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Abstract

In regression tasks, aleatoric uncertainty is commonly addressed by considering a
parametric distribution of the output variable, which is based on strong assumptions
such as symmetry, unimodality or by supposing a restricted shape. These assump-
tions are too limited in scenarios where complex shapes, strong skews or multiple
modes are present. In this paper, we propose a generic deep learning framework
that learns an Uncountable Mixture of Asymmetric Laplacians (UMAL), which will
allow us to estimate heterogeneous distributions of the output variable and we show
its connections to quantile regression. Despite having a fixed number of parameters,
the model can be interpreted as an infinite mixture of components, which yields a
flexible approximation for heterogeneous distributions. Apart from synthetic cases,
we apply this model to room price forecasting and to predict financial operations in
personal bank accounts. We demonstrate that UMAL produces proper distributions,
which allows us to extract richer insights and to sharpen decision-making.

1 Introduction

Figure 1: Regression problem with heterogeneous output distributions modelled with UMAL.

In the last decade, deep learning has had significant success in many real-world tasks, such as image
classification [1] and natural language processing [2]. While most of the successful examples have
been in classification tasks, regression tasks can also be tackled with deep networks by considering
architectures where the last layer represents the continuous response variable(s) [3, 4, 5]. However,
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this point-wise approach does not provide us with information about the uncertainty underlying the
prediction process. When an error in a regression task is associated with a high cost, we might prefer
to include uncertainty estimates in our model, or actually estimate the distribution of the response
variable.

Figure 2: On the bottom we see a represen-
tation of the proposed regression model that
captures all the components τi of the mix-
ture of Asymmetric Laplacian distributions
(ALD) simultaneously. Moreover, this model
is agnostic to the architecture of the neural net-
work φ. On the middle, we observe a visuali-
sation of certain ALD components predicting
the upper plot that is the distribution of values
of y for a fixed point, x, from the Multimodal
part of Figure 1 (for ease of visualization, the
plot has been clipped to 0.2).

The modelling of uncertainty in regression tasks has
been approached from two main standpoints [6]. On
the one hand, one of the sources of uncertainty is
“model ignorance”, i.e. the mismatch between the
model that approximates the task and the true (and
unknown) underlying process. This has been referred
to as Epistemic uncertainty. This type of uncertainty
can be modelled using Bayesian methods [7, 8, 9, 10]
and can be partially reduced by increasing the size
and quality of training data.

On the other hand, another source of uncertainty is
“inevitable variability in the response variable”, i.e.
when the variable to predict exhibits randomness,
which is possible even in the extreme case where the
true underlying model is known. This randomness
could be caused by several factors. For instance, by
the fact that the input data do not contain all vari-
ables that explain the output. This type of uncertainty
has been referred to as Aleatoric uncertainty. This
can be modelled by considering output distributions
[11, 12, 13], instead of point-wise estimations, and is
not necessarily reduced by increasing the amount of
training data.

We will concentrate on the latter case, our goal being
to improve the state-of-the-art in deep learning meth-
ods to approximate aleatoric uncertainty. The need to
improve current solutions can be understood by con-
sidering the regression problem in Figure 1. In this
regression problem, the distribution of the response
variable exhibits several regimes. Consequently, there
is no straightforward definition of aleatoric uncer-
tainty that can represent all these regimes. A quanti-
tative definition of uncertainty valid for one regime
(e.g. standard deviation) might not be valid for others.
Also, the usefulness of such uncertainty could depend
on the end-task. For example, reporting the number
of modes would be enough for some applications.
For other applications, it might be more interesting
to analyse the differences among asymmetries of the
predicted distributions.

In this paper, we propose a new model for estimating
a heterogeneous distribution of the response variable.
By heterogeneous, we mean that no strong assump-
tions are made, such as unimodality or symmetry. As
Figure 2 shows, this can be done by implementing
a deep learning network, φ, which implicitly learns
the parameters for the components of an Uncountable
Mixture of Asymmetric Laplacians (UMAL). While the number of weights of such an internal
network is finite, we show that it is implicitly fits a mixture of an infinite number of functions.

