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A Proofs

Proof of Theorem 1 without positivity. For pedagogical purposes, we begin with a proof without the
positivity assumption. The subsequent proof, where positivity is assumed, is obtained via a slight
modification.

Define the corresponding LDAG to the 3-SAT instance as follows (see Fig. 1) [2]. Let nodes
Z = {Z1, · · · , Zl} correspond to variables in the 3-SAT instance and U1, · · · , Uk represent the
clauses of the 3-SAT instance. Let the parents of node Ui (i ≥ 1) be Ui−1, and the Zs appearing in
ith clause. The label Li on the edge Ui−1 → Ui consists of assignments to other parents of Ui that
are in Z: let it be exactly the set of assignments that do not satisfy the ith clause. Let the parent of X
be U0 and the parents of Y be X,Uk. We will show that P (Y | do(X)) is identifiable from P (X,Y )
if and only if the 3-SAT instance is unsatisfiable.

Identifiability when UNSAT Suppose the 3-SAT instance is unsatisfiable. Then for any assignment
z to Z, edge Ui−1 → Ui is absent in the context z, and according to CSI-separation: IX ⊥⊥
Y |X,Z = z. It follows that IX ⊥⊥ Y |X,Z. By d-separation IX ⊥⊥ Z, by contraction IX ⊥⊥
Y,Z |X , by decomposition IX ⊥⊥ Y |X . Thus the causal effect is identifiable:

P (Y | do(X)) = P (Y |X, IX = 1) = P (Y |X, IX = 0) = P (Y |X).

Non-identifiability when SAT Suppose the 3-SAT instance is satisfiable. We define 2 parameteri-
zations for the LDAG, M1 and M2 that agree with P (X,Y ) but disagree on P (Y | do(X)). First let
us describe the common part of both models. Let Z be distributed uniformly mutually independently.
Let Ui = Ui−1 if Za, Zb, Zc satisfy the clause i and 0 otherwise. Let U0 be uniform, and let X be
equal to U0.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Same observed distribution We can calculate the observed joint P (X,Y ) as follows:

P (X,Y ) =
∑

Uk,U0,Z

P (X,Y, Uk, U0,Z)

=
∑

Uk,U0,Z

P (Y |X,Uk)P (X |U0)P (Uk |U0,Z)P (U0)P (Z) || P (Z) = 2−l, P (U0) = 2−1

= 2−l−1
∑

Uk,U0,Z

P (Y |X,Uk)P (X |U0)P (Uk |U0,Z) || P (X |U0 = 1−X) = 0

= 2−l−1
∑
Uk,Z

P (Y |X,Uk)P (Uk |U0 = X,Z)

= 2−l−1
∑

Uk,z∈SAT

P (Y |X,Uk)P (Uk |U0 = X, z) || Uk = U0 = X when SAT

+ 2−l−1
∑

Uk,z∈UNSAT

P (Y |X,Uk)P (Uk |U0 = X, z) || Uk = 0 when UNSAT

= 2−l−1

[ ∑
z∈SAT

P (Y |X,Uk = X) +
∑

z∈UNSAT

P (Y |X,Uk = 0)

]
.

In order for this to be equal for M1 and M2 it suffices that

P 1(Y |X,Uk = 0) = P 2(Y |X,Uk = 0),

P 1(Y |X = 1, Uk = 1) = P 2(Y |X = 1, Uk = 1).

In addition, the probabilities should be non-zero for P (X,Y ) to be positive for all 3-SAT instances.
Then

P 1(X,Y ) = P 2(X,Y ) > 0.

Different causal effects The parameter P (Y |X = 0, Uk = 1) does not affect the passive obser-
vational distribution in any way, so let P 1(Y |X = 0, Uk = 1) 6= P 2(Y |X = 0, Uk = 1). This
difference alters the causal effect:

P (Y | do(X = 0)) = 2−l−1
∑

Uk,U0,Z

P (Y |X = 0, Uk)P (Uk |U0,Z)

= 2−l−1
∑

Uk,U0,z∈SAT

P (Y |X = 0, Uk)P (Uk |U0, z) || Uk = U0 when SAT

+ 2−l−1
∑

Uk,U0,z∈UNSAT

P (Y |X = 0, Uk)P (Uk |U0, z) || Uk = 0 when UNSAT

= 2−l−1
∑

z∈SAT

P (Y |X = 0, Uk = U0) + 2−l−1
∑

z∈UNSAT

P (Y |X = 0, Uk = 0).

and thus

P 1(Y | do(X = 0))− P 2(Y | do(X = 0)) =

2−l−1
∑

Z∈SAT

[P 1(Y |X = 0, Uk = 1)− P 2(Y |X = 0, Uk = 1)] 6= 0.

