
Reflection Separation using a Pair of
Unpolarized and Polarized Images

Youwei Lyu1]† Zhaopeng Cui2] Si Li1∗ Marc Pollefeys2 Boxin Shi3,4∗
1Beijing University of Posts and Telecommunications

2Department of Computer Science, ETH Zürich
3National Engineering Laboratory for Video Technology, Peking University

4Peng Cheng Laboratory
{youweilv, zhpcui}@gmail.com, lisi@bupt.edu.cn,
marc.pollefeys@inf.ethz.ch, shiboxin@pku.edu.cn

Abstract

When we take photos through glass windows or doors, the transmitted background
scene is often blended with undesirable reflection. Separating two layers apart
to enhance the image quality is of vital importance for both human and machine
perception. In this paper, we propose to exploit physical constraints from a pair of
unpolarized and polarized images to separate reflection and transmission layers.
Due to the simplified capturing setup, the system becomes more underdetermined
compared with existing polarization based solutions that take three or more images
as input. We propose to solve semireflector orientation estimation first to make the
physical image formation well-posed and then learn to reliably separate two layers
using a refinement network with gradient loss. Quantitative and qualitative experi-
mental results show our approach performs favorably over existing polarization
and single image based solutions.

1 Introduction

Taking photos of a scene behind semireflectors (e.g., glass windows and doors) without reflection
contamination is not an easy task for photographers, because the captured image often contains two
layers of the scene: the layer transmitting through the surface and the other layer reflected by the
surface. To separate the reflection and transmission layers is not an easy task for computer vision
researchers either, because recovering two images from a single mixture image is highly ill-posed
and the number of unknowns is twice as many as that of given measurements. Strong priors crafted
from natural image statistics (e.g., gradient sparsity [14]) or learned from deep neural networks
(e.g., [6]) can solve the problem if the assumed priors are well observed in the input. The problem
naturally becomes less ill-posed if multiple images are captured from different viewpoints (e.g., five
images in [15]) or different polarization angles (e.g., at least three images in [12]). The motions
between the layers present in multiple images provide a strong and effective constraint, but aligning
multiple-view images contaminated by reflections is not a trivial task [15]. Rotating a polarizer to
capture multiple images doesn’t suffer from the alignment issue [12], but it requires skillful operations
and the polarized images always filter part of the incoming light.

In this paper, we propose to separate reflection and transmission layers using a pair of unpolarized
and polarized images. Such a setup takes fewer images than existing polarization based solutions
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[18, 12, 22] and keeps an unpolarized image to maintain high light energy throughput. Directly
solving the two layers is still an ill-posed problem, but we find that the problem has a closed-
form solution when the semireflector surface normal is known. By assuming the semireflector is
mostly planar, we can use only two parameters to determine the complete physical image formation
model that encodes the solution to layer separation. Based on these physical and mathematical
deductions, we propose an end-to-end deep neural network for reflection separation using two
(un)polarized images. More specifically, we design a cascaded architecture consisting of three
modules: semireflector orientation estimation to determine key variables for a well-posed physical
image formation model, polarization-guided separation based on the physical model, and separated
layers refinement with gradient loss to enhance the sharpness. The code and test data are available at
https://github.com/YouweiLyu/reflection_separation_with_un-polarized_images.

The main contributions of this paper can be summarized as follows:

• We propose to solve reflection separation using a pair of unpolarized and polarized images
for the first time, which integrates polarization cues with a simpler and light-efficient setup.

• We derive a new formulation based on semireflector orientation estimation, which induces a
well-posed physical image formation model to be reliably learned for layer separation.

• We design an end-to-end deep neural network with gradient loss to solve the separation
problem and show superior performance over existing polarization and single image based
solutions.

2 Related Work

In terms of input, reflection separation can take a single image or multiple images. The single image
problem has the most relaxed requirement, since it only needs an image captured by an ordinary
camera in the wild. But such a problem is also highly ill-posed, priors formulated using hand
crafted priors [13, 14, 16, 19, 21, 1] or features learned from large-scale training data [6, 20, 25, 24]
are explored to facilitate the separation. By taking multiple images from different viewpoints, the
difference of projected motion from reflection and transmission layers due to the visual parallax
provides useful cues to the separation [2, 8, 23]. By taking multiple images under different polarization
angles, the differently polarized images provide "independent" representations of reflection and
transmission layers based on physical image formation model to leverage the separation using
independent component analysis [7, 10, 3], closed form expressions [18, 12], or deep learning [22].
Multiple images usually bring more promising separation quality than relying on only a single image,
but request more complicated and careful image capturing operations.