UMAL is a generic model that is based on two main ideas. Firstly, in order to capture the distribution
of possible outputs given the same input, a parametric probability distribution is imposed on the
output of the model and a neural network is trained to predict the parameters that maximise the
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likelihood of such a probability distribution [11, 14]. Specifically, if that parametric distribution is a
mixture model, the approach is known as Mixture Density Network (MDN). And secondly, UMAL
can be seen as a generalisation of a method developed in the field of statistics and particularly in the
field of econometrics: Quantile Regression (QR) [15]. QR is agnostic with respect to the modelled
distribution, which allows it to deal with more heterogeneous distributions. Moreover, QR is still
a maximum likelihood estimation of an Asymmetric Laplacian Distribution (ALD) [16]. UMAL
extends this model by considering a mixture model that implicitly combines an infinite number of
ALDs to approximate the distribution of the response variable.

In order to quantitatively validate the capabilities of the proposed model, we have considered a
real problem where the behaviour of the variable to be predicted has a heterogeneous distribution.
Furthermore, in the interest of reproducibility we have considered the use of open data 4. Price
forecasting per night of houses / rooms offered on Airbnb, a global online marketplace and hospitality
service, fullfils these conditions. Specifically, we predict prices for the cities of Barcelona and
Vancouver using public information downloaded from [17]. Price prediction is based on informative
features such as neighbourhood, number of beds and other characteristics associated with the houses /
rooms. As we can see in the results section, by predicting the full distribution of the price, as opposed
to a single estimate of it, we are able to extract much richer conclusions.

Furthermore, we have also applied the UMAL model to a private, large dataset of short sequences, in
order to forecast monthly aggregated spending and incomes jointly for each category in personal bank
accounts. As in the case of the price prediction per room, to draw conclusions we have used neural
networks to perform comparisons using Mixture Density Networks models [11], single distribution
estimators as well as other baselines.

2 Background concepts and notation

It should be noted that this paper does not attempt to model epistemic uncertainty [6], for which
recent work exists related to Bayesian neural networks or its variations [7, 8, 9, 10], by considering a
Bayesian interpretation of dropout technique [18] or even combining the forecast of a deep ensemble
[19]. Importantly, the main objective of this article is to study models that capture the aleatoric
uncertainty in regression problems by using deep learning methods. The reason to focus in this type
of uncertainty is because we are interested in problems where there are large volumes of data there
but still exists a high variability of possible correct answers given the same input information.

To obtain the richest representation of aleatoric uncertainty, we want to determine a conditional density
model p (y | x) that fits an observed set of samplesD = (X,Y ) =

{
(xi, yi) | xi ∈ RF , yi ∈ R

}n
i=1

,
which we assumed to be sampled from an unknown distribution q (y | x). To achieve this goal, we
consider the solutions that restrict p to a parametric family distributions {f(y;θ) | θ ∈ Θ}, where θ
denotes the parameters of the distributions [20]. These parameters are the outputs of a deep learning
function φ : RF → Θ with weightsw optimised to maximise the likelihood function in a training
subset of D. The problem appears when the assumed parametric distribution imposed on p differs
greatly from the real distribution shape of q. This case will become critical the more heterogeneous
q is with respect to p, i.e. in cases when its distribution shape is more complex, containing further
behaviours such as extra modes or stronger asymmetries.

3 Modelling heterogeneous distributions

In this paper, we have selected as baseline approaches two different types of distribution that belong
to the generalised normal distribution family: the normal and the Laplacian distribution. Thus, in
both cases the neural network function is defined as φ : RF → R× (0,+∞) to predict location and
scale parameters. However, the assumption of a simple normal or Laplace variability in the output of
the model forces the conditional distribution of the output given the input to be unimodal [11]. This
could be very limiting in some problems, such as when we want to estimate the price of housing and
there may be various types of price distributions given the same input characteristics.

