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S1 Model implementation details

S1.1 Architecture

S1.1.1 Keypoint detector

Our goal is to encode the input image in terms of the locations of objects in the image [5, 9]. To this
end, we use a keypoint detector network (Figure 1, bottom) that consists of K keypoint detectors.
Ideally, each detector learns to detect a distinct object or object part. The detector network is
implemented as a series of convolutional layers with stride 2 that reduce the input image v into a
stack of keypoint detection score maps with K channels, R ∈ RH×W×K

>0 , where H = W = 16. We
use the softplus function f(x) = log(1 + ex) on the activations of the final layer to ensure the maps
are positive.

The raw maps R are normalized to obtain detection weight maps D,

Dk(u, v) =
Rk(u, v)∑

u

∑
v Rk(u, v)

, (S1)

where Dk(u, v) is the value of the k-th channel of D at pixel (u, v). We then reduce each Dk to a
single (x, y)-coordinate by computing the weighted mean over pixel coordinates:

(xk, yk) =

H∑
v=1

W∑
u=1

(u, v) ·Dk(u, v) (S2)

To model keypoint presence or absence, we compute the mean value of the raw detection score maps,

µk =
1

H ×W

H∑
v=1

W∑
u=1

Rk(u, v). (S3)

In summary, each keypoint is represented by a (x, y, µ)-triplet encoding its location in the image and
its scale.

For image reconstruction, each keypoint is converted back into a pixel representation by creating
a map R̂k containing a Gaussian blob with standard deviation σk.p. at the location of the keypoint,
scaled by µk:

R̂k(u, v) = µk · exp

(
− 1

2σ2
k.p.
||(u, v)− (xk, yk)||2

)
. (S4)
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The map R̂k contains the same information as the keypoint tuple (xk, yk, µk), but in a pixel rep-
resentation that is suitable as input to the convolutional reconstructor network ϕrec. The image is
reconstructed as follows:

v̂t = v1 + ϕrec([R̂t, R̂1, ϕ
appearance(v1)]) (S5)

where ϕrec applies alternating convolutional layers and twofold bilinear upsampling until the 16× 16
maps are expanded to the original image resolution, [· · · ] denotes concatenation (here, channel-
wise), and ϕappearance is a network with the same architecture as ϕdet (except for the final softmax
nonlinearity) that extracts image features from the first frame v1 to capture appearance information
of the scene.

The internal layers of the convolutional encoder and decoder are connected through leaky rectified
linear units f(x) = max(x, 0.2x). L2 weight decay of 10−4 is applied to all convolutional kernels.
To increase model capacity, we add one (for Basketball and DMCS) or two (for Human3.6M)
additional size-preserving (stride 1) convolutional layers at each resolution scale of the detector and
reconstructor. The image resolution is 64× 64 pixels.

S1.1.2 Dynamics model

The dynamics model (Figure 1, top) has the following components:

The prior network consists of a dense layer with ReLU activation functions (for number of units, see
Prior net size in Table S1), followed by a dense layer that projects the activations to the mean and
standard deviation that parameterize the prior latent distribution N prior

t ,

µprior
t ,σprior

t = ϕprior(ht−1). (S6)

The encoder network consists of a dense layer with 128 units and ReLU activation functions, followed
by a dense layer that projects the activations to the mean and standard deviation that parameterize the
posterior latent distribution N enc

t ,

µenc
t ,σenc

t = ϕenc([xt,ht−1]). (S7)

The decoder network consists of a dense layer with 128 units and ReLU activation functions, followed
by a dense layer that projects the activations to the the linearized keypoint vector xt of length K × 3
(containing x, y and µ components),

xt = ϕdec([zt,ht−1]), (S8)

where zt ∼ N enc(µt,σ
2
t I) for observed steps and zt ∼ N prior(µt,σ

2
t I) for predicted steps.

The recurrent network consists of a GRU layer with 512 units:

ht = ϕrnn([xt, zt,ht−1]). (S9)

For the action-conditional model used for reward prediction (Figure 9), the input to ϕrnn is
[xt, zt,ht−1,at−1], where at−1 is the vector of random actions used to generate frame t of the
DeepMind Control Suite dataset.

The size of ϕprior and the latent representation z were optimized as hyperparameters (see Table S1).

S1.2 Optimization

We used the ADAM optimizer [6] with β1 = 0.9 and β2 = 0.999. We trained on batches of size 32
for 105 steps. The learning rate was set to 10−3 at the start of training and reduced by half every
3× 104 steps. We used an L2 weight decay of 10−4 on the weights of the convolutional layers in the
image encoder and decoder. Weights were initialized using the "He uniform" method as implemented
by Keras. Models were trained on a single Nvidia P100 GPU. Training took approximately 12 hours.

