
Qsparse-local-SGD: Distributed SGD with

Quantization, Sparsification, and Local Computations

Debraj Basu
⇤

Adobe Inc.
dbasu@adobe.com

Deepesh Data

UCLA
deepeshdata@ucla.edu

Can Karakus
⇤

Amazon Inc.
cakarak@amazon.com

Suhas Diggavi

UCLA
suhasdiggavi@ucla.edu

Abstract

Communication bottleneck has been identified as a significant issue in distributed
optimization of large-scale learning models. Recently, several approaches to
mitigate this problem have been proposed, including different forms of gradient
compression or computing local models and mixing them iteratively. In this paper
we propose Qsparse-local-SGD algorithm, which combines aggressive sparsifi-
cation with quantization and local computation along with error compensation,
by keeping track of the difference between the true and compressed gradients.
We propose both synchronous and asynchronous implementations of Qsparse-
local-SGD. We analyze convergence for Qsparse-local-SGD in the distributed
case, for smooth non-convex and convex objective functions. We demonstrate that
Qsparse-local-SGD converges at the same rate as vanilla distributed SGD for many
important classes of sparsifiers and quantizers. We use Qsparse-local-SGD to train
ResNet-50 on ImageNet, and show that it results in significant savings over the
state-of-the-art, in the number of bits transmitted to reach target accuracy.

1 Introduction

Stochastic Gradient Descent (SGD) [14] and its many variants have become the workhorse for modern
large-scale optimization as applied to machine learning [5, 8]. We consider the setup where SGD is
applied to the distributed setting, where R different nodes compute local SGD on their own datasets
Dr. Co-ordination between them is done by aggregating these local computations to update the
overall parameter xt as, xt+1 = xt �

⌘t

R

P
R

r=1 g
r

t
, where {g

r

t
}
R

r=1 are the local stochastic gradients
at the R machines for a local loss function f

(r)(x) of the parameters, where f
(r) : Rd

! R.

It is well understood by now that sending full-precision gradients, causes communication to be
the bottleneck for many large scale models [4, 7, 33, 39]. The communication bottleneck could be
significant in emerging edge computation architectures suggested by federated learning [1, 17, 22].
To address this, many methods have been proposed recently, and these methods are broadly based
on three major approaches: (i) Quantization of gradients, where nodes locally quantize the gradient
(perhaps with randomization) to a small number of bits [3,7,33,39,40]. (ii) Sparsification of gradients,
e.g., where nodes locally select Top

k
values of the gradient in absolute value and transmit these at

full precision [2, 4, 20, 30, 32, 40], while maintaining errors in local nodes for later compensation.
(iii) Skipping communication rounds whereby nodes average their models after locally updating their
models for several steps [9, 10, 31, 34, 37, 43, 45].

⇤Work done while Debraj Basu and Can Karakus were at UCLA.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

In this paper we propose Qsparse-local-SGD algorithm, which combines aggressive sparsification
with quantization and local computation along with error compensation, by keeping track of the
difference between the true and compressed gradients. We propose both synchronous and asyn-
chronous2 implementations of Qsparse-local-SGD. We analyze convergence for Qsparse-local-SGD
in the distributed case, for smooth non-convex and convex objective functions. We demonstrate
that, Qsparse-local-SGD converges at the same rate as vanilla distributed SGD for many important
classes of sparsifiers and quantizers. We implement Qsparse-local-SGD for ResNet-50 using the
ImageNet dataset, and show that we achieve target accuracies with a small penalty in final accuracy
(approximately 1 %), with about a factor of 15-20 savings over the state-of-the-art [4, 30, 31], in the
total number of bits transmitted. While the downlink communication is not our focus in this paper
(also in [4, 20, 39], for example), it can be inexpensive when the broadcast routine is implemented in
a tree-structured manner as in many MPI implementations, or if the parameter server aggregates the
sparse quantized updates and broadcasts it.