4The source code to reproduce the public results reported is published in https://github.com/BBVA/UMAL.
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Mixture Density Network One proposed solution in the literature to approximate a multimodal
conditional distribution is the Mixture of Density Networks (MDN) [11]. Specifically, the mixture
likelihood for any normal or Laplacian distribution components is

p (y | x,w) =

m∑
i=1

αi(x) · pdf (y | µi(x), bi(x)) , (1)

where m denotes the fixed number of components of the mixture, each one being defined by
the distribution function pdf . On the other hand, αi(x) would be the mixture weight (such that∑m
i αi(x) = 1). Therefore, for this type of model we will have an extra output to predict, α, in the

original neural network, i.e. φ : RF → Rm × (0,+∞)
m × [0, 1]

m.

Although this model can approximate any type of distribution, provided m is sufficiently large [21],
it does not capture asymmetries at the level of each component. Additionally, it entails determining
the optimal number of components m e.g. by cross-validation [22], which in practice multiplies the
training cost by a significant factor.

Quantile Regression Alternatively, an extension to classic regression has been proposed in the
field of statistics and econometrics: Quantile Regression (QR). QR is based on estimating the desired
conditional quantiles of the response variable [15, 23, 24, 25]. Given τ ∈ (0, 1), the τ -th quantile
regression loss function would be defined as

Lτ (x, y;w) = (y − µ(x)) · (τ − 1[y < µ(x)]) , (2)

where 1[p] is the indicator function that verifies the condition p. This loss function is an asymmetric
convex loss function that penalises overestimation errors with weight τ and underestimation errors
with weight 1− τ [26].

Recently, some works have combined neural networks with QR [26, 12, 27]. For instance, in the
reinforcement learning field, a neural network has been proposed to approximate a given set of
quantiles [26]. This is achieved by jointly minimizing a sum of terms like those in Equation 2, one
for each given quantile. Following this, the Implicit Quantile Networks (IQN) model was proposed
[12] in order to learn the full quantile range instead of a finite set of quantiles. This was done by
considering the τ parameter as an input of the deep reinforcement learning model and conditioning
the single output to the input desired quantile, τ . In order to optimize for all possible τ values, the
loss function considers an expectation over τ , which in the stochastic gradient descent method is
approximated by sampling τ ∼ U (0, 1) from a uniform distribution in each iteration. Recently, a
neural network has also been applied to regression problems in order to simultaneously minimise
the Equation 2 for all quantile values sampled as IQN [13]. Thus, both solutions consider a joint but
“independent” quantile minimization with respect to the loss function. Consequently, for the sake of
consistency with the following nomenclature, we will refer to them as Independent QR models.

Given a neural network function, φ : RF+1 → R, where the input is (x, τ) ∈ RF+1, such that
implicitly approximates all the quantiles τ ∈ (0, 1), we can obtain the distribution shape for a given
input x by integrating the conditioned function over τ . However, due to the fact that this function is
estimated empirically, there is no guarantee that it will be strictly increasing with respect to the value
τ and this can lead to a crossing quantiles phenomenon [23, 13]. Below, we introduce a concept that
allows this limitation to be bypassed by applying a method described in the following section.

Asymmetric Laplacian distribution As it is widely known, when a function is fitted using the
mean square, or the mean absolute error loss, it is equivalent to a maximum likelihood estimation of
the location parameter of a Normal distribution, or Laplacian distribution, respectively. Similar to
these unimodal cases, when we minimise Equation 2, we are optimising the maximum likelihood of
the location parameter of an Asymmetric Laplacian Distribution (ALD) [16, 23] expressed as

ALD (y | µ, b, τ) =
τ(1− τ)

b(x)
exp {− (y − µ(x)) · (τ − 1[y < µ(x)]) /b(x)} . (3)

When µ, b parameters are predicted by using deep networks conditioned to τ , we are considering a
non-point-wise approach of QR. Next, we combine allALDs to infer a response variable distribution.
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4 The Uncountable Mixture of Asymmetric Laplacians model