In terms of solutions, reflection separation can be solved by non-learning based methods or learning
methods. Adopted priors of reflection and transmission layers by non-learning based methods include
the sparse gradient prior [14, 13], blur level differences between two layers [16], the ghosting effect
due to thick glass [19, 5], and the Laplacian data fidelity term [1]. Such handcrafted priors may get
violated in various real scenarios when expected properties are weakly observed. Learning based
methods are benefited by the comprehensive modeling ability of deep neural networks. It can be
solved by learning the gradient inference and image restoration sequentially [4, 6] or concurrently
[20], by incorporating perceptual losses [25], and by considering bidirectional constraints [24]. With
differently polarized images available, a simple encoder-decoder architecture is shown to be effective
for separating two layers using physics based image formation model [22].

Our work belongs to the learning based approach using multiple images and physical constraints.
Different from previous works exploring polarization cues [18, 12, 22] that require at least three
images with different polarization angles, we take a pair of unpolarized and polarized images and
learn to solve a more underdetermined system.

3 Physical Image Formation Model

Given a pair of unpolarized and polarized images captured at the same view, we aim to separate
the reflection layer and the transmission layer. In this section, we will first review the reflection
and transmission model, and then describe the relationship between polarization properties and
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Figure 1: Illustration of physical image formation model.

semireflector surface geometry. By assuming the medium is planar, we prove that the separation
tightly relies on only two parameters of the plane.

3.1 Reflection and Transmission Image Formation

Suppose It, the intensity of light from the transmission scene, and Ir, the intensity of light from
the reflection scene, are both unpolarized. After being reflected or transmitted, the intensity of light
observed at pixel x changes depending on θ(x), the angle of incidence (AoI) at the reflected point
corresponding to pixel x, as the following [12]:

Iunpol(x) =
R⊥(θ(x)) +R‖(θ(x))

2
· Ir(x) +

T⊥(θ(x)) + T‖(θ(x))

2
· It(x), (1)

where R represents the relative strength of light reflected off a glass surface, T represents the relative
strength of light transmitted through glass, and subscripts ⊥ and ‖ correspond to the polarized
components perpendicular and parallel to the plane of incidence (PoI), respectively.

When we place a linear polarizer with a polarization angle φ in front of the camera, according to
Malus’ law [9], the intensity at pixel x is

Ipol(x) =
R⊥(θ(x)) cos

2 (φ− φ⊥(x)) +R‖(θ(x)) sin
2 (φ− φ⊥(x))

2
· Ir(x)+

T⊥(θ(x)) cos
2 (φ− φ⊥(x)) + T‖(θ(x)) sin

2 (φ− φ⊥(x))
2

· It(x),
(2)

where φ⊥(x) is the orientation of the polarizer for the best transmission of the component perpendic-
ular to the PoI. For easy representation, we denote

ξ(x) = R⊥(θ(x)) +R‖(θ(x)), (3)

ζ(x) = R⊥(θ(x)) cos
2 (φ− φ⊥(x)) +R‖(θ(x)) sin

2 (φ− φ⊥(x)). (4)

The glass can be considered as a double-surfaced semireflector, and we haveR⊥(θ(x))+T⊥(θ(x)) =
1 and R‖(θ(x)) + T‖(θ(x)) = 1 for each pixel x approximately [12]. Then Equation (1) and
Equation (2) can be rewritten as

Iunpol(x) =
ξ(x)

2
· Ir(x) +

2− ξ(x)
2

· It(x), (5)

Ipol(x) =
ζ(x)

2
· Ir(x) +

1− ζ(x)
2

· It(x), (6)
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where ξ(x) ∈ (0, 2) and ζ(x) ∈ (0, 1). Given the value of ξ(x) and ζ(x), the reflection layer and the
transmission layer can be computed by

Ir(x) = 2 · (2− ξ(x)) · Ipol(x)− (1− ζ(x)) · Iunpol(x)
2ζ(x)− ξ(x)

, (7)

It(x) = 2 · ζ(x) · Iunpol(x)− ξ(x) · Ipol(x)
2ζ(x)− ξ(x)

, (8)

except for 2ζ(x) = ξ(x) where φ − φ⊥(x) = ±45◦ or ±135◦. The angle of a polarizer φ can be
measured by calibration. Associated with surface geometry of semireflector, φ⊥(x) is not constant
but spatially varying over the whole image plane. There may exist trivial φ− φ⊥(x) corresponding
to a few pixels, which have negligible effect on the separation.