Related work. The use of quantization for communication efficient gradient methods has decades
rich history [11] and its recent use in training deep neural networks [27, 32] has re-ignited interest.
Theoretically justified gradient compression using unbiased stochastic quantizers has been proposed
and analyzed in [3, 33, 39]. Though methods in [36, 38] use induced sparsity in the quantized
gradients, explicitly sparsifying the gradients more aggressively by retaining Top

k
components, e.g.,

k < 1%, has been proposed [2, 4, 20, 30, 32], combined with error compensation to ensure that all
co-ordinates do get eventually updated as needed. [40] analyzed error compensation for QSGD,
without Top

k
sparsification and a focus on quadratic functions. Another approach for mitigating

the communication bottlenecks is by having infrequent communication, which has been popularly
referred to in the literature as iterative parameter mixing and model averaging, see [31, 43] and
references therein. Our work is most closely related to and builds on the recent theoretical results
in [4, 30, 31, 43]. [30] considered the analysis for the centralized Top

k
(among other sparsifiers),

and [4] analyzed a distributed version with the assumption of closeness of the aggregated Top
k

gradients to the centralized Top
k

case, see Assumption 1 in [4]. [31, 43] studied local-SGD, where
several local iterations are done before sending the full gradients, and did not do any gradient
compression beyond local iterations. Our work generalizes these works in several ways. We
prove convergence for the distributed sparsification and error compensation algorithm, without the
assumption of [4], by using the perturbed iterate methods [21, 30]. We analyze non-convex (smooth)
objectives as well as strongly convex objectives for the distributed case with local computations. [30]
gave a proof only for convex objective functions and for centralized case and therefore without local
computations3. Our techniques compose a (stochastic or deterministic 1-bit sign) quantizer with
sparsification and local computations using error compensation; in fact this technique works for any
compression operator satisfying a regularity condition (see Definition 3).

Contributions. We study a distributed set of R worker nodes each of which perform computa-
tions on locally stored data denoted by Dr. Consider the empirical-risk minimization of the loss
function f(x) = 1

R

P
R

r=1 f
(r)(x), where f

(r)(x) = E
i⇠Dr

[fi(x)], where E
i⇠Dr

[·] denotes expec-

tation4 over a random sample chosen from the local data set Dr. For f : d
! , we denote

x⇤ := argminx2Rd f(x) and f
⇤ := f(x⇤). The distributed nodes perform computations and pro-

vide updates to the master node that is responsible for aggregation and model update. We develop
Qsparse-local-SGD, a distributed SGD composing gradient quantization and explicit sparsification
(e.g., Top

k
components), along with local iterations. We develop the algorithms and analysis for both

synchronous as well as asynchronous operations, in which workers can communicate with the master
at arbitrary time intervals. To the best of our knowledge, these are the first algorithms which combine
quantization, aggressive sparsification, and local computations for distributed optimization.

2In our asynchronous model, the distributed nodes’ iterates evolve at the same rate, but update the gradients
at arbitrary times; see Section 4 for more details.

3At the completion of our work, we recently found that in parallel to our work [15] examined use of sign-
SGD quantization, without sparsification for the centralized model. Another recent work in [16] studies the
decentralized case with sparsification for strongly convex function. Our work, developed independent of these
works, uses quantization, sparsification and local computations for the distributed case with local computations
for both non-convex and strongly convex objectives.

4Our setup can also handle different local functional forms, beyond dependence on the local data set Dr ,
which is not explicitly written for notational simplicity.

2

Our main theoretical results are the convergence analysis of Qsparse-local-SGD for both (smooth)
non-convex objectives as well as for the strongly convex case. See Theorem 1, 2 for the synchronous
case, as well as Theorem 3, 4, for the asynchronous operation. Our analysis also demonstrates natural
gains in convergence that distributed, mini-batch operation affords, and has convergence similar to
vanilla SGD with local iterations (see Corollary 1, 2), for both the non-convex case (with convergence
rate ⇠ 1/

p
T for fixed learning rate) as well as the strongly convex case (with convergence rate

⇠ 1/T , for diminishing learning rate), demonstrating that quantizing and sparsifying the gradient,
even after local iterations asymptotically yields an almost “free” communication efficiency gain (also
observed numerically in Section 5 non-asymptotically). The numerical results on ImageNet dataset
implemented for a ResNet-50 architecture demonstrates that one can get significant communication
savings, while retaining equivalent state-of-the art performance with a small penalty in final accuracy.

Unlike previous works, Qsparse-local-SGD stores the compression error of the net local update,
which is a sum of at most H gradient steps and the historical error, in the local memory. From
literature [4, 30], we know that methods with error compensation work only when the evolution of
the error is controlled. The combination of quantization, sparsification, and local computations poses
several challenges for theoretical analysis, including (i) the analysis of impact of local iterations on
the evolution of the error due to quantization and sparsification, as well as the deviation of local
iterates (see Lemma 3, 4, 8, 9) (ii) asynchronous updates together with distribution compression using
operators which satisfy Definition 3, including our composed (Qsparse) operators. (see Lemma 11-14
in appendix). Another useful technical observation is that the composition of a quantizer and a
sparsifier results in a compression operator (Lemma 1, 2); see Appendix A for proofs on the same.

