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Abstract

Stack-augmented recurrent neural networks (RNNs) have been of interest to the
deep learning community for some time. However, the difficulty of training mem-
ory models remains a problem obstructing the widespread use of such models.
In this paper, we propose the Ordered Memory architecture. Inspired by Or-
dered Neurons (Shen et al.,|[2018)), we introduce a new attention-based mechanism
and use its cumulative probability to control the writing and erasing operation of
memory. We also introduce a new Gated Recursive Cell to compose lower level
representations into higher level representation. We demonstrate that our model
achieves strong performance on the logical inference task (Bowman et al.,|2015))
and the ListOps (Nangia and Bowman| 2018]) task. We can also interpret the model
to retrieve the induced tree structure, and find that these induced structures align
with the ground truth. Finally, we evaluate our model on the Stanford Sentiment
Treebank tasks (Socher et al., 2013)), and find that it performs comparatively with
the state-of-the-art methods in the literatureP]

1 Introduction

A long-sought after goal in natural language processing is to build models that account for the com-
positional nature of language — granting them an ability to understand complex, unseen expressions
from the meaning of simpler, known expressions (Montaguel, 1970 [Dowtyl, [2007). Despite being
successful in language generation tasks, recurrent neural networks (RNNs, [Elman| (1990)) fail at
tasks that explicitly require and test compositional behavior (Lake and Baronil [2017; |Loula et al.,
2018). In particular, [ Bowman et al.| (2015), and later [Bahdanau et al.| (2018) give evidence that,
by exploiting the appropriate compositional structure of the task, models can generalize better to
out-of-distribution test examples. Results from |Andreas et al.| (2016)) also indicate that recursively
composing smaller modules results in better representations. The remaining challenge, however, is
learning the underlying structure and the rules governing composition from the observed data alone.
This is often referred to as the grammar induction (Chenl |1995} [Cohen et al., 2011; [Roark, 2001}
Chelba and Jelinek, 2000; |Williams et al.| [2018)).

Fodor and Pylyshyn| (1988) claim that “cognitive capacities always exhibit certain symmetries, so
that the ability to entertain a given thought implies the ability to entertain thoughts with seman-
tically related contents,” and use the term systematicity to describe this phenomenon. Exploiting
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known symmetries in the structure of the data has been a useful technique for achieving good gener-
alization capabilities in deep learning, particularly in the form of convolutions (Fukushimal |1980),
which leverage parameter-sharing. If we consider architectures used in |Socher et al.|(2013) or Tai
et al.| (2015), the same recursive operation is performed at known points along the input where the
substructures are meant to be composed. Could symmetries in the structure of natural language data
be learned and exploited by models that operate on them?

In recent years, many attempts have been made in this direction using neural network architec-
tures (Grefenstette et al.| 2015 | Bowman et al., 20165 [Williams et al., 2018} [Yogatama et al.| 2018;
Shen et al.| 2018} Dyer et al.,|2016)). These models typically augment a recurrent neural network with
a stack and a buffer which operate in a similar way to how a shift-reduce parser builds a parse-tree.
While some assume that ground-truth trees are available for supervised learning (Bowman et al.,
2016; Dyer et al., 2016), others use reinforcement learning (RL) techniques to learn the optimal
sequence of shift reduce actions in an unsupervised fashion (Yogatama et al.| [2018).

To avoid some of the challenges of RL training (Havrylov et al.,[2019), some approaches use a con-
tinuous stack (Grefenstette et al.l [2015; Joulin and Mikolov} |2015; [Yogatama et al., [2018)). These
can usually only perform one push or pop action per time step, requiring different mechanisms —
akin to adaptive computation time (ACT,|Graves|(2016)); Jernite et al.|(2016)) — to perform the right
number of shift and reduce steps to express the correct parse. In addition, continuous stack mod-
els tend to “blur” the stack due to performing a “soft” shift of either the pointer to the head of the
stack (Grefenstette et al.,2015)), or all the values in the stack (Joulin and Mikolov, |2015; |[Yogatama
et al., [2018). Finally, while these previous models can learn to manipulate a stack, they lack the
capability to lookahead to future tokens before performing the stack manipulation for the current
time step.