In order to define the proposed framework, the objective is to consider a model that corresponds
to the mixture distribution of all possible ALD functions with respect to the asymmetry parameter,
τ ∈ (0, 1). This mixture model has an uncountable set of components that are combined to pro-
duce the uncountable mixture5 distribution. Let w be the weights of the deep learning model to
estimate, φ : RF+1 → R× (0,+∞), which predicts the (µτ , bτ ) parameters of the different ALDs
conditioned to a τ value. Then, we can consider the following compound model marginalising over
τ :

p (y | x,w) =

∫
ατ (x) · ALD (y | µτ (x), bτ (x), τ) dτ. (4)

Now we can make two considerations. On the one hand, we assume a uniform distribution for each
component ατ of the mixture model. Therefore, the weight ατ is the same for allALDs, maintaining
the restriction to integrate to 1. On the other hand, in order to make the integral tractable at the time
of training, following the strategy proposed in implicit cases [12, 13], we consider a random variable
τ ∼ U(0, 1) and apply Monte Carlo (MC) integration [7], selecting Nτ random values of τ in each
iteration, so that we discretise the integral. This results in the following expression:

p (y | x,w) ≈ 1

Nτ

Nτ∑
t=1

ALD(y | µτt(x), bτt(x), τt). (5)

Therefore, the Uncountable Mixture of Asymmetric Laplacians (UMAL) model is optimised by
minimising the following negative log-likelihood function with respect to w,

− log p (Y | X,w) ≈ −
n∑
i=1

log

(
Nτ∑
t=1

exp [logALD(yi | µτt(xi), bτt(xi), τt)]

)
− log(Nτ ), (6)

where, as is commonly considered in mixture models [29], we have a “logarithm of the sum of
exponentials”. This form allows application of the LogSumExp Trick [30] during optimisation to
prevent overflow or underflow when computing the logarithm of the sum of the exponentials.

4.1 Connection with quantile models

It is important to note the link between UMAL and QR. If we consider an Independent QR model
where the entire range of quantiles is implicitly and independently approximated (as in the case of
IQN), then the mode of an ALD can be directly inferred. Thus, in inference time there is a perfect
solution that estimates the real distribution but in a point-estimate manner. However, an alternative
approach would be to minimise all the negative logarithm of ALDs as a sum of distributions where
each one “independently” captures the variability for each quantile. This solution is, in fact, an upper
bound of the UMAL model. Applying Jensen’s Inequality to the negative logarithm function of
Equation 6 gives us an expression that corresponds to consider all ALDs as independent elements,

− log p (Y | X,w) ≤ −
n∑
i=1

(
Nτ∑
t=1

logALD(yi | µτt(xi), bτt(xi), τt)

)
− log(Nτ ). (7)

We will refer to this upper bound solution as Independent ALD and it will be used as a baseline in
further comparisons.

5The concept of “uncountable mixture” refers to the marginalisation formula that defines a compound
probability distribution [28].
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5 UMAL as a deep learning framework

UMAL can be viewed as a framework for upgrading any point-wise estimation regression model in
deep learning to an output distribution shape forecaster, as show in Algorithm 2. This implementation
can be performed using any automatic differentiation library such as TensorFlow [31] or PyTorch
[32]. Additionally, it also performs the Monte Carlo step within the procedure, which results in more
efficient computation in training time.

Therefore, in order to obtain the conditioned mixture distribution we should perform Algorithm 3.
By using this rich information we are able to conduct the following experiments.

Prerequisites 1 Definitions and functions used for following Algorithms

. x has batch size and number of features as shape, [bs, F ].

. RESHAPE( tensor, shape): returns tensor with shape shape.

. REPEAT(tensor, n): repeats last dimension of tensor n times.

. CONCAT(T1, T2): concat T1 and T2 by using their last dimension.

. LEN(T1): number of elements in T1.

