490

491
492
493
494

495
496

497

498

500
501
502

503
504
505
506
507

508

509
510
511

512
513
514

515
516
517
518
519
520
521
522

523

524

525

527

528

530
531

A Theoretical Analysis

In this section, we provide a proof of Theorem 1, performing an analysis for the aggregation version
of GMPS. However, note that our experiments find that the off-policy optimization with expert
trajectories before any aggregation is also quite effective and stable empirically. First, we restate the
theorem:

Theorem 4.1 For GMPS, assuming reward-to-go bounded by §, and training error bounded by
H H

€+, we can show that E; 1 [E”vaﬂwe R Doimqri(se,an)]] = Eiwper) [Err D221 mi(se,a0)]] —

0/€.O(H), where T} are per-task expert policies.

We can perform a theoretical analysis of algorithm performance in a manner similar to [18]. Given a
policy 7, let us denote d’ as the state distribution at time ¢ when executing policy 7 from time 1 to
t — 1. We can define the cost function for a particular task i as ¢;(s¢, a;) = —r;(s¢, a;) as a function
of state s; and action a, with ¢;(s¢, a;) € [0, 1] without loss of generality. We will prove the bound
using the notation of cost first, and subsequently express the same in terms of rewards.

Let us define mp + V;m9 = mprv 0By [R;] A8 & shorthand for the policy which is obtained after
the inner loop update of meta-learning for task ¢, with return R; during meta-optimization. This
will be used throughout the proof to represent a one-step update on a task indexed by ¢, essentially
corresponding to policy gradient in the inner loop. We define the performance of a policy 7y (a¢|s:)
over time horizon H, for a particular task ¢ as:

H
Ji(ﬂ') = Z Esﬁ~dﬁ,9 [EatNTre(at\st) [ci(st,as)]].
t=1

This can be similarly extended to meta-updated policies as

H

J'(mo + Vimg) = ZEswd;ng [Ea,~mo+.im [Ci(St, ar)]].
t=1

Let us define J;(m, 7) as the expected cost for task ¢ when executing 7 for ¢ time steps, and then
executing 7 for the remaining H — ¢ time steps, and let us similarly define Q% (s, m, 7) as the cost of
executing 7 for one time step, and then executing 7 for ¢ — 1 time steps.

We will assume the cost-to-go difference between the learned policy and the optimal policy for task 4
is bounded: Q}(s, mg, 7*) — Qi(s, 7, 7*) < §, Vi. This can be ensured by assuming universality of
meta-learning [[10].

When collecting data in order to perform the supervised learning in the outer loop of meta optimization,
we can either directly use the 1-step updated policy 7y + V; 7y for each task 7, or we can use a mixture
policy 75 = B;m; + (1 — B;)(mp + Vimy), where j denotes the current iteration of meta-training.
This is very similar to the mixture policy suggested in the DAgger algorithm [36]. In fact, directly
using the 1-step updated policy mg + V;7g is equivalent to using the mixture policy with 5; = 0, V3.
However, to simplify the derivation, we will assume that we always use 7y + V; 7y to collect data,
but we can generalize this result to full mixture policies, which would allow us to use more expert
data initially and then transition to using on-policy data.

When optimizing the supervised learning objective in the outer loop of meta-optimization to obtain
the meta-learned policy initialization 7y, we assume the supervised learning objective function error
is bounded by a constant Dy, (mg + V;mg||7}) < €. for all tasks 7 and all per-task expert policies
;. This bound essentially corresponds to assuming that the meta-learner attains bounded training
error, which follows from the universality property proven in [10].

Let [;(s,m9 + V,;mp, 7)) denote the expected 0-1 loss of my + V;mg with respect to 7} in state
8. Eagn(mg+Vim)(als),a*~r? (als)[1[as # a*]]. From prior work, we know that the total variation
divergence is an upper bound on the 0-1 loss [27] and KL-divergence is an upper bound on the total
variation divergence [33]].

12

532

533

534

535

536

537

538
539
540

541
542

543

544

545

547

548

Therefore, the 0-1 loss can be upper bounded, for all s drawn from 7 + V;7g:
li(s,mo + Vimg, 7)) =< Dyy(mg + V;mg||7})
< \/Diw (g + Vi)
S V €hx-

This allows us to bound the meta-learned policy performance using the following theorem:

Theorem A.1 Let the cost-to-go Qi(s, mg+V g, 7}) —Qi(s, 7, 7)) < dforallt € {1,....,T},i ~

P 2

p(T) . Then in GMPS, J(mg + V;mg) < J(7}) + 5@0(), and by extension B 5[J (7o +
Vir0)] < EiraskslJ (7})] + 8+/€. O(H)

Proof:

T-1
Ji(ﬂ'e + V;mg) = J7)+ Z Jt+1 w9+ Vimg, ;) — J,f(m) + V,mg, 7))

t=0

+ Z IEs~d . Qt(s 7o + Vimg, T) Qt(sﬂ 7Tz y T)]
< JHrH) + 62 Boa o, [li(s,m0 + Vimg, 7])] (42)

< Ji(r) + 62 Veor (4b)
JH(m) +5T\/€7*

Equation [4a follows from the fact that the expected 0-1 loss of 7y + V;my with respect to 7" is the
probability that myp + V;my and 7 pick different actions in s; when they choose different actions, the
cost-to-go increases by < 4. Equation b follows from the upper bound on the 0-1 loss.