In this paper, we propose a novel architecture: Ordered Memory (OM), which includes a new mem-
ory updating mechanism and a new Gated Recursive Cell. We demonstrate that our method general-
izes for synthetic tasks where the ability to parse is crucial to solving them. In the Logical inference
dataset (Bowman et al.,2015])), we show that our model can systematically generalize to unseen com-
bination of operators. In the ListOps dataset (Nangia and Bowman), 2018)), we show that our model
can learn to solve the task with an order of magnitude less training examples than the baselines.
The parsing experiments shows that our method can effectively recover the latent tree structure of
the both tasks with very high accuracy. We also perform experiments on the Stanford Sentiment
Treebank, in both binary classification and fine-grained settings (SST-2 & SST-5), and find that we
achieve comparative results to the current benchmarks.

2 Related Work

Composition with recursive structures has been shown to work well for certain types of tasks. |Pol-
lack| (1990) first suggests their use with distributed representations. Later, [Socher et al.| (2013)
shows their effectiveness on sentiment analysis tasks. Recent work has demonstrated that recursive
composition of sentences is crucial to systematic generalisation (Bowman et al., 2015; Bahdanau
et al.| [2018). Kuncoro et al.|(2018)) also demonstrate that architectures like Dyer et al.|(2016)) handle
syntax-sensitive dependencies better for language-related tasks.

Schiitzenberger| (1963) first showed an equivalence between push-down automata (stack-augmented
automatons) and context-free grammars. Knuth|(1965) introduced the notion of a shift-reduce parser
that uses a stack for a subset of formal languages that can be parsed from left to right. This technique
for parsing has been applied to natural language as well: |Shieber| (1983)) applies it to English, using
assumptions about how native English speakers parse sentences to remove ambiguous parse candi-
dates. More recently, Maillard et al|(2017) shows that a soft tree could emerge from all possible
tree structures through back propagation.

The idea of using neural networks to control a stack is not new. [Zeng et al.| (1994) uses gradient
estimates to learn to manipulate a stack using a neural network. Das et al.| (1992) and Mozer and
Das| (1993) introduced the notion of a continuous stack in order for the model to be fully differ-
entiable. Much of the recent work with stack-augmented networks built upon the development of
neural attention (Graves, [2013; |Bahdanau et al., 2014} |Weston et al., 2014). |Graves et al.| (2014)
proposed methods for reading and writing using a head, along with a “soft” shift mechanism. Apart
from using attention mechanisms, |Grefenstette et al.|(2015) proposed a neural stack where the push
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Figure 1: An example run of the OM model. Let the input sequence a, b, ¢, d, e and its hierarchical
structure be as shown in the figure. Ideally, the OM model will output the values shown in the above
tables. The occupied slots in M; are highlighted in gray. The yellow slots in M, are slots that can be
attended on in time-step ¢ + 1. At the first time-step (¢ = 1), the model will initialize the candidate
memory M, with input a and the memory M, with zero vectors. Att = 2, the model attends on
the last memory slot to compute M; (Eqn. i followed by M, (Eqn. . At t = 3, given the
input ¢, the model will attend on the last slot. Consequently the memory slot for b is erased by |

Given Eqns. |§I andl our model will recursively compute every slot in the candidate memory M i to

include information from J\/.I'tZ Yand M} _,. Since the cell(-) function only takes 2 inputs, the actual
computation graph is a binary tree.

and pop operations are made to be differentiable, which worked well in synthetic datasets. |Yo-
gatama et al.| (2016) proposes RL-SPINN where the discrete stack operations are directly learned by
reinforcement learning.

3 Model

The OM model actively maintains a stack and processes the input from left to right, with a one-step
lookahead in the sequence. This allows the OM model to decide the local structure more accurately,
much like a shift-reduce parser (Knuth,|1965).

At a given point ¢ in the input sequence x (the ¢-th time-step), we have a memory of candidate
sub-trees spanning the non-overlapping sub-sequences in z1,...,z;—1, with each sub-tree being
represented by one slot in the memory stack. We also maintain a memory stack of sub-trees that
contains xz1,...,x;—o. We use the input z; to choose its parent node from our previous candidate
sub-trees. The descendant sub-trees of this new sub-tree (if they exist) are removed from the memory
stack, and this new sub-tree is then added. We then build the new candidate sub-trees that include x;
using the current input and the memory stack. In what follows, we describe the OM model in detail.
To facilitate a clearer description, a discrete attention scheme is assumed, but only “soft” attention
is used in both the training and evaluation of this model.

