
Supplementary Material

A Guarantees

We show that our algorithm returns a PDFA, and discuss the relation between the obtained PDFA A

and the target T when anytime stopping is and isn’t used.

A.1 Probability

Theorem A.1. The algorithm returns a PDFA.

Proof. Let C be the final clustering of P achieved by the method in section 4.1. By construction,
the algorithm returns a finite state machine A = hC,⌃, c("), �Q, �W ,�i with well defined states,
initial state, transition weights and stopping weights. We show that this machine is deterministic and
probabilistic, i.e.:

1. Deterministic: for every c 2 C,� 2 ⌃, �Q(c,�) is uniquely defined
2. Probabilistic: for every c 2 C,� 2 ⌃: �Q(c,�) 2 [0, 1], �(c) 2 [0, 1], and �(c) +P

�2⌃ �W (c,�) = 1.

Proof of (1): By the final refinement of the clustering (Determinism II), kc,�  1 and so by
construction �Q(c,�) is assigned at most one value. If, and only if, kc,� < 1, then �Q(c,�) is
assigned some best available value. So �Q(c,�) is always assigned exactly one value.

Proof of (2): the values of �W and � are weighted averages of probabilities, and so also in [0, 1]
themselves. They also sum to 1 as they are averages of distributions. Formally, for every c 2 C:

�(c) +
X

�2⌃

�W (c,�) =

P
p2c

P p

T
(p)P l

T
(p·$)

P
p2c

P p

T
(p)

+
X

�2⌃

P
p2c

P p

T
(p)P l

T
(p·�)

P
p2c

P p

T
(p)

=

P
p2c

P p

T
(p)P l

T
(p·$)

P
p2c

P p

T
(p)

+

P
p2c

P
�2⌃ P p

T
(p)P l

T
(p·�)

P
p2c

P p

T
(p)

=

P
p2c

P p

T
(p)

P
�2⌃$

P l

T
(p·�)

P
p2c

P p

T
(p)

=
(⇤)

P
p2c

P p

T
(p)

P
p2c

P p

T
(p)

= 1

where (⇤) follows from the probabilistic behaviour of T :
P

�2⌃$
P l

T
(p·�) = 1 for any p 2 ⌃⇤.

A.2 Progress

We consider extraction using noise tolerance t from some target T = hQ,⌃, qi, �Q, �TW i. For
the observation table OP,S at any stage, we denote nP,S the size of the largest set of pairwise
t-distinguishable rows OS(p), p 2 P .

Let A be an automaton constructed by the algorithm, whether or not it was stopped ahead of time. Let
OP,S be the observation table reached before making A, C ⇢ P(P ) be the clustering of P attained
when building A from OP,S (i.e., the states of A), and denote A = hC,⌃, ci, �C , �AW i. Denote
c : P ! C the cluster for each prefix, i.e. p 2 c(p) for every p 2 P . In addition, for every cluster
c 2 C, denote pc the prefix pc 2 c from which �A

W
(c, �) was defined when building A.

We show that as the algorithm progresses, it defines a monotonically increasing group of sequences
W ⇢ ⌃+$ on which the target T and the algorithm’s automata A are t-consistent, and that this group
is P ·⌃$.
Lemma A.2. P is always prefix closed.

Proof. P begins as {"}, which is prefix closed. Only two operations add to P : closedness and
counterexamples. When adding from closedness, the new prefix added to P is of the form p·� for
p 2 P,� 2 ⌃ and so P remains prefix closed. When adding from a counterexample w, w is added
along with all of its prefixes, and so P remains prefix closed.

13



Lemma A.3. For every p 2 P , �̂C(ci, p) = c(p), i.e. p 2 �̂C(ci, p).

Proof. We show this by induction on the length of p. For |p| = 0 i.e. for ", �̂C(") = ci by definition of
the recursive application of �C , and ci=c(") by construction (in the algorithm). We assume correctness
of the lemma for |p| = n, p 2 P . Consider p 2 P , |p| = n + 1, denote p = r·�, r 2 ⌃⇤,� 2 ⌃.
By the prefix closedness of P , r 2 P , and so by the assumption �̂C(r) = c(r). Now by the
definition of �̂C , �̂C(p) = �C(�̂C(r),�) = �C(c(r),�). By the construction of A, c(r) is defined
such that �C(c(r),�) = c(p·�) for every s 2 c(r) s.t. s·� 2 P , and so in particular for r 2 c(r), as
r·� = p 2 P ). This results in �̂C(p) = �Q(c(r),�) = c(p), as desired.