This shows that causal effect is non-identifiable if the 3-SAT instance is satisfiable. Next, we provide
a similar construction for the case where positivity is assumed.

Proof of Theorem 1. Define the corresponding LDAG to the 3-SAT instance as follows (see Fig. 1)
[2]. Let nodes Z = {Z1, · · · , Zl} correspond to variables in the 3-SAT instance and U1, · · · , Uk

represent the clauses of the 3-SAT instance. Let the parents of node Ui (i ≥ 1) be Ui−1, and the Zs
appearing in ith clause. The label Li on the edge Ui−1 → Ui consists of assignments to other parents
of Ui that are in Z: let it be exactly the set of assignments that do not satisfy the ith clause. Let the
parent of X be U0 and the parents of Y be X,Uk. We will show that P (Y | do(X)) is identifiable
from P (X,Y ) if and only if the 3-SAT instance is unsatisfiable.
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Identifiability when UNSAT Suppose the 3-SAT instance is unsatisfiable. Then for any assignment
z to Z, edge Ui−1 → Ui is absent in the context z, and according to CSI-separation: IX ⊥⊥
Y |X,Z = z. It follows that IX ⊥⊥ Y |X,Z. By d-separation IX ⊥⊥ Z, by contraction IX ⊥⊥
Y,Z |X , by decomposition IX ⊥⊥ Y |X . Thus the causal effect is identifiable:

P (Y | do(X)) = P (Y |X, IX = 1) = P (Y |X, IX = 0) = P (Y |X).

Non-identifiability when SAT Suppose the 3-SAT instance is satisfiable. We define 2 parameteri-
zations for the LDAG, M1 and M2 that agree on P (X,Y ) but disagree on P (Y | do(X)).

First let us describe the common part of both models. Let Z be distributed uniformly mutually
independently. If Za, Zb, Zc do not satisfy i:th clause we let Ui to be distributed uniformly. If they
do let P (Ui = 1 |Ui−1 = 1) = p and P (Ui = 1 |Ui−1 = 0) = 1− p such that p 6= 1/2. For M1 let
P 1(U0 = 1) = 1/2 and let P 1(X = 1 |U0 = 1) = q and P 1(X = 1 |U0 = 0) = 1 − q such that
q 6= 1/2. For M2 let P 2(U0 = 0) = q and P 2(X |U0) = 1/2 irrespective of the value of U0.

First we observe that P 1(X) = P 2(X). For M1 we have

P 1(X = 0) = P 1(X = 0 |U0 = 0)P 1(U0 = 0) + P 1(X = 0 |U0 = 1)P 1(U0 = 1)

= q
1

2
+ (1− q)

1

2
=

1

2
,

and for M2 we have

P 2(X = 0) = P 2(X = 0 |U0 = 0)P 2(U0 = 0) + P 2(X = 0 |U0 = 1)P 2(U0 = 1)

=
1

2
q +

1

2
(1− q) =

1

2
.

If some clause j is unsatisfied, the distributions all up to k are uniform regardless whether the
remaining clauses are satisfied or not:

P (Uj |U0 = 1, z) =
∑
Uj−1

P (Uj |Uj−1, z)P (Uj−1 |U0 = 1, z) =
1

2

∑
Uj−1

P (Uj−1|U0, z) =
1

2
.

P (Uj+1 |U0 = 1, z) =
∑
Uj

P (Uj+1 |Uj , z)P (Uj |U0 = 1, z) = (1− p)
1

2
+ p

1

2
=

1

2
.