Let D be the dimension of each memory slot and N be the number of memory slots. At time-step ¢,
the model takes four inputs:

e M, _1: a memory matrix of dimension N x D, where each occupied slot is a distributed
representation for sub-trees spanning the non-overlapping subsequences in 1, ..., Tt_o;

° Mt,lz a matrix of dimension N x D that contains representations for candidate subtrees
that include the leaf node z;_1;

° ?t_lz a vector of dimension /N, where each element indicate whether the respective slot
in M;_; occupied by a subtree.

e x;: a vector of dimension D,,, the input at time-step t.

The model first transforms z; to a D dimension vector.
Zy = LN(Wxy + b) (D)



where LN (-) is the layer normalization function (Ba et al., 2016).

To select the candidate representations from Mt_l, the model uses 7; as its query to attend on Mt_12

P = Att (g, My—1, 1) 2

Ti=> n 3)
J<i

Ti=> 1l &)
Jj>i

where Att(-) is a masked attention function, ?t_l is the mask, p; is a distribution over different

memory slots in M,_4, and p] is the probability on the j-th slot. The attention mechanism will be
described in section Intuitively, p; can be viewed as a pointer to the head of the stack, 7, isan
indicator value over where the stack exists, and ?t is an indicator over where the top of the stack is
and where it is non-existent.

To compute M,;, we combine Mt,l and M;_; through:
M{=M; - Q=) +M_, T, Vi @)

Suppose p; points at a memory slot y; in M.

Then %7, will write M} _, to M} for i < y;, Data: L1, T
and (1— %) will write M/ to M fori > y;. Result: o

In other words, Eqn. [5] copies everything from . itia1ize Moy, My;
M;_1 to the current timestep, up to the where ¢o15 + 1 to T do

P 1S pointing. & = LN(Wz, +b);

We believe that this is a crucial point that differ- pr = Att(Zy, My, 7t—1)§

entiates our model from past stack-augmented =S _.pl

models like |Yogatama et al.| (2016) and Joulin i i<t j

and Mikolov| (2015). Both constructions have R = ngipt;

the O-th slot as the top of the stack, and perform MP = &y;

a convex combination of each slot in the mem- fori < 1to N do

ory / stack given the action performed. More Mi=M | -(1=S7T,) +M_, -7k
concretely, a distribution over the actions that of — cell( M Mifl)'

is not sharp (e.g. 0.5 for pop) will result in L L N A
a weighted sum of an un-popped stack and a Mj=&-(1=7) +0}- 7}
pop stack, resulting in a blurred memory state. end

Compounded, this effect can make such models end

hard to train. In our case, because (1 — T¢)"is return ol

non-decreasing with 7, its value will accumulate ~ Algorithm 1: Ordered Memory algorithm. The
to 1 at or before N. This results in a full copy, attention function Att(-) is defined in section
guaranteeing that the earlier states are retained. The recursive cell function cell(+) is defined in
This full retention of earlier states may play a section[3.2]

part in the training process, as it is a strategy

also used in |Gulcehre et al.| (2017), where all

the memory slots are filled before any erasing or writing takes place.

To compute candidate memories for time step ¢, we recurrently update all memory slots with

o' = cell( M}, M=) (6)
M} =3 - (1-R)H + o - 7}, Vi (7)
where M is 2;. The cell(-) function can be seen as a recursive composition function in a recursive
neural network (Socher et al.,2013). We propose a new cell function in section @

The output of time step ¢ is the last memory slot MtN of the new candidate memory, which summa-
rizes all the information from z1, ..., x; using the induced structure. The pseudo-code for the OM
algorithm is shown in Algorithm I}



3.1 Masked Attention

Given the projected input T, and candidate memory J\thi_l. We feed every (Zy, Mti_l) pair into a
feed-forward network:

wi'tt tanh <Wf‘“ {]\gl] + b1> + by
t
VN
Bi = exp (ai — max o] ) ©)
J

®)

where Wit is N x 2N matrix, w4'** is N dimension vector, and the output 3! is a scalar. The
purpose of dividing by v/ is to scale down the logits before softmax is applied, a technique similar
to the one seen in |Vaswani et al.| (2017). We further mask the 3; with the cumulative probability
from the previous time step to prevent the model attending on non-existent parts of the stack:

B =Bt (10)
where ?i\i 11 =1and ?(?N = 0. We can then compute the probability distribution:
_ B
Py = ~ (1)
225 Pt

This formulation bears similarity to the method used for the multi-pop mechanism seen in|Yogatama
et al.[|(2018)).

