i)
1:t�1, Y1:t) = Pr(Xt,⇡t|X(i)

t�1,⇡
(i)
t�1, Yt) =531

Pr(Xt,⇡t|X(i)
t�1, Yt) (note that Xt and ⇡t are conditionally independent from ⇡

(i)
t�1 given X

(i)
t�1).532

Using Rao-Blackwellization we avoid sampling Xt but instead compute sufficient statistics (mean533

and covariance) in closed form, so we have that the optimal proposal distribution is534

q(⇡t|X(i)
1:t�1,⇡

(i)
1:t�1, Y1:t)

=Pr(⇡t|X̂(i)
t|t�1, P

(i)
t|t�1,⇡

(i)
1:t�1, Y1:t)

=Pr(⇡t|X̂(i)
t|t�1, P

(i)
t|t�1, Y1:t)

=
Pr(⇡t, X̂

(i)
t|t�1, P

(i)
t|t�1, Y1:t)

P
⇡t

Pr(⇡t, X̂
(i)
t|t�1, P

(i)
t|t�1, Y1:t)

=
Pr(Y1:t|⇡t, X̂

(i)
t|t�1, P

(i)
t|t�1) Pr(X̂

(i)
t|t�1, P

(i)
t|t�1|⇡t) Pr(⇡t)

P
⇡t

Pr(Y1:t|⇡t, X̂
(i)
t|t�1, P

(i)
t|t�1) Pr(X̂

(i)
t|t�1, P

(i)
t|t�1|⇡t) Pr(⇡t)

=
Pr(Y1:t|⇡t, X̂

(i)
t|t�1, P

(i)
t|t�1) Pr(X̂

(i)
t|t�1, P

(i)
t|t�1) Pr(⇡t)

P
⇡t

Pr(Y1:t|⇡t, X̂
(i)
t|t�1, P

(i)
t|t�1) Pr(X̂

(i)
t|t�1, P

(i)
t|t�1) Pr(⇡t)

=
Pr(Y1:t|⇡t, X̂

(i)
t|t�1, P

(i)
t|t�1)/k!

P
⇡t

Pr(Y1:t|⇡t, X̂
(i)
t|t�1, P

(i)
t|t�1)/k!

=

QK
k=1 Pr(Y

⇡t(k)
1:t |X̂k(i)

t|t�1, P
k(i)
t|t�1)

P
⇡t

QK
k=1 Pr(Y

⇡t(k)
1:t |X̂k(i)

t|t�1, P
k(i)
t|t�1)

.

(10)

17

Note that the denominator of the final line in equations 10 is the permanent of matrix A, where535

(ajk) = Pr(Y j
1:t|X̂

k(i)
t|t�1, P

k(i)
t|t�1). Using the machinery developed throughout this paper we can536

sample from the optimal proposal distribution and compute approximate importance weights .537

18

	Introduction
	Background
	Adaptive Partitioning
	Adaptive Partitioning for the Permanent
	Related Work on Approximating the Permanent
	Experiments
	Conclusion
	Appendix
	Proof of Correctness for Sampling with a Fixed Partition
	Adaptive Rejection Sampling
	Estimating the Partition Function with Adaptive Rejection Sampling
	Runtime Guarantee of AdaPart
	Additional Experiments
	Multi-Target Tracking Overview
	Optimal Single-Target Bayesian Filtering
	Optimal Multi-Target Bayesian Filtering
	Sequential Monte Carlo
	Optimal Proposal Distribution