If all clauses are satisfied by z we can define the following random variable:

F =

k∑
i=1

I(Ui 6= Ui−1, z ∈ SAT),

where I is the indicator function. Based on the parametrization of the Ui:s we know that P (F | z) =
Bin(k, 1− p). Furthermore, Uk = U0 if F = 2t for any t ∈ {0, . . . , bk/2c}. Similarly, Uk 6= U0 if
F = 2t+ 1 for any t ∈ {0, . . . ,

⌊
k−1
2

⌋
}. From this we obtain the following distributions

P (Uk = 0 |U0 = 0, z) = P (Uk = 1 |U0 = 1, z) =

bk/2c∑
t=0

(
k

2t

)
(1− p)2tpk−2t := a.

P (Uk = 1 |U0 = 0, z) = P (Uk = 0 |U0 = 1, z) =

b k−1
2 c∑

t=0

(
k

2t+ 1

)
(1− p)2t+1pk−2t−1 = 1− a.
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Same observed distribution We can calculate the observed joint P (X,Y ) for both models as
follows:

P (X,Y ) =
∑

Uk,U0,Z

P (X,Y, Uk, U0,Z)

=
∑

Uk,U0,Z

P (Y |X,Uk)P (X |U0)P (Uk |U0,Z)P (U0)P (Z) || P (Z) = 2−l

= 2−l
∑

Uk,U0,Z

P (Y |X,Uk)P (X |U0)P (Uk |U0,Z)P (U0)

= 2−l
∑

Uk,U0,z∈SAT

P (Y |X,Uk)P (X |U0)P (Uk |U0, z)P (U0)

+ 2−l
∑

Uk,U0,z∈UNSAT

P (Y |X,Uk)P (X |U0)P (Uk |U0, z)P (U0).

For M1 and M2 we have

P (X = 0, Y )

= 2−l
∑

z∈SAT

(
P (Y |X = 0, Uk = 0)qa

1

2
+ P (Y |X = 0, Uk = 0)(1− q)(1− a)

1

2

+ P (Y |X = 0, Uk = 1)q(1− a)
1

2
+ P (Y |X = 0, Uk = 1)(1− q)a

1

2

)
+ 2−l

∑
z∈UNSAT

(
P (Y |X = 0, Uk = 0)q

1

4
+ P (Y |X = 0, Uk = 0)(1− q)

1

4

+ P (Y |X = 0, Uk = 1)q
1

4
+ P (Y |X = 0, Uk = 1)(1− q)

1

4

)

= 2−l−1
∑

z∈SAT

(P (Y |X = 0, Uk = 0)qa+ P (Y |X = 0, Uk = 0)(1− q)(1− a)

+ P (Y |X = 0, Uk = 1)q(1− a) + P (Y |X = 0, Uk = 1)(1− q)a)

+ 2−l−2
∑

z∈UNSAT

(P (Y |X = 0, Uk = 0) + P (Y |X = 0, Uk = 1)) .

When X = 1, the expression for P (X = 1, Y ) is different for the models. For M1 it is

P 1(X = 1, Y )

= 2−l
∑

z∈SAT

(
P 1(Y |X = 1, Uk = 0)(1− q)a

1

2
+ P 1(Y |X = 1, Uk = 0)q(1− a)

1

2

+ P 1(Y |X = 1, Uk = 1)(1− q)(1− a)
1

2
+ P 1(Y |X = 1, Uk = 1)qa

1

2

)
+ 2−l

∑
z∈UNSAT

(
P 1(Y |X = 1, Uk = 0)(1− q)

1

4
+ P 1(Y |X = 1, Uk = 0)q

1

4

+ P 1(Y |X = 1, Uk = 1)(1− q)
1

4
+ P 1(Y |X = 1, Uk = 1)q

1

4

)

= 2−l−1
∑

z∈SAT

(
P 1(Y |X = 1, Uk = 0)(1− q)a+ P 1(Y |X = 1, Uk = 0)q(1− a)

+ P 1(Y |X = 1, Uk = 1)(1− q)(1− a) + P 1(Y |X = 1, Uk = 1)qa
)

+ 2−l−2
∑

z∈UNSAT

(P 1(Y |X = 1, Uk = 0) + P 1(Y |X = 1, Uk = 1)),

4



and for M2 it is

P 2(X = 1, Y )

= 2−l
∑

z∈SAT

(
P 2(Y |X = 1, Uk = 0)qa

1

2
+ P 2(Y |X = 1, Uk = 0)(1− q)(1− a)