Lemma A.4. For every p 2 P and � 2 ⌃$, �A(c(p),�) ⇡t P l

T
(p·�).

Proof. By construction of A, in particular by the clique requirement for the clusters of C, all of
the prefixes p0 2 c(p) satisfy OS(p0) = OS(p0) ⇡t OS(p) = OS(p), and in particular for ⌃$ ✓ S:
O⌃$

(p0) ⇡t O⌃$
(p) (recall that S is initiated to ⌃$ and never reduced). �A(c(p),�) is defined as

the weighted average of O(p0·�) for each of these p0 2 c(p), and so it is also t-equal to O(p·�) i.e.
P l

T
(p·�), as desired.

Theorem A.5. For every p 2 P,� 2 ⌃$, A, T are t-consistent on p·�.

Proof. let u 6= " be some prefix of p·�. Necessarily v = u:�1 is some prefix of p 2 P , and so by the
prefix-closedness of P (theorem A.2) v 2 P . Denote a = u�1 2 ⌃$. Then

P l

T
(u) = P l

T
(v·a) ⇡t �A(c(v), a) = �A(�̂C(v), a) = P l

A
(u)

where the second and third transitions are justified for v 2 P by theorem A.4 and theorem A.3
respectively. This for any prefix u 6= " of p·�, and so by definition A, T are t-consistent on p·� as
desired.

This concludes the proof that A, T are always t-consistent on P ·⌃$. We now show that the algorithm
increases P ·⌃$ every finite number of operations, beginning with a direct result from theorem A.5:
Corollary A.6. Every counterexample increases P by at least 1

Proof. Recall that counterexamples to proposed automata are sequences w 2 ⌃+$ for which
P l

T
(w) 6⇡t P l

A
(w), and that they are handled by adding all their strict prefixes to P . Assume

by contradiction some counterexample w 2 ⌃+$ for which P does not increase. Then in partic-
ular w:�1 2 P , and by theorem A.5, P l

T
(w) = P l

T
(w:�1·w�1) ⇡t P l

A
(w:�1·w�1) = P l

A
(w), a

contradiction.

Lemma A.7. Always, |S|  |P |·(|P |�1)
2 + |⌃$|. (i.e., every OP,S can only have had up to

|P |·(|P |�1)
2

inconsistencies in its making.)

Proof. S is initiated to ⌃$, so its initial size is |⌃$|. S is increased only following inconsistencies,
cases in which there exist p1, p2 2 P,� 2 ⌃ s.t. p1 6= p2 OS(p1) ⇡t OS(p2), but OS(p1) 6⇡t

OS(p2). Once some p1, p2 2 P cause a suffix s to be added to S, by construction of the algorithm,
OS(p1) 6⇡t OS(p2) for the remainder of the run (as s 2 S is a suffix for which O(p1, s) 6⇡t O(p2, s)).
There are exactly |P |·(|P |�1)

2 pairs p1 6= p2 2 P and so that is the maximum number of possible S

may have been increased in any run, giving the maximum size |S|  |P |·(|P |�1)
2 + |⌃$|.

(Note: If the t-equality relation was transitive, it would be possible to obtain a linear bound in the
size of S. However as it is not, it is possible that a separating suffix may be added to S that separates
p1 and p2 while leaving them both t-equal to to some other p3.)
Corollary A.8 (Progress). For as long as the algorithm runs, it strictly expands a group C ⇢ ⌃⇤

of

sequences on which the automata A it returns is t-consistent with its target T .

14



Figure B.1: Target PDFA T

Proof. From theorem A.5, C = P ⇥ ⌃$ is a group of sequences on which A is always t-consistent
with T . We show that C is strictly expanding as the algorithm progresses, i.e. that every finite number
of operations, P is increased by at least one sequence.

The algorithm can be split into 4 operations: searching for and handing an unclosed prefix or
inconsistency, building (and presenting) a hypothesis PDFA, or handling a counterexample. We show
that each one runs in finite time, and that there cannot be infinite operations without increasing P .

Finite Runtime of the Operations

Building OP,S : Finding and handling an unclosed prefix requires a pass over all P ⇥ ⌃, while
comparing row values to P – all finite as P is finite (rows are also finite as S is bounded by P ’s size).
Similarly finding and handling inconsistencies requires a pass over rows for all P 2�, also taking
finite time.