We provide additional results in the appendices as part of the supplementary material. These include
results on the asymptotic analysis for non-convex objectives in Theorem 5, 8 along with precise
statements of the convergence guarantees for the asynchronous operation Theorem 6, 7 and numerics
for the convex case for multi-class logistic classification on MNIST [19] dataset in Appendix D, for
both synchronous and asynchronous operations.

We believe that our approach for combining different forms of compression and local computations
can be extended to the decentralized case, where nodes are connected over an arbitrary graph, building
on the ideas from [15, 35]. Our numerics also incorporate momentum acceleration, whose analysis is
a topic for future research, for example incorporating ideas from [42].

Organization. In Section 2, we demonstrate that composing certain classes of quantization with
sparsification satisfies a certain regularity condition that is needed for several convergence proofs for
our algorithms. We describe the synchronous implementation of Qsparse-local-SGD in Section 3,
and outline the main convergence results for it in Section 3.1, briefly giving the proof ideas in Section
3.2. We describe our asynchronous implementation of Qsparse-local-SGD and provide the theoretical
convergence results in Section 4. The experimental results are given in Section 5. Many of the proof
details and additional results are given in the appendices provided with the supplementary material.

2 Composition of Quantization and Sparsification

In this section, we consider composition of two different techniques used in the literature for mitigating
the communication bottleneck in distributed optimization, namely, quantization and sparsification.
In quantization, we reduce precision of the gradient vector by mapping each of its components by
a deterministic [7, 15] or randomized [3, 33, 39, 44] map to a finite number of quantization levels.
In sparsification, we sparsify the gradients vector before using it to update the parameter vector, by
taking its Top

k
components or choosing k components uniformly at random, denoted by Randk, [30].

Definition 1 (Randomized Quantizer [3, 33, 39, 44]). We say that Qs : Rd
! Rd is a randomized

quantizer with s quantization levels, if the following holds for every x 2 Rd: (i) EQ[Qs(x)] = x; (ii)
EQ[kQs(x)k2]  (1 + �d,s)kxk2, where �d,s > 0 could be a function of d and s. Here expectation
is taken over the randomness of Qs.

Examples of randomized quantizers include (i) QSGD [3, 39], which independently quantizes compo-
nents of x 2 Rd into s levels, with �d,s = min(d

s2
,

p
d

s
)); (ii) Stochastic s-level Quantization [33,44],

which independently quantizes every component of x 2 Rd into s levels between argmax
i
xi and

argmin
i
xi, with �d,s = d

2s2 ; and (iii) Stochastic Rotated Quantization [33], which is a stochastic
quantization, preprocessed by a random rotation, with �d,s =

2 log2(2d)
s2

.

3

Instead of quantizing randomly into s levels, we can take a deterministic approach and round off to
the nearest level. In particular, we can just take the sign, which has shown promise in [7, 27, 32].
Definition 2 (Deterministic Sign Quantizer [7, 15]). A deterministic quantizer Sign : Rd

!

{+1,�1}d is defined as follows: for every vector x 2 Rd, i 2 [d], the i’th component of Sign(x) is
defined as {xi � 0}� {xi < 0}.

As mentioned above, we consider two important examples of sparsification operators: Top
k

and
Randk, For any x 2 Rd, Top

k
(x) is equal to a d-length vector, which has at most k non-zero

components whose indices correspond to the indices of the largest k components (in absolute value)
of x. Similarly, Randk(x) is a d-length (random) vector, which is obtained by selecting k components
of x uniformly at random. Both of these satisfy a so-called “compression” property as defined below,
with � = k/d [30]. Few other examples of such operators can be found in [30].

Definition 3 (Sparsification [30]). A (randomized) function Compk : Rd
! Rd is called a compres-

sion operator, if there exists a constant � 2 (0, 1] (that may depend on k and d), such that for every
x 2 Rd, we have EC [kx� Compk(x)k22]  (1� �)kxk22, where expectation is taken over Compk.

We can apply different compression operators to different coordinates of a vector, and the resulting
operator is also a compression operator; see Corollary 3 in Appendix A. As an application, in the
case of training neural networks, we can apply different compression operators to different layers.