In short, the reflection layer Ir(x) and the transmission layer It(x) are determined by ξ(x) and ζ(x)
when a pair of unpolarized and polarized images are given.

3.2 Semireflector Surface Geometry

In order to recover the reflection layer Ir and the transmission layer It, we first have to solve ξ(x)
and ζ(x) according to Equations (5) and (6), which can be further computed by θ(x) and φ− φ⊥(x)
according to Equations (3) and (4). In this section, we will describe how we compute θ(x) and
φ− φ⊥(x) for each pixel given the surface normal of the semireflector and camera parameters.

We assume the semireflector has a planar surface, and the camera coordinate is the same as the world
coordinate. Then the semireflector plane can be expressed as

sinα · x− cosα sinβ · y + cosα cosβ(z − z0) = 0, (9)

where α represents the rotation angle around y-axis and β represents the angle around x-axis. The
plane normal is thus given by

nglass =

[
1 0 0
0 cosβ − sinβ
0 sinβ cosβ

][
cosα 0 sinα
0 1 0

− sinα 0 cosα

][
0
0
1

]
=

[
sinα

− cosα sinβ
cosα cosβ

]
. (10)

Let f be the focal length of the camera, and (px, py) be the coordinate of the principal point. For the
pixel x located at (u, v) on the image plane, we can easily compute its corresponding 3D point X on
the medium plane as

X =
z0 cosα cosβ

f cosα cosβ + (u− px) sinα− (v − py) cosα sinβ

[
u− px
v − py
f

]
. (11)

Let X = X/ ‖X‖, then the AoI corresponding to pixel x can be calculated as

θ(x) = arccos
∣∣nglass ·X

∣∣. (12)

We calculate the absolute value for the above term since θ(x) ∈ [0, 90◦]. The normal of PoI
nPoI = (xPoI , yPoI , zPoI)

> is then calculated as

nPoI = nglass ×X, (13)

and the projection of nPoI on imaging plane is (xPoI , yPoI)
> denoting orientation of φ⊥(x). For

φ⊥(x) ∈ [0, 360◦), we have
φ⊥(x) = arctan

yPoI

xPoI
. (14)

We combine the reflection and transmission image formation and semireflector surface geometry
to compute φ⊥(x) and θ(x) for each pixel. Note they are not affected by z0, because physically
the transparent plane can be projected to parallel plane with arbitrary intercept about z-axis and
mathematically before computing arctan and arccos, z0 has been eliminated according to Equations
(12) and (14).

In short, it is the normal of glass that matters, and we only need to estimate coefficients α and β to
determine the semireflector plane.
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Figure 2: Our method takes a cascaded architecture with three modules: semireflector orientation
estimation, polarization-guided separation, and separated layers refinement.

4 Reflection Separation Network

In this section, we introduce the proposed reflection separation network which makes use of physical
model discussed in Section 3, and details about loss function and network training.

4.1 Network Architecture

As shown in Figure 2, our network takes a cascaded architecture which consists of three modules:
semireflector orientation estimation, polarization-guided separation, and separated layers refinement.

Taking a pair of unpolarized and polarized images, the semireflector orientation module aims to
predict coefficients of the glass plane, i.e., α and β. As we only need to estimate two parameters, the
pose estimation module is pretty light, and consists of seven convolutional layers followed by two fully
connected layers. The polarization-guided separation module takes α and β as inputs, and computes
the reflection layer Îr and transmission layer Ît. This module only relies on the physical image
formation model in Section 3 using analytic equations, so we do not have any parameters to learn
here. The separated layers using equations may not be satisfactory due to the gap between physical
model and real data. The numerical problem also occurs when the denominators in Equation (7) and
Equation (8) approach zero, and the computed results are degenerated. Fortunately, this happens only
for a few pixels and the remaining non-degenerated calculations can guide a refinement network to
produce compelling separation results. We therefore further feed Îr and Ît with original input images
and ξ, ζ into the separated layers refinement module to improve the initial estimation. The refinement
module has a widely adopted encoder-decoder architecture. In detail, the encoder consists of eight
convolutional layers and the decoder consists of five deconvolutional layers.

