
A Omitted proofs455

Proof of Proposition 1. To prove this we exhibit a simple example satisfying ignorability where both456

TPRa,TNRa and differences therein varies while the joint distribution of (X,A, T, Y ) does not.457

Let X = {0, 1}, Z = I [X = 1], P (T = t,X = x | A = a) = 1

4
, P (A = a) = 1/ |A|. To specify458

a joint distribution of (X,A, T, Z, Y (1), Y (0)) that satisfies ignorable treatment, it only remains to459

specify pij .460

Note that in this case

TPRa =
p01(1, a)

p01(0, a) + p01(1, a)
, TPRa =

1� p01(0, a)

2� p01(0, a)� p01(1, a)
.

The result follows by noting that where the corresponding joint distribution of (X,A, T, Z, Y ) is461

completely specified by p01 + p11, p10 + p11, while p01 could vary as long as these sums are neither462

0 nor 1. Since we can vary this independently across values of A, differences are not identifiable463

either.464

Proof of Proposition 2.

P(Z = 1 | A = a, Y (1) > Y (0))

=
P(Y (1) > Y (0) | A = a, Z = 1)P(Z = 1 | A = a)

P(Y (1) > Y (0) | A = a)

=
E[E[Y (1) = 1 | T=1

A=a,X=x]� E[Y (0) = 1 | T=0
A=a,X=x] | Z=1

A=a]P(Z = 1 | A = a)

E[P(Y (1) = 1 | T=1
A=a,X=x)� P(Y (0) = 1 | T=0

A=a,X=x) | A = a]

=
E[⌧(X,A) | Z=1

A=a]P(Z = 1 | A = a)

E[⌧(X,A) | A = a]

where the first equality holds by Bayes’ rule, the second by iterating expectations on X and Assump-465

tion 1, and the third by unconfoundedness and consistency of potential outcomes. The proof for466

identification of TNR is identical for the quantity P(Z = 0 | A = a, Y (1)  Y (0)).467

Proof of Proposition 3. Recalling that CATE identifies, under violations of Assumption 1

⌧ = E[Y (1)� Y (0) | X,A] = p01 � p10,
468

=
E[⌧ + ⌘ | Z=1

A=a]P(Z = 1 | A = a)

E[⌧ + ⌘ | A = a]
=

(p01 � p10 + p10)P(Z = 1 | A = a)

E[(p01 � p10 + p10) | A = a]

= P(Z = 1 | A = a, Y (1) > Y (0))

469

Proof of Proposition 4. The support function evaluated at µ is:470

max
⌘

X

a2A
µTPR

a
E [⌧ + ⌘ | A = a, Z = 1] r1a

E [⌧ + ⌘ | A = a]
+ µTNR

a
E [1� (⌧ + ⌘) | A = a, Z = 0] ra

0

E [1� (⌧ + ⌘) | A = a]

s.t. 0  ⌘(x, a)  min (B,P (Y = 1 | T = 0, X,A) ,P (Y = 0 | T = 1, X,A)) , 8x 2 X , 8a 2 A

We apply the Charnes-Cooper transformation [18]with the bijection ta =
1

E[⌧+⌘|A=a] , !a = ⌘ta.
The denominator of the second term under this bijection is equivalently

E [1� (⌧ + ⌘) | A = a] = 1� 1

ta

such that we can rewrite the second term as471

µTNR

a r0a

✓
1

1� 1/ta
E [1� ⌧ | A=a

Z=0
] +

1/ta
1� 1/ta

E [!a | A=a
Z=0

]

◆
=

µTNR
a r0a
ta � 1

(t E [1� ⌧ | A=a
Z=0

] + E [!a | A=a
Z=0

])
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and the objective function overall as:472

max
⌘

X

a2A
(µTPR

a r1a)(ta⌧
1

a + E [!a | A=a
Z=1

]) +
µTNR
a r0a
ta � 1

(ta (1� ⌧0a ) + E [!a | A=a
Z=0

])

The new constraint set (including the constraint yielding the definition of ta) is:473

{E [⌧ ta + !a | A = a] = 1,!a 2 Ua}

474

Proof of Proposition 5. We first consider the case of maximizing or minimizing the TPR.475

We leverage the invariance in the objective function under the surjection on ⌘(x, a) to its marginal
expectation over a Z = z,A = a partition.