Now that we have the proof for a particular ¢, we can simply take expectation with respect to ¢
sampled from the distribution of tasks to get the full result.

Proof:

J (g + Vimg) < JH(7F) + 6T \/eon
- Ein(tasks) [JZ (7T9 + Vﬂm)] < EZNp(tdbkb) [JZ()} + 5T\/ €9 (Sa)

Now in order to convert back to the version using rewards instead of costs, we can simply negate the
bound, thereby giving us the original theorem 4.1, which states:

H
Eiwp(T) [EﬂeJrVe?wg Z T Stv at)]] > Ezwp(’T) Z T Sta at - 5\/ EG*O(H)
t=1

t=1

B Reward Functions

Below are the reward functions used for each of our experiments.

e Sawyer Pushing (for both full state and vision observations)

R= _onbj - xpusher||2 -+ 100 | Cc— ngoal - xpusher”Q |

where c is the initial distance between the object and the goal (a constant).

13

549 e Door Opening

R— {| 10z | r < zx*
|10(z* — (x —2*)) | x> a*
550 where x is the current door angle, and z* is the target door angle
551 e L egged Locomotion (dense reward)
R=—|lz —2"||1 +4.0
552 where x is the location of centre of mass of the ant, z* is the goal location.
553 e L egged Locomotion (sparse reward)

R {||:c:r*||1 +4.0 |z —2*2<0.8

—m+4.0 |z —2*[]2 > 0.8
554 where x is the location of center of mass of the ant, x* is the goal location, and m is the
555 initial ¢ distance between x and z* (a constant).

ss6 C Architectures

557 e State-based Experiments

558 Used a neural network with two hidden layers of 100 units with ReLU nonlinearities each for
559 GMPS, MAML, multi-task learning, and MAESN. As shown in prior work [[11], adding a
560 bias transformation variable helps improve performance for MAML, so we ran experiments
561 including this variation. [The bias transformation variable is simply a variable appended
562 to the observation, before being passed into the policy. This variable is also adapted with
563 gradient descent in the inner loop]. The learning rate for the fast adaptation step («) is also
564 meta-learned.

565 e Vision-based Experiments

566 The image is passed through a convolutional neural network, followed by a spatial soft-
567 argmax [23]], followed by a fully connected network block. The 3D end-effector position
568 is appended to the result of the spatial soft-argmax, which is then passed through a fully
569 connected neural network block. The convolution block is specified as follows: 16 filters of
570 size 5 with stride 3, followed by 16 filters of size 3 with stride 3 , followed by 16 filters of
571 size 3 with stride 1. The fully-connected block is as follows: 2 hidden layers of 100 units
572 each. All hidden layers use ReLU nonlinearities.

s D HyperParameters

s74 The following are the hyper-parameter sweeps for each of the methods [run for each of the experi-
575 mental domains] , run over 3 seeds.

576 1. GMPS

577 (a) Number of trajectories sampled per task. : [20, 50]

578 (b) Number of tasks for meta-learning: [10 , 20]

579 (c) Initial value for fast adaptation learning rate: [0.5, 0.1]

580 (d) Variables included for fast adaptation: [all parameters, only bias transform variable]
581 (e) Dimension of bias transform variable: [2, 4]

582 (f) Number of imitation steps in between sampling new data from the pre-update policy:
583 [1,200, 500, 1000, 2000]

584 2. MAML

585 Hyper-parameter sweeps (a) - (d) from GMPS

586 3. MAESN

587 Hyper-parameter sweeps (a) - (¢c) from GMPS

14

588

589

590

591

592

593

594

(a) Dimension of latent variable: [2,4]
4. MultiTask

(a) Batch size: [10000, 50000]
(b) Learning rate: [0.01, 0.02]

5. Contextual SAC [which is used to learn experts that are then used for GMPS]

(a) Reward scale: [10, 50, 100] (constant which scales the reward)
(b) Number of gradient steps taken for each batch of collected data: [1, 5, 10]

15

	Introduction
	Related Work
	Preliminaries
	Guided Meta-Policy Search
	Guided Meta-Policy Search Algorithm
	Convergence Analysis
	Algorithm Implementation

	Experimental Evaluation
	Experimental Setup
	Meta-Reinforcement Learning
	Meta-Learning from Demonstrations

	Discussion and Future Work
	Theoretical Analysis
	Reward Functions
	Architectures
	HyperParameters