1

2

+ P 2(Y |X = 1, Uk = 1)q(1− a)
1

2
+ P 2(Y |X = 1, Uk = 1)(1− q)a

1

2

)
+ 2−l

∑
z∈UNSAT

(
P 2(Y |X = 1, Uk = 0)q

1

4
+ P 2(Y |X = 1, Uk = 0)(1− q)

1

4

+ P 2(Y |X = 1, Uk = 1)q
1

4
+ P 2(Y |X = 1, Uk = 1)(1− q)

1

4

)

= 2−l−1
∑

z∈SAT

(
P 2(Y |X = 1, Uk = 0)qa+ P 2(Y |X = 1, Uk = 0)(1− q)(1− a)

+ P 2(Y |X = 1, Uk = 1)q(1− a) + P 2(Y |X = 1, Uk = 1)(1− q)a
)

+ 2−l−2
∑

z∈UNSAT

(P 2(Y |X = 1, Uk = 0) + P 2(Y |X = 1, Uk = 1)).

In order to ensure that P 1(X = 1, Y ) = P 2(X = 1, Y ) we let P 1(Y |X = 1, Uk) = P 2(Y |X =
1, Uk) = 1/2. For P (Y |X = 0, Uk) we let P 1(Y |X = 0, Uk) = P 2(Y |X = 0, Uk) > 0. The
considered parametrization ensures that P (X,Y,Z, U0, . . . , Uk) is positive for all 3-SAT instances,
and

P 1(X,Y,Z, U0, . . . , Uk) = P 2(X,Y,Z, U0, . . . , Uk) > 0.

Different causal effects The different parameterizations for U0 and the conditional distribution
P (X |U0) in M1 and M2 induce a difference in the causal effects. The causal effect can be computed
as

P (Y | do(X = 0))

= 2−l
∑

Uk,U0,z∈SAT

P (Y |X,Uk)P (Uk |U0, z)P (U0)

+ 2−l
∑

Uk,U0,z∈UNSAT

P (Y |X,Uk)P (Uk |U0, z)P (U0).

For model M1 this is

P 1(Y | do(X = 0))

= 2−l
∑

z∈SAT

(
P 1(Y |X = 0, Uk = 0)a

1

2
+ P 1(Y |X = 0, Uk = 0)(1− a)

1

2

+ P 1(Y |X = 0, Uk = 1)(1− a)
1

2
+ P 1(Y |X = 0, Uk = 1)a

1

2

)
+ 2−l

∑
z∈UNSAT

(
P 1(Y |X = 0, Uk = 0)

1

4
+ P 1(Y |X = 0, Uk = 0)

1

4

+ P 1(Y |X = 0, Uk = 1)
1

4
+ P 1(Y |X = 0, Uk = 1)

1

4

)

= 2−l−1
∑

z∈SAT

(P 1(Y |X = 0, Uk = 0) + P 1(Y |X = 0, Uk = 1)

+ 2−l−1
∑

z∈UNSAT

(P 1(Y |X = 0, Uk = 0) + P 1(Y |X = 0, Uk = 1)).
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XIX

U0 U1 · · · Ui−1 Ui · · · Uk

Y

Z

Li

IX = 1

Figure 1: LDAG for the proof of Theorem 1.

For model M2 the causal effect is

P 2(Y | do(X = 0))

= 2−l
∑

z∈SAT

(
P 2(Y |X = 0, Uk = 0)aq + P 2(Y |X = 0, Uk = 0)(1− a)(1− q)

+ P 2(Y |X = 0, Uk = 1)(1− a)q + P 2(Y |X = 0, Uk = 1)a(1− q)
)

+ 2−l
∑

z∈UNSAT

(
P 2(Y |X = 0, Uk = 0)

1

2
q + P 2(Y |X = 0, Uk = 0)

1

2
(1− q)

+ P 2(Y |X = 0, Uk = 1)
1

2
q + P 2(Y |X = 0, Uk = 1)

1

2
(1− q)

)

= 2−l
∑

z∈SAT

(
P 2(Y |X = 0, Uk = 0)aq + P 2(Y |X = 0, Uk = 0)(1− a)(1− q)

+ P 2(Y |X = 0, Uk = 1)(1− a)q + P 2(Y |X = 0, Uk = 1)a(1− q)
)

+ 2−l−1
∑

z∈UNSAT

(P (Y |X = 0, Uk = 0) + P (Y |X = 0, Uk = 1)).