We hope the network to reconstruct details in the original image as many as possible, so we define
the loss on both the estimated image and its gradient as:

L = λ1Lr(Ir) + λ2Lt(It) + λ3Lr(gr) + λ4Lt(gt), (15)

where Lr(Ir) and Lt(It) define the loss on the estimated reflection and transmission layers, Lr(gr)
and Lt(gt) define the loss on the gradients of the estimated reflection and transmission layers, and
λ1,2,3,4 are the weighting parameters. The mean square error (MSE) is used for all the loss. We
implement our model using PyTorch deep learning framework [17]. Adam [11] is used as the
optimizer with a starting learning rate of 0.0004, β1 = 0.9 and β2 = 0.999. The learning rate is
descended to 0.0002 and 0.00008 after 12th and 18th epochs respectively. λ1,2,3,4 are set to be 1.2,
1.5, 1.0, and 1.5 respectively for our training.

4.2 Training Data Generation

The deep-learning method tends to be data-hungry, but it is difficult to obtain pairwise reflection and
transmission images with both polarized and unpolarized observations at a large scale. It is possible
to directly use Equation (1) and Equation (2) to generate the synthetic data, but it is expected that the
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Table 1: Quantitative evaluation results on synthetic data.

Ours Ours-
Initial

ReflectNet-
Finetuned

Ours-
2% noise

Ours-
8% noise

Ours-
16% noise

Transmission SSIM 0.9708 0.8324 0.9627 0.9691 0.9668 0.9619
PSNR 28.23 21.61 27.52 28.08 27.31 27.17

Reflection SSIM 0.8953 0.6253 0.8303 0.8785 0.8418 0.8022
PSNR 20.92 13.90 18.50 20.53 19.18 18.26

network trained with such data may not generalize well on real scenarios. Therefore, we propose an
effective data generation pipeline to better match images of real-world scenes.

At the first step, we randomly pick two images from PLACE2 dataset [26] as original reflection and
transmission layers. Based on a commonly adopted assumption that people take photos focusing on
the background scene (transmission layer) so the reflection layer is likely to be blurry [6], a Gaussian
smoothing kernel with a random kernel size in the range of 3 to 7 pixels is applied to a portion of
reflection images. We also need to simulate coefficients α and β of the semireflector plane. We
assume people rarely take photos in front of the glass that inclines by a weird angle, e.g., glass nearly
orthogonal to the image plane, so we set α ∈ (−65◦, 65◦) and β ∈ (−35◦, 35◦). For the virtual
camera, we set the focal length as 1.4 times as long as the image width, and the image resolution as
256× 256. By fixing these factors, the normal of glass is specified, θ(x) and φ⊥(x) can be derived
from Equation (12) and Equation (14), respectively. φ can be an arbitrary value in the range of [0, 2π),
as long as the polarization images are captured under the same polarizer angle. In our experiment, we
set φ to be 0. Additionally, real-world scenes are generally high-dynamic-range (HDR), so we apply
dynamic range manipulation as conducted in [22] to simulate appearance of reflections in a more
realistic manner. Finally, the synthetic unpolarized image Iunpol and the polarized image Ipol can be
obtained by Equation (5) and Equation (6).

5 Experimental Results

We evaluate our method on both synthetic and real data with extensive experiments including the
comparison with related work and ablation study. For all quantitative evaluations, both the peak-
signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM) are used to evaluate
the quality of separated images.

5.1 Evaluation on Synthetic Data

We use 5000 pairs of images from our synthetic validation dataset with ground truth reflection
and transmission layers to quantitatively compare our method with state-of-the-art approaches.
ReflectNet [22] is a learning based method using three polarized images; Zhang et al. [25], CRRN
[20], CEILNet [6] are deep learning based solutions using a single image; and LB14 [16] is a non-
learning method using a single image. To test the performance of ReflectNet [22], we generated two
additional polarization images for each pair of (un)polarized images in our dataset, and finetuned
ReflectNet using Adam solver with a learning rate of 0.005 for 5 epochs. The experimental results
are shown in Figure 3 and Table 1. We can see that, compared to all single-image based methods,
our method has much better performance, which shows the advantage with the additional polarized
image. We can also see that all single-image based methods have bad performance for reflection
layers1 due to their weak signal in the input images. Our method also outperforms ReflectNet [22]
which requires three polarized images as input, especially in terms of the quality of the reflection
layer, although our method only needs one polarized image in addition to an unpolarized image.
Moreover, our method performs the best in suppressing undesired reflection in transmission layer
and recovers high-quality reflection layer as well, as indicated by corresponding SSIM and PSNR
values under images in Figure 3. We also evaluate our initial polarization-guided separation Îr and Ît
("Ours-Initial") in Table 1, and we can see that the initial separation is effective, and our refinement
network helps eliminate the artifact and noise caused by rough estimation of ξ and ζ. At last, we test

1Brightness is upgraded for visualization purpose.
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Figure 4: Qualitative evaluation on real data, compared with ReflectNet [22], Zhang et al. [25], CRRN
[20], CEILNet [6], and LB14 [16].

our method against Gaussian noise added to images with different standard deviations. The results are
shown in Table 1. We can see that our method performs consistently well and is robust to Gaussian
noise.