Composition of Quantization and Sparsification. Now we show that we can compose determin-
istic/randomized quantizers with sparsifiers and the resulting operator is a compression operator.
Proofs are given in Appendix A.
Lemma 1 (Composing sparsification with stochastic quantization). Let Compk 2 {Top

k
,Randk}.

Let Qs : Rd
! Rd be a stochastic quantizer with parameter s that satisfies Definition 1. Let

QsCompk : Rd
! Rd be defined as QsCompk(x) := Qs(Compk(x)) for every x 2 Rd. Then

QsCompk(x)
1+�k,s

is a compression operator with the compression coefficient being equal to � = k

d(1+�k,s)
.

Lemma 2 (Composing sparsification with deterministic quantization). Let Compk 2

{Top
k
,Randk}. Let SignCompk : Rd

! Rd be defined as follows: for every x 2 Rd, the
i’th component of SignCompk(x) is equal to {xi � 0}� {xi < 0}, if the i’th component is cho-
sen in defining Compk, otherwise, it is equal to 0. Then kCompk(x)k1 SignCompk(x)

k
is a compression

operator5 with the compression coefficient being equal to � = max

⇢
1
d
,
k

d

⇣
kCompk(x)k1p
dkCompk(x)k2

⌘2�
.

3 Qsparse-local-SGD

Let I(r)
T

✓ [T] := {1, . . . , T} with T 2 I
(r)
T

denote a set of indices for which worker r 2 [R]

synchronizes with the master. In a synchronous setting, I(r)
T

is same for all the workers. Let
IT := I

(r)
T

for any r 2 [R]. Every worker r 2 [R] maintains a local parameter bx(r)
t

which is updated
in each iteration t, using the stochastic gradient rf

i
(r)
t

⇣
bx(r)
t

⌘
, where i

(r)
t

is a mini-batch of size b

sampled uniformly in Dr. If t 2 IT , the sparsified error-compensated update g
(r)
t

computed on the
net progress made since the last synchronization is sent to the master node, and updates its local
memory m

(r)
t

. Upon receiving g
(r)
t

’s from every worker, master aggregates them, updates the global
parameter vector, and sends the new model xt+1 to all the workers; upon receiving which, they set
their local parameter vector bx(r)

t+1 to be equal to the global parameter vector xt+1. Our algorithm is
summarized in Algorithm 1.

3.1 Main Results for Synchronous Operation

All results in this paper use the following two standard assumptions. (i) Smoothness: The local
function f

(r) : Rd
! R at each worker r 2 [R] is L-smooth, i.e., for every x,y 2 Rd, we have

f
(r)(y)  f

(r)(x) + hrf
(r)(x),y � xi + L

2 ky � xk2. (ii) Bounded second moment: For every

5The analysis for general p-norm, i.e. kCompk(x)kp SignCompk(x)
k

, for any p 2 Z+ is provided in Appendix A.

4

Algorithm 1 Qsparse-local-SGD

1: Initialize x0 = bx(r)
0 = m

(r)
0 , 8r 2 [R]. Suppose ⌘t follows a certain learning rate schedule.

2: for t = 0 to T � 1 do

3: On Workers:

4: for r = 1 to R do

5: bx(r)

t+ 1
2
 bx(r)

t
� ⌘trf

i
(r)
t

⇣
bx(r)
t

⌘
; i(r)

t
is a mini-batch of size b sampled uniformly in Dr

6: if t+ 1 /2 IT then

7: xt+1 xt, m(r)
t+1 m

(r)
t

and bx(r)
t+1 bx(r)

t+ 1
2

8: else

9: g
(r)
t
 QCompk

⇣
m

(r)
t

+ xt � bx(r)

t+ 1
2

⌘
, send g

(r)
t

to the master.