Thus

P 1(Y | do(X = 0))− P 2(Y | do(X = 0))

= 2−l
∑

z∈SAT

((
1

2
− aq − (1− a)(1− q)

)
P (Y |X = 0, Uk = 0)

+

(
1

2
− (1− a)q − a(1− q)

)
P (Y |X = 0, Uk = 1)

)
= 2−l

∑
z∈SAT

(rP (Y |X = 0, Uk = 0)− rP (Y |X = 0, Uk = 1)) .

where r = 1/2−aq−(1−a)(1−q)). It is apparent that we can always choose q and p (i.e., a) in such
a way that the causal effects will differ as long as P (Y |X = 0, Uk = 0) 6= P (Y |X = 0, Uk = 1).
This shows that the causal effect is non-identifiable if the 3-SAT instance is satisfiable.

Proof of Theorem 2. Note that this proof follows closely to the original soundness proofs of do-
calculus [3]. Any formula that is derivable with do-calculus is also derivable here with rule 1 of the
calculus presented in the main paper. This is because conditioning on IX = 1 is exactly equivalent to
removing all incoming edges of a node. The equivalent inference rules to the do-calculus formulation
in [1] are presented below, the notation ||X means that X are intervened and all edges into them are
cut.

Rule 1 (insertion/deletion of observations) originally

P (Y | do(X),Z,W ) = P (Y | do(X),W ) if Y ⊥⊥ Z |X,W ||X
is just

P (Y |X, IX = 1,Z,W ) = P (Y |X, IX = 1,W ) if Y ⊥⊥ Z |X,W , IX = 1
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Rule 2 (action/observation exchange) originally

P (Y | do(X), do(Z),W ) = P (Y | do(X),Z,W ) if Y ⊥⊥ IZ |X,Z,W ||X
is simply

P (Y |X, IX = 1,Z, IZ = 1,W ) = P (Y |X, IX = 1,Z, IZ = 0,W )

if Y ⊥⊥ IZ |X,Z,W , IX = 1

Rule 3 (Insertion/deletion of actions) originally in form

P (Y | do(X), do(Z),W ) = P (Y | do(X),W ) if Y ⊥⊥ IZ |X,W ||X
is a bit more complicated.

One way of deriving the equivalence with the presented rule is to first drop conditioning on Z and
then change conditioning on IZ = 1.

P (Y |X, IX = 1,Z, IZ = 1,W ) = P (Y |X, IX = 1, IZ = 1,W )

if Y ⊥⊥Z |X,W , IX = 1, IZ = 1

P (Y |X, IX = 1, IZ = 1,W ) = P (Y |X, IX = 1, IZ = 0,W )

if Y ⊥⊥IZ |X,W , IX = 1

In the lemma below we show the equivalence of the original condition to the conjunction of the new
conditions. Anything that can be derived with rule 3 of do-calculus can also be derived with rule 1 of
the paper.

Lemma 1. D-separation relation Y ⊥⊥ IZ |X,W ||X is equivalent to [Y ⊥⊥ IZ |X, IX =
1,W ] ∧ [Y ⊥⊥ Z |X,W , IX = 1, IZ = 1].

Proof. The original graphical condition Y ⊥⊥ IZ |X,W ||X is clearly equivalent to the first
condition Y ⊥⊥ IZ |X, IX = 1,W , the only difference is notational. This shows one direction
and the first part of the other direction. What remains to be shown is that Y ⊥⊥ Z |X,W , IX =
1, IZ = 1 follows from Y ⊥⊥ IZ |X,W ||X .