5.2 Evaluation on Real Data

We use the Lucid Vision Phoenix polarization camera1 to capture the real dataset. The polarization
camera can take four images with different polarizer angles at a single shot. We use three of them
as input images to ReflectNet [22] and one of them as polarized input image to our method. The
unpolarized input image is calculated by summing two polarized images captured with orthogonal
polarizer angles [9]. Note the polarization camera has no color filter, so we can only provide results in
gray scale, as displayed in Figure 42. These scenes contain strong reflections with complex textures,
and all single-image based methods fail to recover the transmissions while removing the reflections.
Thanks to the polarimetric cues, both ReflectNet [22] and our method show obvious advantage over

1https://thinklucid.com/product/phoenix-5-0-mp-polarized-model/
2For better visualization, the minimum and maximum intensity values of different algorithms are stretched in

a consistent range.
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Table 2: Quantitative evaluation results in ablation study.

Ours W/o
ξ & ζ

ReflectNet-
refinement

W/o
ori. est.

W/o
grad. loss

Ours-
Parabola

Transmission SSIM 0.9708 0.9632 0.9594 0.9647 0.9674 0.8846
PSNR 28.23 27.38 27.20 27.47 27.82 24.40

Reflection SSIM 0.8953 0.8721 0.8084 0.8015 0.9131 0.4833
PSNR 20.92 20.02 18.30 18.84 21.94 13.69

single-image based methods. Compared to ReflectNet [22], our method shows stronger capability in
suppressing the ghost in transmission and clear extraction of the reflection layer.

5.3 Ablation Study

We first verify the contribution of semireflector orientation estimation by directly estimating ξ(x)
and ζ(x) from the network (without inferring α and β first). In other words, we also use an encoder-
decoder architecture to estimate ξ(x) and ζ(x) directly from a given pair of (un)polarized images.
SSIM and PSNR averaged over 5000 validation images are shown in "W/o ori. est." column of Table 2.
From Table 2, we can see that, with more prior knowledge encoded in the network, the orientation
estimation with only two parameters is easier to learn and also better than directly estimating ξ(x)
and ζ(x) for each pixel.

We further evaluate different loss functions, and train our network without the gradient loss. The
results are listed in "W/o grad. loss" column of Table 2. We find the gradient loss is particularly useful
in improving the quality of transmission layer estimation (background scene with more interests),
though it may hurt the accuracy of reflection layer (usually treated as noise to be removed [16]).

In order to compare our method with ReflectNet [22] thoroughly, we remove ξ and ζ from the input
of our refinement network, and feed the results of ReflectNet and our polarization-guided separation
into this refinement network. Under this setup, the quantitative results of reflection and transmission
are listed in "ReflectNet-refinement" and "W/o ξ & ζ" columns of Table 2. We can see that even with
this refinement ReflectNet still performs worse than our full pipeline. It also shows the importance of
feeding ξ and ζ into the refinement network.

Our model assumes the semireflector approximately has a planar shape. When it becomes a curved
shape such as the windshield in a car, our semireflector orientation estimation module will fail, and
thus the performance of our method will deteriorate. We generate the test data using the parabola
surface simulation as ReflectNet, and directly test using our current model. The result is listed
in Table 2. We can see that the performance becomes much worse especially for the reflection.
The performance might be improved if we modify the semireflector orientation estimation module
accordingly, and we will consider this as our future work.

6 Conclusion

We solved the problem of integrating polarimetric constraints from a pair of unpolarized and polarized
images to separate reflection and transmission layers. To deal with the ill-posedness introduced
by using fewer polarized images, we derived a semireflector orientation constraint to make the
physical image formation for layer separation valid given our setup, and trained a neural network
to successfully separate two layers, showing state-of-the-art performance. Our simple yet unique
capturing setup not only explored polarimetric constraints for separating reflection and transmission
layers as reliably as existing approaches using three or more polarized images, but also could be
potentially integrated into smart phones without affecting the original photography quality by not
making all images polarized.
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