Building an Automaton requires finding a clustering of P satisfying the conditions and then a
straightforward mapping of the transitions between these clusters. The clustering is built by one initial
clustering (DBSCAN) over the finite set P and then only refinement operations (without merges). As
putting each prefix in its own cluster is a solution to the conditions, a satisfying clustering will be
reached in finite time. Counterexamples Handling a counterexample w requires adding at most |w|
new rows to OP,S . As S is finite, this is a finite operation.

Finite Operations between Additions to P Handling an unclosed prefix by construction increases P ,
and as shown in theorem A.6, so does handling a counterexample. Building a hypothesis is followed
by an equivalence query, after which the algorithm will either terminate or a counterexample will be
returned (increasing P ). Finally, by A.7, the number of inconsistencies between every increase of P
is bounded.

B Example

We extract from the PDFA T presented in B.1 using prefix and suffix thresholds "P , "S = 0 and
variation tolerance t = 0.1. We limit the number of samples per equivalence query to 500. This
extraction will demonstrate both types of table expansions, both types of clustering refinements,
and counterexamples. Notice that in our example, the state q5 is t-equal with respect to next-token
distribution to both q1 and q3, though they themselves are not t-equal to each other.

Extraction begins by initiating the table with P = {"}, S = ⌃$, and the queue Q with P . We will
pop from the queue in order of prefix weight, though this is not necessary when not considering
anytime stopping. At this point the table is:

P
S a b $

" 0.5 0.4 0.1

15



[H1] [H2]

[H3]

Figure B.2: Hypotheses during extraction from T

The first prefix considered is ", it is already in P . It is consistent simply as it is not similar to any
other p 2 P . However it might not be closed. Its continuations "·⌃ = {a, b} are added to Q, to check
its closedness later. Q is now {a, b}.

Next is a (which has prefix weight 0.5). OS(a) = (0.7, 0.25, 0.05), which is not t-equal to the only
row in the table: OS(") = (0.5, 0.4, 0.1). It follows that a:�1 = " was not closed, and a is added to
P . The table is now:

P
S a b $

" 0.5 0.4 0.1
a 0.7 0.25 0.05

a is also consistent simply as it has no t-equal rows. Its continuations a·⌃ are added to Q to check
closedness, giving Q = {b, ab, aa}.

Now for each of q 2 Q, OS(q) = OS("), meaning that the table is closed. None of the prefixes
in Q are added to P , and so they are also not checked for consistency. The expansion stops and a
clustering C = {{"}, {a}} is made (" and a are not t-equal). The transitions are mapped and the
automaton H1 shown in figure B.2 is presented for an equivalence query.

H1 and T are each sampled according to their distributions up to 500 times, and Pn

T
(p), Pn

H1(p) are
compared for every prefix p of each sample. This soon yields the counterexample c = aaa, for which
Pn

H1(c) = (0.7, 0.25, 0.05) 6⇡0.1 (0.5, 0.4, 0.1) = Pn

T
(c). c’s prefixes ", a, aa, aaa are added to P

and the expansion restarts with Q = P and table:

P
S a b $

" 0.5 0.4 0.1
a 0.7 0.25 0.05
aa 0.5 0.4 0.1
aaa 0.5 0.4 0.1

Q is processed: " is already in P , a, b are added to Q. We check its consistency with each of
its t-equal rows, aa and aaa, beginning with aa. For a 2 ⌃, OS("·a) = (0.7, 0.25, 0.05) 6⇡0.1

(0.5, 0.4, 0.1) = OS(aa·a), with the biggest difference (0.2) being on the suffix a 2 S. The
separating suffix a·a 2 ⌃·S is added to S, separating " and aa in the table:

16



P
S a b $ aa

" 0.5 0.4 0.1 0.7
a 0.7 0.25 0.05 0.5
aa 0.5 0.4 0.1 0.5
aaa 0.5 0.4 0.1 0.6

The expansion is restarted with Q = P . Eventually all of P ·⌃ are processed and the table is found
closed and consistent. The extraction moves to constructing a hypothesis.

