
A Theoretical Analysis490

In this section, we provide a proof of Theorem 1, performing an analysis for the aggregation version491

of GMPS. However, note that our experiments find that the off-policy optimization with expert492

trajectories before any aggregation is also quite effective and stable empirically. First, we restate the493

theorem:494

Theorem 4.1 For GMPS, assuming reward-to-go bounded by �, and training error bounded by495

✏✓⇤, we can show that Ei⇠p(T)[E⇡✓+r✓E⇡✓
[Ri]

[
P

H

t=1 ri(st,at)]] � Ei⇠p(T)[E⇡
⇤
i
[
P

H

t=1 ri(st,at)]]�496

�
p
✏✓⇤O(H), where ⇡⇤

i
are per-task expert policies.497

We can perform a theoretical analysis of algorithm performance in a manner similar to [18]. Given a498

policy ⇡, let us denote dt
⇡

as the state distribution at time t when executing policy ⇡ from time 1 to499

t� 1. We can define the cost function for a particular task i as ci(st,at) = �ri(st,at) as a function500

of state st and action at, with ci(st,at) 2 [0, 1] without loss of generality. We will prove the bound501

using the notation of cost first, and subsequently express the same in terms of rewards.502

Let us define ⇡✓ + ri⇡✓ = ⇡✓+r✓E⇡✓
[Ri] as a shorthand for the policy which is obtained after503

the inner loop update of meta-learning for task i, with return Ri during meta-optimization. This504

will be used throughout the proof to represent a one-step update on a task indexed by i, essentially505

corresponding to policy gradient in the inner loop. We define the performance of a policy ⇡✓(at|st)506

over time horizon H , for a particular task i as:507

J i(⇡) =
HX

t=1

Est⇠dt
⇡✓
[Eat⇠⇡✓(at|st)[ci(st,at)]].

This can be similarly extended to meta-updated policies as508

J i(⇡✓ +ri⇡✓) =
HX

t=1

Est⇠d
t
⇡✓+ri⇡✓

[Eat⇠⇡✓+ri⇡✓ [ci(st,at)]].

Let us define J i

t
(⇡, ⇡̃) as the expected cost for task i when executing ⇡ for t time steps, and then509

executing ⇡̃ for the remaining H � t time steps, and let us similarly define Qi

t
(s,⇡, ⇡̃) as the cost of510

executing ⇡ for one time step, and then executing ⇡̃ for t� 1 time steps.511

We will assume the cost-to-go difference between the learned policy and the optimal policy for task i512

is bounded: Qi

t
(s,⇡✓,⇡⇤)�Qi

t
(s,⇡⇤,⇡⇤)  �, 8i. This can be ensured by assuming universality of513

meta-learning [10].514

When collecting data in order to perform the supervised learning in the outer loop of meta optimization,515

we can either directly use the 1-step updated policy ⇡✓+ri⇡✓ for each task i, or we can use a mixture516

policy ⇡i

j
= �j⇡⇤

i
+ (1 � �j)(⇡✓ +ri⇡✓), where j denotes the current iteration of meta-training.517

This is very similar to the mixture policy suggested in the DAgger algorithm [36]. In fact, directly518

using the 1-step updated policy ⇡✓ +ri⇡✓ is equivalent to using the mixture policy with �j = 0, 8j.519

However, to simplify the derivation, we will assume that we always use ⇡✓ +ri⇡✓ to collect data,520

but we can generalize this result to full mixture policies, which would allow us to use more expert521

data initially and then transition to using on-policy data.522

When optimizing the supervised learning objective in the outer loop of meta-optimization to obtain523

the meta-learned policy initialization ⇡✓, we assume the supervised learning objective function error524

is bounded by a constant DKL(⇡✓ +ri⇡✓||⇡⇤
i
)  ✏✓⇤ for all tasks i and all per-task expert policies525

⇡⇤
i
. This bound essentially corresponds to assuming that the meta-learner attains bounded training526

error, which follows from the universality property proven in [10].527

Let li(s,⇡✓ + ri⇡✓,⇡⇤
i
) denote the expected 0-1 loss of ⇡✓ + ri⇡✓ with respect to ⇡⇤

i
in state528

s: Ea✓⇠(⇡✓+ri⇡✓)(a|s),a⇤⇠⇡
⇤
i (a|s)[1[a✓ 6= a⇤]]. From prior work, we know that the total variation529

divergence is an upper bound on the 0-1 loss [27] and KL-divergence is an upper bound on the total530

variation divergence [33].531

12

Therefore, the 0-1 loss can be upper bounded, for all s drawn from ⇡✓ +ri⇡✓:532

li(s,⇡✓ +ri⇡✓,⇡
⇤
i
) = DTV(⇡✓ +ri⇡✓||⇡⇤

i
)


q
DKL(⇡✓ +ri⇡✓||⇡⇤

i
)


p
✏✓⇤.