We are not assuming any other labels or CSIs on the graph except for the ones brought by the use of
intervention variables. We assume the form of d-separation which allows for repeated edges [4]. We
also leave out the intervening and conditioning on X in both conditions as we can just delete edges
into X in all considered graphs. Proving here the contrapositive, so assume Y 6⊥⊥ Z |W , IZ = 1.
Thus the is a d-connecting path between some Yj ∈ Y and some Zi ∈ Z active when conditioning
on W , IZ = 1. Due to the nature of intervention and intervention variables, conditioning on IZ = 1
can only break d-connecting paths, so we can drop the conditioning on IZ . Then, continuing the path
with the arc IZi → Zi gives us a d-connecting path between IZi and Yj . It is not intercepted at Zi,
since Zi was originally intervened on (IZi = 1), and thus the path to Yj must be out of Zi. Hence
Y 6⊥⊥ IZ |W . This shows that Y ⊥⊥ IZ |W ⇒ Y ⊥⊥ Z |W , IZ = 1 and adding intervention on
X back in we have Y ⊥⊥ IZ |X,W ||X ⇒ Y ⊥⊥ Z |X,W , IX = 1, IZ = 1.

Proof of Theorem 3. Suppose that there exists a set C such that Y ⊥⊥ Z |X,w,C is implied by
an LDAG G. If Y ⊥⊥ C |X,w, then Y ⊥⊥ C,Z |X,w by contraction and Y ⊥⊥ Z |X,w by
decomposition. If C ⊥⊥ Z |X,w, the CSI is obtained similarly by deriving Z ⊥⊥ Y ,C |X,w by
contraction. If Y ⊥⊥ C |X,Z,w in G then we can write

P (Y |X,w) =
∑
C

P (Y |X,w, c)P (c |X,w)

=
∑
C

P (Y |X,Z,w, c)P (c |X,w)

=
∑
C

P (Y |X,Z,w)P (c |X,w)

= P (Y |X,Z,w).

If Z ⊥⊥ C |X,Y ,w, the result follows by swapping the roles of Y and Z in the above derivation.
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W = 0 WX = 1∗
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IX Y
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Figure 2: LDAGs for the proof of Theorem 6.

Proof of Theorem 4. Let ci ∈ val(C) and let Ri be a representative of [ci] s∼. Then Y and Z are
CSI-separated by X in the context w, cj in G for every cj ∈ val(C) such that [cj ] s∼ = [ci] s∼ because
their context-specific DAGs are identical. Since the choice of ci is arbitrary and the equivalence
classes partition val(C), the claim holds for all c ∈ val(C).

Proof of Theorem 5. Each new term is identified by using only valid rules of the calculus described in
the paper and by ensuring that the required CSIs are implied by G when rule 1 is applied. Theorem 2
shows that CSI-separation is complete for determining CSIs resulting from intervention nodes. It
follows that if the search terminates and returns a formula for the target distribution, it was reached
from P (W ) through a chain of valid manipulations. Suppose now that the search returns NA. By
definition, Algorithm 1 enumerates every rule in every valid way. Furthermore, the order in which
the distributions are expanded is irrelevant when identifiability is concerned, since every possible
manipulation will still be carried out. The search will eventually terminate, since we only identify any
specific term once and the set of valid manipulations through the rules for any given term is clearly
finite.

Proof of Theorem 6. First we show that identifiability of P (Y | do(X)) in every context specific
DAG does not imply identifiability in the LDAG itself. Consider LDAG of Figure 2(a). Clearly for
any context over S = Q,W there are no latent confounders between X and Y and therefore the
effect P (Y | do(X)) is identifiable for all context-specific DAGs.

Let unobserved Q,W be uniformly distributed. Let X := Q ∧W with a flip with probability .1. Let
Y := Q ∨W , with a flip with probability .1. The positive joint can be described by:

Q W X = 0 X = 1 Y = 0 Y = 1
0 0 9/10 1/10 9/10 1/10
0 1 9/10 1/10 1/10 9/10
1 0 9/10 1/10 1/10 9/10
1 1 1/10 9/10 1/10 9/10

Which induces marginal:
P (X,Y ) Y = 0 Y = 1
X = 0 1/4 9/20
X = 1 1/20 1/4

The marginal distributions are P (X) = (7/10, 3/10) and P (Y ) = (3/10, 7/10). Conditionals
of Y are P (Y |X = 0) = (5/14, 9/14) and P (Y |X = 1) = (1/6, 5/6). The causal effect
P (Y | do(X)) = P (Y ) as forcing X does not influence Y . Let the second model be such that Q,W
are uniform, X is distributed as P (X) in the first model, and Y as P (Y |X). The marginal of X,Y
is the same, labels are respected, but causal effect P (Y | do(X)) = P (Y |X) 6= P (Y ).