3.2 Gated Recursive Cell

Instead of using the recursive cell proposed in TreeLSTM (Tai et al., 2015) and RNTN (Socher
et al.| [2010), we propose a new gated recursive cell, which is inspired by the feed-forward layer in
Transformer (Vaswani et al.,|2017). The inputs MZ and MZ ~! are concatenated and fed into a fully
connect feed-forward network:

ht . . Mifl
C{ = WS¢ ReLU (Wf i { AZ;‘ } +b1) + by (12)
uj

Like the TreeLSTM, we compute the output with a gated combination of the inputs and u!:
of = LN(o(u) oM™ +a(hi) o M +o(ct)®ul) (13)

where v} is the vertical gate that controls the input from previous slot, h; is horizontal gate that
controls the input from previous time step, cg; is cell gate that control the uy, o} is the output of cell
function, and LN (-) share the same parameters with the one used in the Eqn.

3.3 Relations to ON-LSTM and Shift-reduce Parser

Ordered Memory is implemented following the principles introduced in Ordered Neurons (Shen
et al.| [2018). Our model is related to ON-LSTM in several aspects: 1) The memory slots are simi-
lar to the chunks in ON-LSTM, when a higher ranking memory slot is forgotten/updated, all lower
ranking memory slots should likewise be forgotten/updated; 2) ON-LSTM uses the monotonically
non-decreasing master forget gate to preserve long-term information while erasing short term in-
formation, the OM model uses the cumulative probability T 3) Similarly, the master input gate
used by ON-LSTM to control the writing of new information into the memory is replaced with the
reversed cumulative probability T+ in the OM model.

At the same time, the internal mechanism of OM can be seen as a continuous version of a shift-
reduce parser. At time step ¢, a shift-reduce parser could perform zero or several reduce steps
to combine the heads of stack, then shift the word ¢ into stack. The OM implement the reduce

step with Gated Recursive Cell. It combines Mt’ ~1, the output of previous reduce step, and M,



Table 1: Test accuracy of the models, trained on operation lengths of < 6, with their out-of-
distribution results shown here (lengths 7-12). We ran 5 different runs of our models, giving the
error bounds in the last row. The F} score is the parsing score with respect to the ground truth tree
structure. The TreeCell is a recursive neural network based on the Gated Recursive Cell function
proposed in section[3.2] For the Transformer and Universal Transformer, we follow the entailment
architecture introduced in |Radford et al.[|(2018). The model takes <start> sentencel <delim>
sentence2 <extract> as input, then use the vector representation for <extract> position at last
layer for classification. *The results for RRNet were taken from Jacob et al.[(2018)).

Model Number of Operations Sys. Gen.
7 8 9 10 11 12 A B C

Sequential sentence representation

LSTM 88 84 80 78 71 69 84 60 59

RRNet* 84 81 78 74 72 71 - - =

ON-LSTM 91 87 85 81 78 75 70 63 60

Inter sentence attention

Transformer 51 52 51 51 51 48 53 51 51

Universal Transformer 51 52 51 51 51 48 53 51 51

Our model

Accuracy 98+£00 97+04 96+0.5 94+£08 93£05 92+1.1 94 91 81

Parsing F 84.3+14.4

Ablation tests

el TreeRNN Op. 69 67 65 61 57 53 - - -

Recursive NN + ground-truth structure

TreeLSTM 94 92 92 88 87 86 91 84 76

TreeCell 98 96 96 95 93 92 95 95 90

TreeRNN 98 98 97 96 95 96 94 92 86

the next element in stack, into Mt’ the representation for new sub-tree. The number of reduce
steps is modeled with the attention mechanism. The probability distribution p; models the position
of the head of stack after all necessary reduce operations are performed. The shift operations is
implemented as copying the current input word x; into memory.

The upshot of drawing connections between our model and the shift-reduce parser is interpretability:
We can approximately infer the computation graph constructed by our model with Algorithm 2 (see
appendix). The algorithm can be used for the latent tree induction tasks in (Williams et al., 2018)).

4 Experiments

We evaluate the tree learning capabilities of our model on two datasets: logical inference (Bowman
et al., 2015) and ListOps (Nangia and Bowman, 2018). In these experiments, we infer the trees
with our model by using Alg. 2 and compare them with the ground-truth trees used to generate the
data. We evaluate parsing performance using the F} scor We also evaluate our model on Stanford
Sentiment Treebank (SST), which is the sequential labeling task described in [Socher et al.|(2013)).