An initial clustering is made, in our case using sklearn.cluster.DBSCAN with parameter
min_samples=1. It returns C0 = {{", aa, aaa}, {a}}. However, this does not satisfy the de-
terminism requirement: for " and aa, which are both in the same cluster, their continuations with
a 2 ⌃ are also in P and appear in different clusters. The cluster {", aa, aaa} is split such that " and
aa are separated. For aaa, whose continuation aaaa is not in P , it is not important whether it joins
" or aa, and it is equally close (with respect to L1 distance on rows) to both. The new clustering
C = {{aa, aaa}, {a}, {"}} is returned. This clustering satisfies t-equality (aa ⇡t,S aaa), and a
hypothesis can be made.

For each cluster c 2 C there is a p 2 c for which p·a 2 P and so all of the a-transitions are simple to
map. For b, the transitions are mapped according to the closest rows in the table, e.g. the b-transition
from the initial state c(") maps to c(aa), as OS(b) = (0.5, 0.4, 0.1, 0.5) ⇡t (0.5, 0.4, 0.1, 0.5) =
OS(aa). This yields the PDFA H2 shown in B.2.

Sampling H2 and T soon yields the counterexample bb, for which Pn

T
(bb) = (0.7, 0.25, 0.05) 6⇡t

(0.5, 0.4, 0.1) = Pn

H2(bb). All of bb’s prefixes are added to P , the queue is again initiated to P , and
expansion restarts with the table:

P
S a b $ aa

" 0.5 0.4 0.1 0.7
a 0.7 0.25 0.05 0.5
aa 0.5 0.4 0.1 0.5
aaa 0.5 0.4 0.1 0.6
b 0.5 0.4 0.1 0.5
bb 0.7 0.25 0.05 0.5

When the prefix b is processed, an inconsistency is found: b ⇡t,S aa, but OS(bb) =
(0.7, 0.25, 0.05, 0.5) 6⇡t (0.5, 0.4, 0.1, 0.6) = OS(aab), in particular on a 2 S. ba is added to
S, Q is reset to P , and the expansion restarts with the table:

P
S a b $ aa ba

" 0.5 0.4 0.1 0.7 0.5
a 0.7 0.25 0.05 0.5 0.5
aa 0.5 0.4 0.1 0.5 0.5
aaa 0.5 0.4 0.1 0.6 0.6
b 0.5 0.4 0.1 0.5 0.7

bb 0.7 0.25 0.05 0.5 0.5

This time the table is found to be closed and consistent. DBSCAN gives the initial clustering C0 =
{{", aa, aaa, b}, {a, bb}}, and as before the determinism refinement separates a and ", giving C1 =
{{aa, aaa, b}, {a, bb}, {"}}. Now the t-equality requirement is checked, and the first cluster does
not satisfy it: while aa ⇡t,S aaa and b ⇡t,S aaa, aa 6⇡t,S b. The cluster is split across the suffix
with the largest range, ba, yielding the new clustering C = {{aa, aaa}, {a, bb}, {"}, {b}}. This
clustering satisfies both determinism and t-equality and the hypothesis H3 is made, with �-transitions
from clusters c for which there is no p 2 c such that p·� 2 P (e.g. b from {aa, aaa}) being made
according to closest rows as described before.

Sampling 500 times from each of H3 and T yields no counterexample, and indeed none exists
even though the two are not exactly the same: the distributions of states q5, q4 and q3 of T are
t = 0.1-equal, and the PDFAs H3 and T are t-equal.

17



A note on prefix and suffix thresholds. Suppose that instead of T , we had a PDFA T 0 over ⌃ =
{a, b, c} as follows: T 0 is identical to T , except that from every state q 2 QT there is a c-transition
with a very small probability " leading to a different state of an extremely large PDFA L. If " is very
small, developing L will be of little benefit for the approximation, but waste a lot of time and space
for the extraction. However, if "S , "P > ", then no prefix containing c will ever be added to the table,
and similarly no suffix containing c will ever be considered a separating suffix (needlessly separating
two prefixes). The existence of such transitions is quite possible in RNNs: they are unlikely to
perfectly learn to represent 0 even for tokens that have never been seen, and moreover never ‘tame’
the states that would be reached from such transitions (as they are not seen in training).

