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A Theoretical Analysis

In this section, we provide a proof of Theorem 1, performing an analysis for the aggregation version
of GMPS. However, note that our experiments find that the off-policy optimization with expert
trajectories before any aggregation is also quite effective and stable empirically. First, we restate the
theorem:

Theorem 4.1 For GMPS, assuming reward-to-go bounded by §, and training error bounded by
H H

€+, we can show that E; 1 [E”vaﬂwe R Doimqri(se,an)]] = Eiwper) [Err D221 mi(se,a0)]] —

0/€.O(H), where T} are per-task expert policies.

We can perform a theoretical analysis of algorithm performance in a manner similar to [18]. Given a
policy 7, let us denote d’ as the state distribution at time ¢ when executing policy 7 from time 1 to
t — 1. We can define the cost function for a particular task i as ¢;(s¢, a;) = —r;(s¢, a;) as a function
of state s; and action a, with ¢;(s¢, a;) € [0, 1] without loss of generality. We will prove the bound
using the notation of cost first, and subsequently express the same in terms of rewards.

Let us define mp + V;m9 = mprv 0By [R;] A8 & shorthand for the policy which is obtained after
the inner loop update of meta-learning for task ¢, with return R; during meta-optimization. This
will be used throughout the proof to represent a one-step update on a task indexed by ¢, essentially
corresponding to policy gradient in the inner loop. We define the performance of a policy 7y (a¢|s:)
over time horizon H, for a particular task ¢ as:

H
Ji(ﬂ') = Z Esﬁ~dﬁ,9 [EatNTre(at\st) [ci(st,as)]].
t=1

This can be similarly extended to meta-updated policies as

H

J'(mo + Vimg) = ZEswd;ng [Ea,~mo+.im [Ci(St, ar)]].
t=1

Let us define J;(m, 7) as the expected cost for task ¢ when executing 7 for ¢ time steps, and then
executing 7 for the remaining H — ¢ time steps, and let us similarly define Q% (s, m, 7) as the cost of
executing 7 for one time step, and then executing 7 for ¢ — 1 time steps.

We will assume the cost-to-go difference between the learned policy and the optimal policy for task 4
is bounded: Q}(s, mg, 7*) — Qi(s, 7, 7*) < §, Vi. This can be ensured by assuming universality of
meta-learning [[10].

When collecting data in order to perform the supervised learning in the outer loop of meta optimization,
we can either directly use the 1-step updated policy 7y + V; 7y for each task 7, or we can use a mixture
policy 75 = B;m; + (1 — B;)(mp + Vimy), where j denotes the current iteration of meta-training.
This is very similar to the mixture policy suggested in the DAgger algorithm [36]. In fact, directly
using the 1-step updated policy mg + V;7g is equivalent to using the mixture policy with 5; = 0, V3.
However, to simplify the derivation, we will assume that we always use 7y + V; 7y to collect data,
but we can generalize this result to full mixture policies, which would allow us to use more expert
data initially and then transition to using on-policy data.

When optimizing the supervised learning objective in the outer loop of meta-optimization to obtain
the meta-learned policy initialization 7y, we assume the supervised learning objective function error
is bounded by a constant Dy, (mg + V;mg||7}) < €. for all tasks 7 and all per-task expert policies
;. This bound essentially corresponds to assuming that the meta-learner attains bounded training
error, which follows from the universality property proven in [10].

Let [;(s,m9 + V,;mp, 7)) denote the expected 0-1 loss of my + V;mg with respect to 7} in state
8. Eagn(mg+Vim)(als),a*~r? (als)[1[as # a*]]. From prior work, we know that the total variation
divergence is an upper bound on the 0-1 loss [27] and KL-divergence is an upper bound on the total
variation divergence [33]].
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Therefore, the 0-1 loss can be upper bounded, for all s drawn from 7 + V;7g:
li(s,mo + Vimg, 7)) =< Dyy(mg + V;mg||7})
< \/Diw (g + Vi)
S V €hx-

This allows us to bound the meta-learned policy performance using the following theorem:

Theorem A.1 Let the cost-to-go Qi(s, mg+V g, 7} ) —Qi(s, 7, 7)) < dforallt € {1,....,T},i ~

P 2

p(T) . Then in GMPS, J(mg + V;mg) < J(7}) + 5@0( ), and by extension B 5[ J (7o +
Vir0)] < EiraskslJ (7})] + 8+/€. O(H)

Proof:

T-1
Ji(ﬂ'e + V;mg) = J7 )+ Z Jt+1 w9+ Vimg, ;) — J,f(m) + V,mg, 7))

t=0

+ Z IEs~d . Qt(s 7o + Vimg, T ) Qt(sﬂ 7Tz y T )]
< JHrH) + 62 Boa o, [li(s,m0 + Vimg, 7])] (42)

< Ji(r) + 62 Veor (4b)
JH(m) +5T\/€7*

Equation [4a follows from the fact that the expected 0-1 loss of 7y + V;my with respect to 7" is the
probability that myp + V;my and 7 pick different actions in s; when they choose different actions, the
cost-to-go increases by < 4. Equation b follows from the upper bound on the 0-1 loss.