Algorithm 2 How to build UMAL model by using any deep learning architecture for regression

1: procedure BUILD_UMAL_GRAPH(input vectors x, deep architecture φ, MC sampling Nτ )
2: x← RESHAPE( REPEAT(x, Nτ ), [bs ·Nτ , F ]) . Adapting x to be able to associate a τ .
3: τ ← U(0, 1) . τ must have [bs ·Nτ , 1] shape.
4: i← CONCAT(x, τ ) . The i has [bs ·Nτ , F + 1] shape.
5: (µ, b)← φτ (i) . Applying any deep learning function φ.
6: L ← Equation 6 . Applying the UMAL Loss function by using the (µ, b, τ ) triplet.
7: return L

Algorithm 3 How to generate the final conditioned distribution by using UMAL model

1: procedure PREDICT(input vectors x, response vectors y, deep architecture φ, selected τs selτ )
2: τ ← RESHAPE( REPEAT(selτ , bs), [bs · LEN(selτ ), 1]) . Adapting τ shape.
3: x← RESHAPE( REPEAT(x, selτ ), [bs · LEN(selτ ), F ]) . Adjusting x shape.
4: i← CONCAT(x, τ ) . The i has [bs ·Nτ , F + 1] shape.
5: (µ, b)← φτ (i) . Apply the trained deep learning function φ.

6: p (y | x)← 1
Nτ

Nτ∑
t=1
ALD(y | µτt , bτt , τt) . Calculate mixture model of selτ for each y.

7: return p (y | x)

6 Experimental Results

6.1 Data sets and experiment settings

In this section, we show the performance of the proposed model. All experiments are implemented in
TensorFlow [33] and Keras [34], running in a workstation with Titan X (Pascal) GPU and GeForce
RTX 2080 GPU. Regarding parameters, we use a common learning rate of 10−3. In addition, to
restrict the value of the scale parameter, b, to strictly positive values, the respective output have a
softplus function [35] as activation. We will refer to the number of parameters to be estimated as P .
On the other hand, the Monte Carlo sampling number, Nτ , for Independent QR, ALD and UMAL
models will always be fixed to 100 at the training time. Furthermore, all public experiments are
trained using an early stopping training policy with 200 epochs of patience for all compared methods.

Synthetic regression Figure 1 corresponds to the following data set. Given (X,Y ) =

{(xi, yi)}3800i=1 points where xi ∈ [0, 1] and yi ∈ R, they are defined by 4 different fixed synthetic
distributions depending on the X range of values. In particular, if xi < 0.21, then the corresponding
yi came from a Beta(α = 0.5, β = 1) distribution. Next, if 0.21 < xi < 0.47, then their yi values
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Table 1: Comparison of the Log-Likelihood of the test set over different alternatives to model the
distribution of the different proposed data sets. The scale for each data set is indicated in parenthesis.
Log-Likelihood comparison

Model Synthetic (102) BCN RPF (103) YVC RPF (102) Financial (106)

Normal distribution −39.88± 13.4 −38.44± 6.55 −70.79± 3.26 −8.56
Laplace distribution −41.30± 0.78 −19.84± 0.93 −82.87± 8.01 −7.88
Independent QR −119.0± 7.68 −32.98± 1.63 −113.54± 10.4 −8.26
2 comp. Normal MDN −43.14± 6.12 −28.59± 3.38 −74.11± 3.26 −6.37
3 comp. Normal MDN −51.79± 21.0 −31.66± 4.85 −74.22± 2.37 −7.25
4 comp. Normal MDN −111.6± 43.27 −28.60± 7.22 −76.85± 5.95 −6.75
10 comp. Normal MDN −184.3± 35.5 −27.72± 2.81 −77.26± 6.12 −10.40
2 comp. Laplace MDN −42.83± 1.54 −19.76± 0.18 −65.52± 0.40 −10.83
3 comp. Laplace MDN −64.13± 36.70 −19.57± 0.30 −78.80± 3.79 −5.84
4 comp. Laplace MDN −52.53± 8.79 −19.89± 0.44 −66.58± 1.10 −5.72
10 comp. Laplace MDN −155.9± 32.9 −21.45± 0.83 −82.51± 9.66 −6.28
Independent ALD −39.03± 0.45 −19.03± 0.81 −64.16± 0.19 −5.66
UMAL model −28.14 ± 0.44 −18.04 ± 0.72 −62.68 ± 0.21 −5.49