C Implementation

Clustering the Prefixes The initial clustering can be done with any clustering algorithm. In our
implementation we use DBSCAN [18], with t as the noise tolerance and a minimum neighbourhood
size 1 for core points. When splitting a cluster into cliques, if its largest range across a single
dimension is n > 1 times the threshold t, it is split into dne clusters across that dimension. In the
determinism refinement, when splitting a cluster c, there may be some p 2 c for which p·� /2 P . In
this case a best match c� for OS(p·�) is found by the heuristic given in section 4.2, and p is added to
the respective new cluster.

D Synthetic Grammars

D.1 Tomita Grammars

We adapt the Tomita grammars [33] for use as weighted models as follows: for each Tomita grammar
and its minimal DFA T we create a PDFA variant TW which has the same structure as T , and
in which accepting/rejecting states are differentiated by their preference for 0 or 1. Every state
in TW has stopping probability 0.05, the states q have transition weights 0.7 · 0.95 = 0.665 and
0.3 · 0.95 = 0.285, such that �W (q, 0) = 0.665 iff q is an accepting state in T . We show all of the
adaptations in D.1, labelling the weighted variants T1 through T7 in the same order as their binary
counterparts. The images were generated using graphviz.

We train 7 RNNs on these grammars, their parameters and training routine are described in E. We
extract from them with the same algorithms as for the SPiCe and UHL languages. The extraction
parameters and results are given in table 3.

From each of the Tomita RNNs, our algorithm successfully reconstructs a PDFA with the exact same
structure as the RNN’s target PDFA, and transition weights within tolerance of the corresponding
weights in the target. The extracted PDFAs for each Tomita RNN are presented in D.2.

D.2 Unbounded History Languages

The UHLs are 3 cyclic PDFAs, shown in D.3. UHL 3 is a weighted adaptation of Tomita 5, where the
difference in probabilities between the states is lower than in our original adaptations. This makes
it harder for the n-gram to guess the current state from local clues in its window (such as many
appearances of one token over another). Precisely:

UHL1 is a 9-state cycle PDFA over ⌃ = {0, 1} that loops through all of its states one at
a time, regardless of the actual input token. On all states it has stopping probability 0.05,
and divides the remaining next-token distribution over 0 and 1 as follows: on all states 0
has next-token probability 0.75 and 1 has 0.15, except for the second, fifth, and ninth states,
where this is reversed.
UHL2 is a 5-state cycle PDFA over ⌃ = {0,1,2,3,4}, that loops through all of its states
one at a time regardless of input token. At every state it has stopping probability 0.045, and
it gives next-token probability 0.591 to a different token at each state, with the rest of the
tokens getting a uniform distribution between themselves.
UHL3 is a 4-state PDFA over ⌃ = {0,1} that maintains the parity of the seen 0 and 1 tokens.
Every state has stopping probability 0.05, and most states give 0 next-token probability

18



[T1] [T2]

[T3] [T4]

[T5] [T6] [T7]

Figure D.1: Weighted variants of the Tomita grammars.

19



[ET1] [ET2]

[ET3] [ET4]

[ET5] [ET6] [ET7]

Figure D.2: PDFAs extracted using WL⇤ from the RNNs trained on weighted variants of the Tomita
grammars.

20



Language (|⌃|, `) Model WER# NDCG" Time (s) WER Size NDCG Size
Tomita 1 (2, 0.77) WL⇤ 0.0 1.0 55 2 2

Spectral 0.0 1.0 18 k=10 k=10
N-Gram 0.0001 0.9998 27 63 (n=6) 31 (n=5)
ALERGIA 0.0 1.0 28 8 8

Tomita 2 (2, 0.78) WL⇤ 0.0 1.0 55 3 3
Spectral 0.0 1.0 13 k=10 k=10
N-Gram 0.0 1.0 27 63 (n=6) 15 (n=4)
ALERGIA 0.0 1.0 28 6 6

Tomita 3 (2, 0.78) WL⇤ 0.0 1.0 62 5 5
Spectral 0.0071 0.9945 13 k=7 k=13
N-Gram 0.0542 0.9918 27 63 (n=6) 63 (n=6)
ALERGIA 0.0318 0.9963 28 8 8

Tomita 4 (2, 0.79) WL⇤ 0.0 1.0 56 4 4
Spectral 0.0 1.0 13 k=14 k=12
N-Gram 0.073 0.9887 27 63 (n=6) 63 (n=6)
ALERGIA 0.0 1.0 28 9 9