Now that we have the proof for a particular ¢, we can simply take expectation with respect to ¢
sampled from the distribution of tasks to get the full result.

Proof:

J (g + Vimg) < JH(7F) + 6T \/eon
- Ein(tasks) [JZ (7T9 + Vﬂm)] < EZNp(tdbkb) [JZ( )} + 5T\/ €9 (Sa)

Now in order to convert back to the version using rewards instead of costs, we can simply negate the
bound, thereby giving us the original theorem 4.1, which states:

H
Eiwp(T) [EﬂeJrVe?wg Z T Stv at)]] > Ezwp(’T) Z T Sta at - 5\/ EG*O(H)
t=1

t=1

B Reward Functions

Below are the reward functions used for each of our experiments.

e Sawyer Pushing (for both full state and vision observations)

R= _onbj - xpusher||2 -+ 100 | Cc— ngoal - xpusher”Q |

where c is the initial distance between the object and the goal (a constant).
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549 e Door Opening

R— {| 10z | r < zx*
|10(z* — (x —2*)) | x> a*
550 where x is the current door angle, and z* is the target door angle
551 e L egged Locomotion (dense reward)
R=—|lz —2"||1 +4.0
552 where x is the location of centre of mass of the ant, z* is the goal location.
553 e L egged Locomotion (sparse reward)

R {||:c:r*||1 +4.0 |z —2*2<0.8

—m+4.0 |z —2*[]2 > 0.8
554 where x is the location of center of mass of the ant, x* is the goal location, and m is the
555 initial ¢ distance between x and z* (a constant).

ss6 C  Architectures

557 e State-based Experiments

558 Used a neural network with two hidden layers of 100 units with ReLU nonlinearities each for
559 GMPS, MAML, multi-task learning, and MAESN. As shown in prior work [[11], adding a
560 bias transformation variable helps improve performance for MAML, so we ran experiments
561 including this variation. [The bias transformation variable is simply a variable appended
562 to the observation, before being passed into the policy. This variable is also adapted with
563 gradient descent in the inner loop]. The learning rate for the fast adaptation step («) is also
564 meta-learned.

565 e Vision-based Experiments

566 The image is passed through a convolutional neural network, followed by a spatial soft-
567 argmax [23]], followed by a fully connected network block. The 3D end-effector position
568 is appended to the result of the spatial soft-argmax, which is then passed through a fully
569 connected neural network block. The convolution block is specified as follows: 16 filters of
570 size 5 with stride 3, followed by 16 filters of size 3 with stride 3 , followed by 16 filters of
571 size 3 with stride 1. The fully-connected block is as follows: 2 hidden layers of 100 units
572 each. All hidden layers use ReLU nonlinearities.

s D HyperParameters

s74 The following are the hyper-parameter sweeps for each of the methods [run for each of the experi-
575 mental domains] , run over 3 seeds.

576 1. GMPS

577 (a) Number of trajectories sampled per task. : [20, 50]

578 (b) Number of tasks for meta-learning: [10 , 20]

579 (c) Initial value for fast adaptation learning rate: [0.5, 0.1]

580 (d) Variables included for fast adaptation: [all parameters, only bias transform variable]
581 (e) Dimension of bias transform variable: [2, 4]

582 (f) Number of imitation steps in between sampling new data from the pre-update policy:
583 [1,200, 500, 1000, 2000]

584 2. MAML

585 Hyper-parameter sweeps (a) - (d) from GMPS

586 3. MAESN

587 Hyper-parameter sweeps (a) - (¢c) from GMPS
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588

589

590

591

592

593

594

(a) Dimension of latent variable: [2,4]
4. MultiTask

(a) Batch size: [10000, 50000]
(b) Learning rate: [0.01, 0.02]

5. Contextual SAC [which is used to learn experts that are then used for GMPS]

(a) Reward scale: [10, 50, 100] (constant which scales the reward)
(b) Number of gradient steps taken for each batch of collected data: [1, 5, 10]
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