are obtained from N (µ = 3 · cosxi − 2, σ =| 3 · cosxi − 2 |) distribution depending on xi value.
Then, when 0.47 < xi < 0.61 their respective yi values is obtained from an increasing uniform
random distribution and, finally, all values above 0.61 are obtained from three different uniform
distributions: U(8, 0.5), U(1, 3) and U(−4.5, 1.5). A total of 50% of the random uniform generated
data were considered as test data, 40% for training and 10% for validation.

For all compared models, we will use the same neural network architecture for φ. This consists of 4
dense layers that have output dimensions 120, 60, 10 and P , respectively, and all but the last layer
with ReLu activation. Regarding training time, all models took less than 3 minutes to converge.

Room price forecasting (RPF) By using the publicly available information from the the Inside
Airbnb platform [17] we selected Barcelona (BCN) and Vancouver (YVC) as the cities to carry out
the comparison of the models in a real situation. For both cities, we select the last time each house or
flat appeared within the months available from April 2018 to March 2019.

The regression problem will be defined as predicting the real price per night of each flat in their
respective currency using the following information: the one hot encoding of the categorical attributes
(present in the corresponding Inside Airbnb “listings.csv” files) of district number, neighbourhood
number, room type and property type, as well as the number of bathrooms, accommodates values
together with the latitude and longitude normalised according to the minimums and maximums of the
corresponding city.

Given the 36, 367 and 11, 497 flats in BCN and YVC respectively, we have considered 80% as a
training set, 10% as a validation set and the remaining 10% as a test set. Regarding the trained
models, all share the same neural network architecture for their φ, composed of 6 dense layers with
ReLu activation in all but the last layer and their output dimensions of 120, 120, 60, 60, 10 and P ,
respectively. Concerning training time, all models took less than 30 minutes to converge.

Financial estimation The aim here is to anticipate personal expenses and income for each specific
financial category in the upcoming month by only considering the last 24 months of aggregated
historic values for that customer as a short-time series problem. This private data set contains monthly
aggregated expense and income operations for each costumer in a certain category as time series of
24 months. 1.8 millions of that time series of a selected year will be the training set, 200 thousand
will be the validation set and 1 million time series of the following year will be the test set. Regarding
the φ architecture for all compared models, after an internal previous refinement task to select the
best architecture, we used a recurrent model that contains 2 concatenated Long Short-Term Memory
(LSTM) layers [36] of 128 output neurons each, and then two dense layers of 128 and P outputs,
respectively. It is important to note that because all compared solutions used for this article are
agnostic with respect to the architecture, the only decision we need to take is how to insert the extra τ
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Figure 3: Plot with the performance of three different models in terms of calibration. The mean and
standard deviation for all folds of the mean absolute error between the predicted calibration and the
perfect ideal calibration is represented in the table.

Likelihood calibration comparison
Model BCN RPF YVC RPF

Normal distribution .12± .04 .04 ± .01
Laplace distribution .03 ± .00 .06± .01
Independent QR .10± .02 .12± .02
2 comp. Normal MDN .05 ± .02 .12± .05
3 comp. Normal MDN .07± .02 .14± .04
4 comp. Normal MDN .10± .03 .17± .06
10 comp. Normal MDN .19± .04 .19± .06
2 comp. Laplace MDN .05± .01 .09± .01
3 comp. Laplace MDN .08± .02 .11± .02
4 comp. Laplace MDN .13± .05 .12± .03
10 comp. Laplace MDN .24± .03 .18± .05
Independent ALD .06± .01 .02 ± .01
UMAL model .04 ± .01 .07± .01

information into the φ function in the QR, ALD and UMAL models. In these cases, for simplicity,
we add the information τ repeatedly as one more attribute of each point of the input time series.