4.1 Logical Inference

The logical inference task described in [Bowman et al.| (2015) has a vocabulary of six words and
three logical operations, or, and, not. The task is to classify the relationship of two logical clauses
into seven mutually exclusive categories. We use a multi-layer perceptron (MLP) with (hy, ho, hq o
ha, |h1—hs|) as input, where h; and hs are the M%V of their respective input sequences. We compare
our model with LSTM, RRNet (Jacob et al.| [2018)), ON-LSTM (Shen et al., 2018)), Tranformer
(Vaswani et al.,|2017)), Universal Transformer (Dehghani et al.l 2018)), TreeLSTM (Tai et al.,|2015)),
TreeRNN (Bowman et al.,|[2015), and TreeCell. We used the same hidden state size for our model
and baselines for proper comparison. Hyper-parameters can be found in Appendix B. The model

3 All parsing scores are given by Evalbhttps://nlp.cs.nyu.edu/evalb/
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Table 2: Partitions of the Logical Inference task from Bowman et al. (2014). Each partitions include
a training set filtered out all data points that match the rule indicated in Excluded, and a test set
formed by matched data points.

Part. Excluded Training set size  Test set example
A * ( and (not a) ) * 128,969 f (and (not a))
B * ( and (not *) ) x* 87,948 ¢ (and (not (a (or b))))
C x ( {and,or} (mot *) ) * 51,896 a (or (e (and c)))

Full 135,529

aornotdandnotnotbandc aornotdandnotnotbandc aornotdandnotnotbandc

Figure 2: Variations in induced parse trees under different runs of the logical inference experiment.
The left most tree is the ground truth and one of induced structures. We have removed the parenthe-
ses in the original sequence for this visualization. It is interesting to note that the different structures
induced by our model are all valid computation graphs to produce the correct results.

is trained on sequences containing up to 6 operations and tested on sequences with higher number
(7-12) of operations.

The Transformer models were implemented by modifying the code from the Annotated Trans-
formelﬂ The number of Transformer layers are the same as the number of slots in Ordered Memory.
Unfortunately, we were not able to successfully train a Transformer model on the task, resulting in a
model that only learns the marginal over the labels. We also tried to used Transformer as a sentence
embedding model, but to no avail. Tran et al.| (2018]) achieves similar results, suggesting this could
be a problem intrinsic to self-attention mechanisms for this task.

Length Generalization Tests The TreeRNN model represents the best results achievable if the
structure of the tree is known. The TreeCell experiment was performed as a control to isolate the
performance of using the cell(-) composition function versus using both using cell(-) and learning
the composition with OM. The performance of our model degrades only marginally with increasing
number of operations in the test set, suggesting generalization on these longer sequences never seen
during training.

Parsing results There is a variability in parsing performance over several runs under different
random seeds, but the model’s ability to generalize to longer sequences remains fairly constant.
The model learns a slightly different method of composition for consecutive operations. Perhaps
predictably, these are variations that do not affect the logical composition of the subtrees. The
source of different parsing results can be seen in Figure The results suggest that these latent
structures are still valid computation graphs for the task, in spite of the variations.

Systematic Generalization Tests Inspired by [Loula et al| (2018)), we created three splits of the
original logical inference dataset with increasing levels of difficulty. Each consecutive split removes
a superset of the previously excluded clauses, creating a harder generalization task. Each model is
then trained on the ablated training set, and tested on examples unseen in the training data. As a
result, the different test splits have different numbers of data points. Table |2 contains the details of
the individual partitions.

The results are shown in the right section of Table [I|under Sys. Gen. Each column labeled A, B,
and C are the model’s aggregated accuracies over the unseen operation lengths. As with the length
generalization tests, the models with the known tree structure performs the best on unseen structures,
while sequential models degrade quickly as the tests get harder. Our model greatly outperforms all
the other sequential models, performing slightly below the results of TreeRNN and TreeCell on the
different partitions.

“http://nlp.seas.harvard.edu/2018/04/03/attention.html
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Model Accuracy Fy

Baselines 100

LSTM* 71.5+1.5 - =

RL—SPINN* 607:‘:26 7 1 . ] O RL-SPINN

Gumbel Tree-LSTM* 57.6+£2.9 57.3 85 Lo omumee!