w(x, a) =

⇢
E [⌘ | Z = 1, A = a] if Z = 1

E [⌘ | Z = 0, A = a] if Z = 0

Therefore we can reparametrize the program as optimizing over coefficients x, y of the optimal476

solution, w⇤
(x, y) = xI[Z = 0, A = a] + yI[Z = 1, A = a], with x  B0

a(B), y  B1
a(B). Define477

the fractional objective478

g⇤(x, y) =
E [⌧ + xI[Z = 0] + yI[Z = 1] | A = a, Z = 1]P (Z = 1 | A = a)

E [⌧ + xI[Z = 0] + yI[Z = 1] | A = a]

=
(E [⌧ | A = a, Z = 1] + y)r1a
E [⌧ | A = a] + xr0a + yr1a

First note that without loss of generality that when maximizing, we can set x = 0 since this decreases
the objective regardless of the value of y. We can consider the constrained problem maxyB1

a(B) h(y)
where h(y) = g(0, y). Then we have the first and second derivatives,

@h

@y
=

r1a(E[⌧ | A = a]� E[⌧ | Z = 1, A = a]

(yr1a + E[⌧ | A = a])2
,
@2h

@y2
=

(r1a)
2
(E[⌧ | A = a]� E[⌧ | Z = 1, A = a])

(yr1a + E[⌧ | A = a])3

By inspection, since y � 0 we have that @2h
@y2 � 0 so the function is convex. So when maximizing479

h on the constraints for y, it attains optimal value at the boundary (since h is increasing). When480

minimizing, note that the derivative is not vanishing anywhere on the constraint set so it suffices to481

check the endpoints, where the minimum is achieved at y = 0.482

We now consider the case of minimizing or maximizing the TNR.483

We again leverage the symmetry of the solution and reparametrize the program as optimizing over484

coefficients x, y of the optimal solution, w⇤
(x, y) = xI[Z = 0, A = a] + yI[Z = 1, A = a], with485

x  B0
a(B), y  B1

a(B). Now consider a generic f(x) =
a�bx

c�bx�dy which represents the TNR486

sensitivity bound with ! = xI[Z = 0] + yI[Z = 1], and the constants487

a = r0a � E[⌧ | Z = 0, A = a], c = 1� E[⌧ | A = a]

b = r0a, d = r1a

Without loss of generality we know that we can set y to its upper bound B1
a(B) when maximizing

as we are only increasing the objective value; then c0 = c � B1
a(B)r1a. We verify that the second

derivative is negative, so that the function is concave:

@2f

@x2
=

2b2(a� c0)

(c0 � bx)3
=

2(r0a)
2
(r0a � E[⌧ | Z = 0, A = a]� (1� E[⌧ | A = a]� B1

a(B)r1a))

(1� E[⌧ | A = a]� B1
a(B)r1a)� xr0a

Checking the sign of the numerator simplifies to checking the sign of

a� c0 = (�r1a + E[⌧ + B1

a(B) | Z = 1, A = a]))
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which is negative. The denominator is lower bounded by 1 � E[⌧ | A = a] � B1
a(B) which is488

always positive: therefore the problem is concave. The first derivative @f
@x =

b(a�c0)
(c0�bx)2 is negative489

on the domain; therefore the maximum is achieved at x = 0. Therefore, when maximizing, ! =490

B1
a(B)I[Z = 1].491

For minimizing the TNR, we take a similar approach: analogously, we can set y to its lower bound492

without loss of generality. Following the same analysis, the function is still concave @2f
@x2 =

2b2(a�c0)
(c0�bx)3493

since �r1a � E[⌧ | A = a] < 0 and decreasing with nonzero first-derivative; so the minimum is494

achieved at ! = I[Z = 0]B1
a(B).495

496

B Behaghel et al. Job Training497

Reproducibility discussion:498

• Data preprocessing and exclusion: We processed the data using replication files available499

with the AEJ: Applied Economics journal electronic supplement. For the sake of simplicity,500

we analyze the trial as if it were a randomized controlled trial (without accounting for501

noncompliance or different randomization probabilities that differ by region). Thus, we502

consider intention-to-treat effects (as intention to treat is ultimately the policy lever available).503

We further restricted some covariates, omitting some where personalized allocation based504

on these covariates seemed unilkely for fairness reasons. The covariates we retain include:505

length of previous employment, salary, education level, reason for unemployment, region,506

years of experience at previous job, statistical risk level, job search type (full-time or non-full507

time), wage target, time of first unemployment spell, job type, and number of children.508