During training, we linearly annealed the KL loss scale from 0 to β over the first 2.5× 104 steps, as
in [2].
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Table S1: Hyperparameters
Parameter name Symbol Tuning range Basketball Human3.6M DMCS

Batch size - 32 32 32
Init. learning rate - 10−3 10−3 10−3

Input steps T - 8 8 8
Predicted steps ∆T [0, 32] 8 8 8
Num. keypoints K varied 12 48 64
Keypoint sparsity scale λsparse [10−3, 104] 0.1 10−2 5
Separation loss scale λsep [10−3, 104] 0.1 2× 10−2 0.1
Separation loss width σsep [0, 0.2] 2× 10−2 2× 10−3 2× 10−2

Keypoint blob width σk.p. [0.1, 2.0] (pix) 1.5 1.5 1.5
Latent code size [4, 256] 16 16 128
KL loss scale β [10−3, 10] 10−2 10−2 3× 10−3

Prior net size [4, 512] 16 4 16
Posterior net size - 128 128 128
Num. RNN units [32, 2048] 512 512 512
Num. samp. for BoM loss [1, 200] 50 50 50

S1.3 Scheduled sampling

When training an RNN for many timesteps, the initially large errors compound over time, leading to
slow learning. Therefore, during training, we initially supplied the observed keypoint coordinates as
xt−1 to the RNN, instead of the RNN’s own predictions. This is similar to teacher forcing, although
we note that we used the output of the unsupervised keypoint detector, rather than the ground truth.

We find that teacher forcing causes the model to make more dynamic predictions which are qualita-
tively realistic, but may have poor error metrics because of the mismatch between the training and
test distributions. We therefore gradually switched to using samples from the model over the course
of training (scheduled sampling, [1]). We linearly increased the probability of choosing samples from
the model from 0 to a final value over the course of training. We chose the final probability to be 1.0
for the observed timesteps and 0.5 for the predicted timesteps.

S1.4 Hyperparameter optimization

We used a black-box optimization tool based on Gaussian process bandits [4] to tune several of the
hyperparameters of our model. The target for optimization was the mean coordinate trajectory error
as computed for Figure 4. See Table S1 for parameters and their tuning ranges.

S2 Experimental details

S2.1 Comparison to SVG and SAVP

For both SVG and SAVP, models were trained on the same datasets as our models, using the code
made available by the authors. We trained all models using 8 input steps and 8 predicted steps. For
SAVP, the other hyperparameters were set to those recommended by the authors for the BAIR robot
pushing dataset.

S2.2 Human3.6M action recognition

To understand how much semantically useful information the representations of our models contain,
we predicted the actions performed in the Human3.6M dataset from the model representations
(Figure 8). We first used trained models to extract keypoints (or unstructured image representations)
for sequences of 8 observed steps from the Human3.6M test set. These keypoint sequences represented
the dataset used for action recognition. The action recognition training set comprised 881 sequences,
the test set 279 sequences. We ensured that no test sequences came from the same original videos as
those used in the training set.
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We then trained a separate recurrent neural network to classify each sequence into one of the 15 action
categories (Walking, Sitting, Eating, Discussions, ...) in the Human3.6M dataset. No categories
were excluded. The network consisted of two GRU layers (128 units), followed by a dense layer (15
units) and a softmax layer. We used 25% dropout after each GRU layer. The model was trained for
100 epochs using the ADAM optimizer with a starting learning rate of 0.01 that was successively
reduced to 0.0001. We report the mean action recognition accuracy (fraction correct) on the 279 test
sequences.

S2.3 DeepMind Control Suite reward prediction

To explore if the structured representation learned by our model may be useful for planning, we used
our model to predict rewards in DeepMind Control Suite [7] continuous control tasks (Figure 9).
We chose tasks that have dense rewards and thus provide a strong signal for evaluation (Acrobot
Swingup, Cartpole Balance, Cheetah Run, Reacher Easy, Walker Stand, Walker Walk).

We generated a dataset based on DeepMind Control Suite (DMCS) continuous control tasks by
performing random actions and recording 64 by 64 pixel observations, the actions, and the rewards.
We then trained our model variants on this dataset. Importantly, we trained a single model on data from
all domains, to test the generality of our approach. We modified our models to be action-conditional
by passing the vector of actions as an additional input to the RNN at each timestep.