Next we show that identifiability of P (Y | do(X), c) does not imply the identifiability of
P (Y | do(X)) in the LDAG. Consider the LDAG of Fig. 2(b). It is possible to identify the con-
ditional causal effects P (Y | do(X), A = 0) and P (Y | do(X), A = 1) from P (X,Y,A) since

P (Y | do(X), A) = P (Y |A,X, IX = 1) = P (Y |A,X),

as Y is independent of IX in the LDAG. However, the causal effect P (Y | do(X)) is not identifiable.
To show this, we define 2 parameterizations, M1 and M2, for the LDAG, that agree on P (X,Y,A)
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but disagree on P (Y | do(X)). In the first model we let P 1(U) = 1/2, P 1(X = 1 |U = 1) = q and
P (X = 1 |U = 0) = 1− q. In the second model we let P 2(U = 1) = q and P 2(X |U) = 1/2. We
also let P 1(A |X = 1, U) = P 2(A |X = 1, U) = P (A |X = 1, U).

We have that
P (X,A) =

∑
U

P (X,A,U)

= P (U = 1)P (X |U = 1)P (A |X,U = 1) + P (U = 1)P (X |U = 1)P (A |X,U = 1).

For X = 1 and we have

P 1(X = 1, A) = P 2(X = 1, A) =
1

2
qP (A |X = 1, U = 1) +

1

2
(1− q)P (A |X = 1, U = 0),

for X = 0 we have

P 1(X = 1, A) =
1

2
(1− q)P 1(A |X = 0, U = 1) +

1

2
qP 1(A |X = 0, U = 0),

P 2(X = 1, A) =
1

2
qP 2(A |X = 0, U = 1) +

1

2
(1− q)P 2(A |X = 0, U = 0),

thus we set P (A |X = 0, U = 1) = P (A |X = 0, U = 0) = 1/2 for both M1 and M2.
Furthermore, we let P 1(Y, Z | , X,A) = P 2(Y, Z |X,A) = P (Y, Z |X,A). This parametrization
produces the same observed joint distribution P 1(Y,X,A) = P 2(Y,X,A). Computing the causal
effects result in

P 1(Y | do(X = 1)) =
∑

U,A,Z

P 1(U)P 1(A |U,X = 1)P 1(Y, Z |X = 1, A)

=
∑
A,Z

(
1

2
P (A |X = 1, U = 1)P (Y,Z |X = 1, A)

+
1

2
P (A |X = 1, U = 0)P (Y,Z |X = 1, A)

)
,

and
P 2(Y | do(X = 1)) =

∑
U,A,Z

P 2(U)P 2(A |U,X = 1)P 2(Y,Z |X = 1, A)

=
∑
A,Z

(qP (A |X = 1, U = 1)P (Y, Z |X = 1, A)

+ (1− q)P (A |X = 1, U = 0)P (Y,Z |X = 1, A)) .

The difference P 1(Y | do(X = 1))− P 2(Y | do(X = 1)) is∑
A,Z

[
P (Y,Z |X = 1, A)

((
1

2
− q

)
P (A |X = 1, U = 1)−

(
1

2
− q

)
P (A |X = 1, U = 0)

)]
,

which is non-zero as long as P (A |X = 1, U = 1) 6= P (A |X = 1, U = 0).

B Heuristics

In order to guide the search to identify the most promising terms, we relate the source distributions
to the target quantity through a proximity function and always expand the closest term first. We
construct our proximity function h by comparing the variables and value assignments that appear
on the left-hand and right-hand sides of the target P t = P (Y 1,y2 |X1,x2) and the source term
P s = P (A1,a2 |B1, b2). Let S be the set of variables where value assignments between the terms
agree and let T be the complement where the values disagree. We also denote Y = Y 1 ∪ Y 2,
X = X1 ∪X2, A = A1 ∪A2 and B = B1 ∪B2. Following the approach of [5], we define the
proximity function as:
h(P t, P s) = 10|Y ∩A|+5|X ∩B|+3|S|− 2|Y \A|− 2|A \Y |− 2|X \B|− 2|B \X|− |T |.
Note that we also penalize the term |A \ Y | even though extra variables on the left-hand side of a
term no do not hinder identifiability. Having a penalty for this term seems to have the tendency to
produce simpler formulas for the causal effects.
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