• Train/validation/test: We train GRF on a 50% training data split and evaluate metrics and on509

a 50% out of sample split (use the trained GRF model to generate out-of-sample estimates510

on the test data).511

• Hyper-parameters: we use GRF defaults for the assessed methods.512

• Evaluation runs: 50.513

• Uncertainty quantification: We evaluate the TPRs for 100 percentiles of the rate of CATE514

estimates over all replications. To compute disparities and ROC curves, we then average515

the partially identified TPR and FPR at each threshold (e.g. Figs. 1 and 2), and plot the516

average curve. To simplify discussions we do not quantify uncertainty on the interval itself,517

noting that since the bounds are closed-form we can circumvent some of the issues regarding518

inference on LP-based estimators. The definition of coverage of inference for interval519

bounds depends on the parameter of interest (the population parameter or partially identified520

interval), e.g. see [31].521

• Computing infrastructure: MacBook Pro, 16gb RAM.522

An interacted linear model indicates potential heterogeneity of treatment effect with significance on523

college education, economic layoff, those seeking work due to fixed term contracts or those with524

previous layoffs; we refer to the original analysis of [11] for additional details.525

C Substantive Discussion: Fairness vs. Justice526

We first caveat our use of “disparate impact”: while our selection of protected attibutes parallels527

choices of protected attributes that appear elsewhere in the literature on fair machine learning, for the528

case of interventions, there may not be precedent from discrimination case law, nonetheless assessing529

fairness with respect to these social groups may be of concern. We view disparate impact in this530

domain as assessing fairness of outcome rates under a personalization model.531

Should true positive rates be adjusted for? Our presentation of an identification strategy of532

fairness metrics for allocating interventions with unknown causal effects begs the question: should533

disparities in TPR and FNR be adjusted for in the interventional welfare setting? Is responder-accuracy534

parity a meaningful prescriptive notion of fairness?535
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Disparity in disfavor 
of non-woman

Disparity in 
disfavor of woman
TPR

TPR Disparity in disfavor of 
non-woman

TNR

Figure 3: Diagnostics for gender protected attribute for Section 7 (not-woman vs. woman)

Figure 4: ROC curves under Assumption 1 for Section 7

One critique of outcome-conditional fair classification metrics recognizes the dependence of false536

positive rates on the underlying base rate, P(Y = 1 | A = a), [20, 21]. The equivalent situation537

occurs when the within-group ATE varies by the protected attribute, e.g. E[⌧ | A = a] differs.538

Ultimately, external domain knowledge is required to adjudicate whether group-wide disparities in539

ATE should be adjusted for, or to decide which normative notion of distributive justice or fairness540

is appropriate. For example, consider the case of job training. From an economic perspective,541

multiple mechanisms could explain heterogeneity in CATE by race. Active labor market programs542

(see [22]) may be less effective for one group vs. another group due to the presence of labor-market543

discrimination. Alternatively, they could be less effective due to correlation of group status and544

efficacy that is mediated by occupation choice: one group may be more interested in labor markets545

where the primary benefits of job search counseling, in reducing search frictions, are not barriers546

to employment in the first place relative to other factors such as skills gaps. Intuitively, the former547

mechanism of ATE variation by group reflects a notion of “disparity” which remains problematic,548

while the latter may seem to reflect an unproblematic causal mechanism. While mediation analysis549

and fairness defined in terms of path-specific effects could further decompose the treatment effect550

along these stated mechanisms, in policy settings, collecting all of the relevant information can be551

burdensome, and deciding on a causal graph can be difficult.552

Claims Across Outcomes We first outline different frameworks for thinking about fairness/equity of553

algorithms and interventions. Analogous to the proposals arising from metrics proposed in fairness in554

machine learning, one might view the decision-maker’s concern to be of ensuring accuracy parity,555

that the decisions meted out are overall beneficial to individual. We view a theory of fairness that556

assesses disparities in outcome-conditional error rates in the context of a theory of normative claims557

arising from “claims across outcomes”. [1] develops a “claims across outcomes” framework of558

fairness and social welfare, in the context of an overall welfarist theory of justice.559

On the one hand, fair classification from the point of view of assessing or equalizing TPR or TNR560

disparities may be interpreted in a claims context as: for an individual with “true outcome” Y and561

covariates X , an individual with the true label Y = 1 as having a comparative claim for Ŷ = 1, if562

the predictor Ŷ is an allocation tool. We can map the setting of personalized interventions to the563