6.2 Results

Log-Likelihood comparison We compared the log-likelihood adaptation of all models presented in
Table 1 for the three type of problems introduced. For all public data sets, we give their corresponding
mean and standard deviation over the 10 runs of each model we did. Due to computational resources,
the private data set is the result after one execution per model. Furthermore, we take into account
different numbers of components for the different MDN models. We observe that the best solutions
for MDN are far from the UMAL cases. Thus, we conclude that the UMAL models achieve the best
performance in all of these heterogeneous problems.

Calibrated estimated likelihoods To determine whether the learned likelihood is useful (i.e. if
UMAL yields calibrated outputs), we performed an additional empirical study to assess this point.
We highlight that our system predicts an output distribution p(y|x,w) (not a confidence value).
Specifically, we have computed the % of actual test data that falls into different thresholds of
predicted probability. Ideally, given a certain threshold θ ∈ [0, 1], the amount of data points with a
predicted probability above or equal to 1−θ should be similar to θ. On the left side of Figure 3 we plot
these measures for different methods (in green, our model) when considering the BCN RPF dataset.
Furthermore, on the right side of Figure 3 we report the mean absolute error between the empirical
measures and the ideal ones for both rental-price data sets. As we can see, the conditional distribution
predicted by UMAL has low error values. Therefore, we can state that UMAL produces proper and
calibrated conditional distributions that are especially suitable for heterogeneous problems6.

Predicted distribution shape analysis From right to left in Figure 4 we show a 50 perplexity with
Wasserstein distance t-SNE [37] projection from 500 linearly spaced discretisation of the normalised
predicted distribution to 2 dimensions for each room of the test set in Barcelona. Each colour of
the palette corresponds to a certain DBSCAN [38] cluster obtained with ε = 5.8 and 40 minimum
samples as DBSCAN parameters. We show a Hex-bin plot over the map of Barcelona, where the
colours correspond to the mode cluster of all the rooms inside the hexagonal limits. A similar study
would be useful to extract patterns inside the city, and consequently adapt specific actions to them.

6In the Appendix section, we have evaluated calibration quality and negative log-likelihood on the UCI data
sets with the same architectures as [19, 8].
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Figure 4: DBSCAN clustering of the t-SNE projection to 2 dimensions of normalised Barcelona
predicted distributions. Hexbin plot of most common cluster for each hexagon on top of the map.

7 Conclusion

This paper has introduced the Uncountable Mixture of Asymmetric Laplacians (UMAL) model, a
framework that uses deep learning to estimate output distribution without strong restrictions (Figure
1). As shown in Figure 2, UMAL is a model that implicitly learns infinite ALD distributions,
which are combined to form the final mixture distribution. Thus, in contrast with mixture density
networks, UMAL does not need to increase its internal neural network output, which tends to produce
unstable behaviours when it is required. Furthermore, the Monte Carlo sampling of UMAL could be
considered as a batch size that can be updated even during training time.

We have presented a benchmark comparison in terms of log-likelihood adaptation in the test set
of three different types of problems. The first was a synthetic experiment with distinct controlled
heterogeneous distributions that contains multimodality and skewed behaviours. Next, we used public
data to create a complex problem for predicting the room price per night in two different cities as
two independent problems. Finally, we compared all the presented models in a financial forecasting
problem anticipating the next monetary aggregated monthly expense or income of a certain customer
given their historical data. We showed that the UMAL model outperforms the capacity to approximate
the output distribution with respect to the other baselines as well as yielding calibrated outputs.

In introducing UMAL we emphasise the importance of taking the concept of aleatoric uncertainty to
a whole richer level, where we are not restricted to only studying variability or evaluating confidence
intervals to make certain actions but can carry out shape analysis in order to develop task-tailored
methods.
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