This allows us to bound the meta-learned policy performance using the following theorem:533

Theorem A.1 Let the cost-to-go Qi

t
(s,⇡✓+ri⇡✓,⇡⇤

i
)�Qi

t
(s,⇡⇤

i
,⇡⇤

i
)  � for all t 2 {1, ..., T}, i ⇠534

p(T) . Then in GMPS, J(⇡✓ +ri⇡✓)  J(⇡⇤
i
) + �

p
✏✓⇤O(H), and by extension Ei⇠tasks[J(⇡✓ +535

ri⇡✓)]  Ei⇠tasks[J(⇡⇤
i
)] + �

p
✏✓⇤O(H)536

Proof :537

J i(⇡✓ +ri⇡✓) = J i(⇡⇤
i
) +

T�1X

t=0

J i

t+1(⇡✓ +ri⇡✓,⇡
⇤
i
)� J i

t
(⇡✓ +ri⇡✓,⇡

⇤
i
)

= J i(⇡⇤
i
) +

HX

t=1

Es⇠d
t
⇡✓+ri⇡✓

[Qi

t
(s,⇡✓ +ri⇡✓,⇡

⇤
i
)�Qi

t
(s,⇡⇤

i
,⇡⇤

i
)]

 J i(⇡⇤
i
) + �

HX

t=1

Es⇠d
t
⇡✓+ri⇡✓

[li(s,⇡✓ +ri⇡✓,⇡
⇤
i
)] (4a)

 J i(⇡⇤
i
) + �

HX

t=1

p
✏✓⇤ (4b)

= J i(⇡⇤
i
) + �T

p
✏✓⇤

Equation 4a follows from the fact that the expected 0-1 loss of ⇡✓ +ri⇡✓ with respect to ⇡⇤
i

is the538

probability that ⇡✓ +ri⇡✓ and ⇡⇤
i

pick different actions in s; when they choose different actions, the539

cost-to-go increases by  �. Equation 4b follows from the upper bound on the 0-1 loss.540

Now that we have the proof for a particular i, we can simply take expectation with respect to i541

sampled from the distribution of tasks to get the full result.542

Proof :543

J i(⇡✓ +ri⇡✓)  J i(⇡⇤
i
) + �T

p
✏✓⇤

=) Ei⇠p(tasks)[J
i(⇡✓ +ri⇡✓)]  Ei⇠p(tasks)[J

i(⇡⇤
i
)] + �T

p
✏✓⇤ (5a)

Now in order to convert back to the version using rewards instead of costs, we can simply negate the
bound, thereby giving us the original theorem 4.1, which states:

Ei⇠p(T)[E⇡✓+r✓E⇡✓
[Ri]

[
TX

t=1

ri(st,at)]] � Ei⇠p(T)[E⇡
⇤
i
[
HX

t=1

ri(st,at)]]� �
p
✏✓⇤O(H)

.544

B Reward Functions545

Below are the reward functions used for each of our experiments.546

• Sawyer Pushing (for both full state and vision observations)547

R = �kxobj � xpusherk2 + 100 | c� kxgoal � xpusherk2 |

where c is the initial distance between the object and the goal (a constant).548

13

• Door Opening549

R =

⇢
| 10x | x  x⇤

| 10(x⇤ � (x� x⇤)) | x > x⇤

where x is the current door angle, and x⇤ is the target door angle550

• Legged Locomotion (dense reward)551

R = �||x� x⇤||1 + 4.0

where x is the location of centre of mass of the ant, x⇤ is the goal location.552

• Legged Locomotion (sparse reward)553

R =

⇢
�||x� x⇤||1 + 4.0 kx� x⇤k2  0.8
�m+ 4.0 kx� x⇤k2 > 0.8

where x is the location of center of mass of the ant, x⇤ is the goal location, and m is the554

initial `1 distance between x and x⇤ (a constant).555

C Architectures556

• State-based Experiments557

Used a neural network with two hidden layers of 100 units with ReLU nonlinearities each for558

GMPS, MAML, multi-task learning, and MAESN. As shown in prior work [11], adding a559

bias transformation variable helps improve performance for MAML, so we ran experiments560

including this variation. [The bias transformation variable is simply a variable appended561

to the observation, before being passed into the policy. This variable is also adapted with562

gradient descent in the inner loop]. The learning rate for the fast adaptation step (↵) is also563

meta-learned.564

• Vision-based Experiments565

The image is passed through a convolutional neural network, followed by a spatial soft-566

argmax [23], followed by a fully connected network block. The 3D end-effector position567

is appended to the result of the spatial soft-argmax, which is then passed through a fully568

connected neural network block. The convolution block is specified as follows: 16 filters of569

size 5 with stride 3, followed by 16 filters of size 3 with stride 3 , followed by 16 filters of570

size 3 with stride 1. The fully-connected block is as follows: 2 hidden layers of 100 units571

each. All hidden layers use ReLU nonlinearities.572

D HyperParameters573

The following are the hyper-parameter sweeps for each of the methods [run for each of the experi-574

mental domains] , run over 3 seeds.575

1. GMPS576

(a) Number of trajectories sampled per task. : [20 , 50]577

(b) Number of tasks for meta-learning: [10 , 20]578

(c) Initial value for fast adaptation learning rate: [0.5, 0.1]579

(d) Variables included for fast adaptation: [all parameters, only bias transform variable]580

(e) Dimension of bias transform variable: [2, 4]581

(f) Number of imitation steps in between sampling new data from the pre-update policy:582

[1 , 200, 500, 1000, 2000]583

2. MAML584

Hyper-parameter sweeps (a) - (d) from GMPS585

3. MAESN586

Hyper-parameter sweeps (a) - (c) from GMPS587

14

(a) Dimension of latent variable: [2,4]588

4. MultiTask589

(a) Batch size: [10000, 50000]590

(b) Learning rate: [0.01, 0.02]591

5. Contextual SAC [which is used to learn experts that are then used for GMPS]592

(a) Reward scale: [10, 50, 100] (constant which scales the reward)593

(b) Number of gradient steps taken for each batch of collected data: [1, 5, 10]594

15

	Introduction
	Related Work
	Preliminaries
	Guided Meta-Policy Search
	Guided Meta-Policy Search Algorithm
	Convergence Analysis
	Algorithm Implementation

	Experimental Evaluation
	Experimental Setup
	Meta-Reinforcement Learning
	Meta-Learning from Demonstrations

	Discussion and Future Work
	Theoretical Analysis
	Reward Functions
	Architectures
	HyperParameters