“claims across outcomes” setting: the potential outcomes framework posits for each individual the564

random variables of outcomes Y (0), Y (1). In the responder setting, the true label is responder status565

Y (1) > Y (0). However, since these are jointly unobservable, in situations where heterogeneous566

treatment effects are plausible, the best guess is an individual-level treatment effect conditional567
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on covariates, E[Y (0) | X = x],E[Y (1) | X = x]. In this interventional setting, one can think568

of individuals having claims in favor of favorable outcomes, e.g. a claim in favor of Y (1) if569

Y (1) > Y (0).570

For the case of interventions, classification decisions Z are allocative of real interventions, and we571

argue that implicitly, the consideration of social welfare (balancing efficiency and program costs) is572

an important factor in the original design of social programs or personalized interventions. This is573

in sharp contrast to the literature on fair classification which considers settings such as lending in574

finance, or risk prediction in the criminal justice system, where overriding concerns are primarily575

those of vendor utility.576

On the other side of the spectrum, we can recall axiomatically justified social welfare functions577

that apply to the case of deterministic resource allocation, where outcomes are generally known. A578

decision-maker might also be concerned with equity considerations, adopting a min-max welfare579

criterion, appealing to Rawlsian justice frameworks. Another approach is simply assessing the580

population cardinal welfare of the allocation, e.g. the policy value E[Y (⇡(X))] or a social-welfare581

transformation thereof, E[g(Y (⇡(X)))]. The literature on policy learning addresses welfare function-582

als that are linear functionals of potential outcomes, see [37]. Cardinal welfare constraints such as583

those studied in [27] can be applied with an imputed CATE function.584

Comparison to other work on fair classification and welfare. [41] study the implications of585

classifier-based decisions, as well as proposals for statistical parity, on group welfare. Their work586

addresses selection rules that have known marginal impacts by group. [29] studies the welfare weights587

implied by classification parity metrics and shows that enforcing classification parity metrics are588

not Pareto-improving. Rather than studying the welfare implications of classification parity, we are589

concerned with assessing non-identifiable model errors in the causal-effect personalized intervention590

setting. Since in the personalized intervention setting, welfare is a primary objective for the Planner591

(e.g. social services, or social protection more broadly), modulo cost considerations, combining592

the distributional information from identification of classification errors with other social welfare593

objectives is of possible interest.594

We next aim to provide concrete examples of discussions regarding the distributional impacts of595

interventions, in order to provide additional context on different contexts wherein different notions of596

“fairness” from the fairness in machine learning literature map onto welfare or justice concerns, as597

stated in discussions on interventional outcomes.598

Lexicographic fairness or maximin (Rawlsian) fairness.599

In a large multi-site graduation trial on testing an intensive, composite intervention targeted at the600

"ultra-poor", which comprised wraparound services including coaching and revenue-generating601

resources, still the poorest seemed to benefit least from the intervention in terms of sustained revenue602

[7]. In this setting, concerns about maximin fairness (Rawlsian justice) might override considerations603

of efficiency insofar as one might be willing to invest resources to help the worst-off on humanitarian604

grounds.605

Universalism.606

Criticisms of targeted policies in general note practical difficulties introduced by imposing and607

enforcing eligibility guidelines. [48]. Although discussion of resource constraints may be used608

to justify a targeting scheme, critics of targeting argue that the most efficient targeting is not as609

welfare-improving as simply advocating for greater resources [25].610

Additional distributional preferences on Y (Z) with respect to equitable or redistributive aims611

of the policy.612

[14] consider profiling based on covariates as a means of allocating government services, in the613

example of allocating predicting unemployment duration to allocate reemployment services. They614

outline competing equity vs. efficiency concerns, in the case that unemployment duration is correlated615

with treatment efficacy (e.g efficacy of reemployment services), and conclude that “ tradeoffs between616

alternative social goals in designing profiling systems are likely to be empirically important... the617

form and extent of these tradeoffs may depend on empirical relationships between the impacts of618

the program being allocated and the equity-related characteristics of potential participants." While619

outcome-conditional true positive rates or true negative rates compare model performance across620

binary protected attributes, program designers may remain concerned regarding the distribution of621
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benefits. [17] consider “removing the veil of ignorance” under the simplifying of constant treatment622

response to consider distributional (quantile) treatment effects, as a relaxation of the anonymity623

axiom of cardinal social welfare. Distributional preferences are relevant when program designers are624

concerned about model performance at finer-grained levels than discrete protected attribute.625
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