
We thank all reviewers for their helpful and detailed comments! We have addressed the issue of dual1

submission in detail in the rebuttal of paper #6290. As R1 notes and we further elucidate, the problem2

setting, algorithm specifics, and use-case scenarios of the two papers are different and independent3

– model bias of a pretrained model for downstream Monte Carlo evaluation here vs. data bias4

during weakly-supervised learning for fair data generation in #6290.5

• R1: Support of the generative distribution pθ and p. Our meta-algorithm takes as input a learned model pθ and p so6

satisfying the support assumption is tied to the training of pθ (which we do not consider in this work). Nevertheless for7

a likelihood-based model, the support assumption can be empirically verified via evaluating pθ on held-out data. The8

assumption holds true for most variants of VAEs, flows, and autoregressive which have full support by design. We also9

consider a more general case where we have only sample access to both pθ and p, where estimating the support is a10

computationally hard problem (related to estimating the entropy of arbitrary distribution via samples).11

To address issues related to the estimation of importance weights via a learned classifier, tricks such as perturbations via12

small, random Gaussian noise (which has full support), regularization (dropout, early stopping etc.) during training13

(L306-307), as well as post-processing schemes (L135-143) can be applied. Empirically, we find self-normalization14

along with early stopping during training (based on validation data) to be sufficient for ensuring good downstream15

performance for various generative models (GANs, autoregressive models) and modalities considered in this work.16

• R1: Defining and measuring the bias introduced by pθ. In this work, bias is defined w.r.t. any function f defined over17

the data domain. Given pdata, pθ and f , the bias is defined as the difference in the expected value of f with respect to18

pdata and pθ (Footnote 1, Page 1). When pdata and pθ are not known directly, the bias can be estimated empirically via19

Monte Carlo using a sufficiently large number of samples from pθ and pdata e.g., as shown in Table 1 and Appendix B.20

• R1: High variance in importance reweighting. As with other applications of importance weighting, the extent of and21

solutions to the high variance issue are empirically motivated. They could introduce a bias (e.g., clipping) but reduce22

variance more favorably in the tradeoff. In our setting, the primary limitation was that the estimated importance weights23

could all be small due to artifacts in the generations that were easy to detect via the binary classifier. While we found24

self-normalization to be most effective, we note in L142 that schemes for post-processing importance weights could be25

potentially combined, e.g., self-normalized weights could be clipped when variance is a larger issue.26

• R1: Choosing the clipping threshold β. We consider β as a validation hyperparameter with values in {0.001, 0.01,27

0.01, 1} chosen to maximally reduce the bias in Monte Carlo evaluation of a downstream function of interest.28

• R2: Intuition and guidelines for design choices in L135-143. Self-normalization is applied only for the generated29

samples (i.e., those that contribute to bias in Monte Carlo evaluation). Like with other applications, the usage is30

empirically driven. Generative models tend to produce artifacts that are easy to detect via classifiers and hence,31

the estimated importance weights are very small (� 1). In all our experiments, self-normalization was essential to32

circumvent this issue (see expts. in Tables 4, 5 in Appendix where self-normalization leads to a 53% improvement in33

mean squared error over vanilla importance weighting). It is hyperparameter free and easy to apply. If variance is high,34

the range of the weights can be restricted via clipping or flattening with hyperparamters β, α tuned on validation set.35

• R2: Data split for reference scores in L168. Yes, the split is 50-50.36

• R2: Running procedure in [45] for long. Yes, ignoring the high computational requirements of [45] and the fact that37

the upper bound for rejection sampling is a heuristic estimate, the procedure in [45] could achieve the same effect as the38

proposed importance weighting approach.39

• R2, R3: Calibration. We believe the default calibration behavior is largely due to the fact that our binary classifiers40

distinguishing real and fake data do not require very complex neural networks architectures and training tricks that lead41

to miscalibration for multi-class classification. As shown by Niculescu-Mizil & Caruana (2005), shallow networks are42

well-calibrated and Guo et al. (2017) further argue that a major reason for miscalibration is the use of a softmax loss43

typical for multi-class problems. Top-left figure shows example calibration curves for the experiment in 5.1.44

• R3: Interaction of post-hoc normalization schemes with calibration. While calibration is necessary for a sound45

density ratio estimation procedure, the utility of the derived importance weights for downstream tasks depends on the46

underlying expectation of interest. These expectations are evaluated with finite samples and hence, the asymptotic47

properties of importance weighting (e.g., unbiasedness) are traded off for improved downstream performance using48

self-normalization and other post-processing schemes.49

• R3: Domain adaptation. We clarify that we are considering the task of multi-class classification and not domain50

adaptation (L179-181). As we note in L182-183, the Omniglot dataset is a particularly relevant test bed for data51

augmentation since there are a large number of classes and a few number of training examples per class. We will52

consider other related scenarios in future version!53

• R3: Dg + LFIW vs. Dg. Note that this experiment does not only involve Monte Carlo evaluation of a supervised loss54

but also optimization via gradient methods. In the absence of real data Dcl, the classifier training is dominated by Dg55

and correcting the bias in the dataset via LFIW towards an unseen dataset (Dcl) can potentially have limited gains.56

• R3: Modes getting closer in Fig 1. As modes get closer, the importance weights will approach 1 (and the class57

probabilities will approach 0.5) since the mismatch in generative model and data distributions will accordingly decrease.58