Tomita 5 (2, 0.79) WL⇤ 0.0 1.0 56 4 4
Spectral 0.0001 1.0 11 k=67 k=23
N-Gram 0.1578 0.9755 27 63 (n=6) 63 (n=6)
ALERGIA 0.0315 0.991 29 15 15

Tomita 6 (2, 0.78) WL⇤ 0.0 1.0 56 3 3
Spectral 0.0003 0.9999 23 k=36 k=36
N-Gram 0.1645 0.9695 27 63 (n=6) 63 (n=6)
ALERGIA 0.0448 0.9983 28 12 12

Tomita 7 (2, 0.78) WL⇤ 0.0 1.0 63 5 5
Spectral 0.0003 0.9999 13 k=32 k=37
N-Gram 0.0771 0.9857 27 63 (n=6) 63 (n=6)
ALERGIA 0.0363 0.9936 28 11 11

Table 3: Tomita results. Each language is listed with its alphabet size |⌃| and RNN test loss `. The n-
grams and sample-based PDFAs were created from 50,000 samples, and shared samples. FLEXFRINGE
was run with state_count = 50 . Our algorithm was run with t=0.1, "P , "S=0, |P |5000 and
|S|100, and spectral with |P |, |S|=100.

0.525 and 1 next-token probability 0.425, except for the state where the number of seen 0s
and 1s is odd, where this is reversed.

UHL3 is an adaptation of the fifth Tomita grammar similar to our other presented adaptations, except
that here the next-token probabilities of 1 and 0 are closer to each other, making it slightly harder to
infer which states the PDFA has been in from a finite history4

Applied with variation tolerance t = 0.1, our algorithm managed to reconstruct every UHLs structure
from its trained RNN perfectly, with weights within t of the original5. The reconstructed PDFAs are
shown in D.4.

E RNNs

All the RNNs are 2-layer pytorch LSTMs with training dropout 0.5 and linear transformation +
softmax for the classification. The input token embeddings and initial hidden states were treated as
parameters.

The Tomita and UHL RNNs had input (embedding) dimension 2 and hidden dimension 50, except
for UHL 2 which had input dimension 5. The SPiCe RNNs had input/hidden dimensions (resp.) as
follows: 0. 4/50 1. 20/50 2. 10/50 3. 10/50 4. 33/100 6. 60/100 7. 20/50 9. 11/100 10. 10/20 14.
27/30 .

4This recalls the insight of [31], who note that unexpected tokens are useful as they convey information about
the current state of the model.

5(When extracting from RNNs, the weights of course can only be as good as those learned by the RNNs)

21



[UHL1]

[UHL2]

[UHL3]

Figure D.3: The UHL PDFAs.

The RNNs were trained with the ADAM optimiser and varying learning rates, each training for 10 full
epochs for learning rate (or less if the validation loss stopped decreasing). The SPiCe and UHL RNNs
used a cyclic learning rate, going through 8 values from 0.01 to 0.0001 2 and a half times. The Tomita
RNNs simply used the learning rates 0.01, 0.008, 0.006, 0.004, 0.002, 0.001, 0.0005, 0.0001, 5e�05
once in order.

The SPiCe RNNs were trained with the train samples given by the spice competition [7]. For the
UHL and Tomita RNNs, we generated train sets of size 10, 000 and 20, 000 respectively by sampling
from the target PDFAs according to their distributions. For each RNN, we split its given train set
into train, validation, and test sets, taking respectively 90%/5%/5% of the original set. We checked
each RNN’s validation loss after every epoch. Whenever it worsened for 2 consecutive epochs, we
reverted to the previous best RNN (by validation loss) and moved to the next learning rate.

For each RNN, in each training epoch we randomly split the train set into batches of equal size (up to
the last ‘leftover’ batch), and trained in these batches. For the UHL and Tomita RNNs we trained
with batch size 500 and for the SPiCe RNNs we used 1, 000.

22



[EUHL1]

[EUHL2]

[EUHL3]

Figure D.4: The UHL PDFAs, as reconstructed by WL⇤from RNNs trained on the original UHLs.

23


	Introduction
	Related Work
	Background
	Learning PDFAs with Queries and Counterexamples
	The Algorithm
	Practical Considerations

	Guarantees
	Experimental Evaluation
	Results and Discussion

	Conclusions
	Guarantees
	Probability
	Progress

	Example
	Implementation
	Synthetic Grammars
	Tomita Grammars
	Unbounded History Languages

	RNNs