To predict rewards, we used the RNN hidden state of our models as a representation of the dynamics
learned by the model. We first collected the hidden states of the trained models for 10,000 length-20
sequences from the test split for each of the six domains in our DMCS dataset. We then trained
a separate, smaller reward prediction model to predict rewards for each of the six domains. The
reward prediction models took the sequence of RNN hidden states as input and returned a sequence
of scalar reward values as output. The model consisted of a fully connected layer (128 units), two
GRU layers (128 units) and a dense layer (1 unit), all connected through rectified linear units. The
reward prediction model was trained on 80% of the data with the ADAM optimizer with a starting
learning rate of 0.001 that was successively reduced to 0.0001. We report the mean squared error of
the predicted reward on the remaining 20% of the data.
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Figure S1: Additional video metrics on Human3.6M: structural similarity (SSIM) and peak signal-to-
noise ratio (PSNR). The models were conditioned on 8 frames and trained to predict 8 future frames.
Higher is better (closer to ground truth). Top row shows the mean across all test-set examples of the
closest-to-GT of 100 stochastic samples, bottom shows the furthest. Lines show the mean across 5
random model initializations, with the 95% confidence interval shaded.
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Figure S2: Video generation quality on Basketball. The models were conditioned on 8 frames and
trained to predict 8 future frames. Our stochastic structured model (Struct-VRNN) outperforms
our deterministic baseline (Struct-VRNN), our unstructured baseline (CNN-VRNN), and the SVG
model [3] in the FVD metric and qualitatively. Top: Example input (green borders) and predicted
(red borders) frames. Bottom left: Fréchet Video Distance (FVD) [8]. Lower is better. Each dot
represents a separate model initialization. For SVG, the FVD for several runs was greater than 1700.
The example at the top comes from the best run. Bottom right: VGG feature cosine similarity,
structural similarity (SSIM), and peak signal-to-noise ratio (PSNR). Higher is better. Lines show the
mean across 5 random model initializations, with the 95% confidence interval shaded. The SVG
model fails to represent objects stably at later timepoints. This is captured by the FVD metric, causing
a large difference to our models. However, it is not captured by the other metrics, suggesting that
they are not informative on this synthetic dataset. Also see videos in supplemental material or at
https://mjlm.github.io/video_structure/.
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(c) Struct-RNN (deterministic dynamics)

Figure S3: Effect of stochastic belief and best-of-many-samples objective on sample diversity. Each
row shows one example Basketball play, with the trajectories for one player in each column. The black
line indicates the true trajectory, the colored lines indicate 20 stochastic predictions, all conditioned
on the same observed steps. Trajectory endpoints are marked with dots. The model trained with the
best-of-many-samples objective (a) produces more diverse samples than the model without (b). As
expected, the deterministic model (c) lacks diversity completely. Players were matched to detected
keypoints by finding, for each player, the keypoint which was closest to that player on average.
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Figure S4: The Struct-VRNN model generates plausible and diverse predictions. Each block shows
the true sequence in the top row, followed by three samples conditioned on the same initial frames
(green outlines). Also see videos in supplemental material or at https://mjlm.github.io/video_
structure/.
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Figure S5: Action-conditional predictions for the DeepMind Control Suite domains. Even though
the CNN-VRNN has enough capacity to encode the observed frames (green outlines) well, it
struggles to make future predictions (red outlines), in contrast to the Struct-VRNN. Also see videos
in supplemental material or at https://mjlm.github.io/video_structure/.
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(b) Mean coordinate error of the ball (left) and Player 3 (right) across different settings of
λsparse and λsep, relative to the best settings. Each entry in the heatmaps corresponds to the
mean trajectory error across time and 10 model initializations.

Figure S6: Analysis of object tracking failure modes (Basketball dataset). (a) shows the coordinate
error for individual objects. We identify two different failure modes, corresponding to failures of the
dynamics model and failures of the keypoint detector: Some objects, e.g. the ball (yellow; middle
plot), have relatively large tracking errors across all 10 model initializations, presumably because
their dynamics are hard to learn. Other objects, e.g. Player 3 (pink; right plot) are tracked well in
some and poorly in other model initializations, presumably because the keypoint detector completely
fails to detect these objects in some runs. The sweep over λsparse and λsep in (b) shows that Lsparse and
Lsep primarily reduce the keypoint detector failure mode (exemplified by the Player 3 error; right),
while the tracking error of the ball (left) is insensitive to these losses. In other words, Lsparse and Lsep
improve the reliability of the keypoint detector.
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