Transformer 57.4+0.4 - z

Universal Transformer 71.5+7.8 - .‘;‘ f
Havrylov et al.{(2019) 99.240.5 - 70

Ours 99.97+0.014 100

Ablatlon teSts 5590k 240k 540k 990k
el TreeRNN Op. 63.1 -

Training Size

(a) (b)

Figure 3: (a) shows the accuracy of different models on the ListOps dataset. All models have 128
dimensions. Results for models with * are taken from |[Nangia and Bowman| (2018)). (b) shows our
model accuracy on the ListOps task when varying the the size of the training set.

Combined with the parsing results, and our model’s performance on these generalization tests, we
believe this is strong evidence that the model has both (i) learned to exploit symmetries in the
structure of the data by learning a good cell(-) function, and (ii) learned where and how to apply
said function by operating its stack memory.

4.2 ListOps

Nangia and Bowman| (2018)) build a dataset with nested summary operations on lists of single digit
integers. The sequences comprise of the operators MAX, MIN, MED, and SUM_MOD. The output is
also an integer in [0, 9] As an example, the input: [MAX 2 9 [MIN 4 7 ] 0 ] has the solution 9.
As the task is formulated to be easily solved with a correct parsing strategy, the task provides an
excellent test-bed to diagnose models that perform tree induction. The authors binarize the structure
by choosing the subtree corresponding to each list to be left-branching: the model would first take
into account the operator, and then proceed to compute the summary statistic within the list. A
right-branching parse would require the entire list to be maintained in the model’s hidden state.

Our model achieves 99.9% accuracy, and an F} score of 100% on the model’s induced parse tree (See
Table [3a). This result is consistent across 3 different runs of the same experiment. InNangia and
Bowman| (2018]), the authors perform an experiment to verify the effect of training set size on the
latent tree models. As the latent tree models (RL-SPINN and ST-Gumbel) need to parse the input
successfully to perform well on the task, the better performance of the LSTM than those models
indicate that the size of the dataset does not affect the ability to learn to parse much for those models.
Our model seems to be more data efficient and solves the task even when only training on a subset
of 90k examples (Fig. [3b).

4.3 Ablation studies

We replaced the cell(-) operator with the RNN operator found in TreeRNN, which is the best per-
forming model that explicitly uses the structure of the logical clause. In this test, we find that the
TreeRNN operator results in a large drop across the different tasks. The detailed results for the
ablation tests on both the logical inference and the ListOps tasks are found in Table|l|and

4.4 Stanford Sentiment Treebank

The Stanford Sentiment Treebank is a classification task described in|Socher et al.|(2013)). There are
two settings: SST-2, which reduces the task down to a positive or negative label for each sentence
(the neutral sentiment sentences are ignored), and SST-5, which is a fine-grained classification task
which has 5 labels for each sentence.

Current state-of-the-art models use pretrained contextual embeddings/Radford et al.|(2018]); [ McCann
et al.|(2017); |Peters et al.[(2018)). Building on ELMO |Peters et al.|(2018]), we achieve a performance



Table 3: Accuracy results of models on the SST.

SST-2 SST-5

Sequential sentence representation & other methods

Radford et al. (2017) 91.8 52.9
Peters et al.| (2018) - 54.7
Brahmal (2018]) 91.2 56.2
Devlin et al.[(2018) 94.9 -
Liu et al./ (2019) 95.6 -
Recursive NN + ground-truth structure

Tai et al.|(2015) 88.0 51.0
Munkhdalai and Yu (2017) 89.3 53.1
Looks et al.| (2017) 89.4 52.3
Recursive NN + latent / learned structure

Choi et al.|(2018) 90.7 53.7
Havrylov et al.|(2019) 90.2+0.2 51.5+0.4
Ours (Glove) 90.4 52.2
Ours (ELMO) 92.0 55.2

comparable with the current state-of-the-art for both SST-2 and SST-5 settings. However, it should
be noted that our model is a sentence representation model. Table [3] lists our and related work’s
respective performance on the SST task in both settings.

5 Conclusion

In this paper, we introduce the Ordered Memory architecture. The model is conceptually close
to previous stack-augmented RNNs, but with two important differences: 1) we replace the pop and
push operations with a new writing and erasing mechanism inspired by Ordered Neurons (Shen et al.,
2018); 2) we also introduce a new Gated Recursive Cell to compose lower level representations into
higher level one. On the logical inference and ListOps tasks, we show that the model learns the
proper tree structures required to solve them. As a result, the model can effectively generalize to
longer sequence and combination of operators that is unseen in the training set, and the model is
data efficient. We also demonstrate that our results on the SST are comparable with state-of-the-art
models.
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