10: m
(r)
t+1 m

(r)
t

+ xt � bx(r)

t+ 1
2
� g

(r)
t

11: Receive xt+1 from the master and set bx(r)
t+1 xt+1

12: end if

13: end for

14: At Master:

15: if t+ 1 /2 IT then

16: xt+1 xt

17: else

18: Receive g
(r)
t

from R workers and compute xt+1 = xt �
1
R

P
R

r=1 g
(r)
t

19: Broadcast xt+1 to all workers.
20: end if

21: end for

22: Comment: Note that bx(r)

t+ 1
2

is used to denote an intermediate variable between iterations t and t+ 1.

bx(r)
t

2 Rd
, r 2 [R], t 2 [T], we have E

i⇠Dr

[krfi(bx(r)
t

)k2]  G
2, for some constant G < 1. This is

a standard assumption in [4, 12, 16, 23, 25, 26, 29–31, 43]. Relaxation of the uniform boundedness
of the gradient allowing arbitrarily different gradients of local functions in heterogenous settings
as done for SGD in [24, 37] is left as future work. This also imposes a bound on the variance:
E

i⇠Dr

[krfi(bx(r)
t

) � rf
(r)(bx(r)

t
)k2]  �

2
r
, where �

2
r
 G

2 for every r 2 [R]. To state our results,

we need the following definition from [31].

Definition 4 (Gap [31]). Let IT = {t0, t1, . . . , tk}, where ti < ti+1 for i = 0, 1, . . . , k�1. The gap
of IT is defined as gap(IT) := maxi2[k]{(ti � ti�1)}, which is equal to the maximum difference
between any two consecutive synchronization indices.

We leverage the perturbed iterate analysis as in [21, 30] to provide convergence guarantees for
Qsparse-local-SGD. Under assumptions (i) and (ii), the following theorems hold when Algorithm 1 is
run with any compression operator (including our composed operators).

Theorem 1 (Convergence in the smooth (non-convex) case with fixed learning rate). Let f (r)(x)
be L-smooth for every i 2 [R]. Let QCompk : Rd

! Rd be a compression operator whose
compression coefficient is equal to � 2 (0, 1]. Let {bx(r)

t
}
T�1
t=0 be generated according to Algorithm 1

with QCompk, for step sizes ⌘ =
bCp
T

(where bC is a constant such that bCp
T


1
2L) and gap(IT)  H .

Then we have
Ekrf(zT)k2 

⇣
E[f(x0)]�f

⇤

bC
+ bCL

⇣PR
r=1 �

2
r

bR2

⌘⌘
4p
T
+ 8

⇣
4 (1��

2)
�2 + 1

⌘
bC2

L
2
G

2
H

2

T
. (1)

Here zT is a random variable which samples a previous parameter bx(r)
t

with probability 1/RT .

Corollary 1. Let E[f(x0)] � f
⇤
 J

2, where J < 1 is a constant,6 �max = maxr2[R] �r, and
bC2 = bR(E[f(x0)]�f

⇤)
�2
maxL

, we have

Ekrf(zT)k2  O

⇣
J�maxp

bRT

⌘
+O

⇣
J
2
bRG

2
H

2

�2
max�2T

⌘
. (2)

6Even classical SGD requires knowing an upper bound on kx0 � x⇤
k in order to choose the learning rate.

Smoothness of f translates this to the difference of the function values.

5

In order to ensure that the compression does not affect the dominating terms while converging at a
rate of O

⇣
1/
p
bRT

⌘
, we would require7

H = O
�
�T

1/4
/(bR)3/4

�
.

Theorem 1 is proved in Appendix B and provides non-asymptotic guarantees, where we observe that
compression does not affect the first order term. The corresponding asymptotic result (with decaying
learning rate), with a convergence rate of O(1

log T
), is provided in Theorem 5 in Appendix B.

Theorem 2 (Convergence in the smooth and strongly convex case with a decaying learning rate). Let
f
(r) (x) be L-smooth and µ-strongly convex. Let QCompk : Rd

! Rd be a compression operator
whose compression coefficient is equal to � 2 (0, 1]. Let {bx(r)

t
}
T�1
t=0 be generated according to

Algorithm 1 with QCompk, for step sizes ⌘t = 8/µ(a+t) with gap(IT)  H , where a > 1 is such
that we have a � max{4H/�, 32, H},  = L/µ. Then the following holds

E[f (xT)]� f
⇤


La
3

4ST
kx0 � x⇤

k
2 + 8LT (T+2a)

µ2ST
A+ 128LT

µ3ST
B. (3)

Here (i) A =
PR

r=1 �
2
r

bR2 , B = 4
⇣� 3µ

2 + 3L
�

CG
2
H

2

�2 + 3L2
G

2
H

2
⌘

, where C �
4a�(1��

2)
a��4H ; (ii)

xT := 1
ST

P
T�1
t=0

h
wt

⇣
1
R

P
R

r=1 bx
(r)
t

⌘i
, where wt = (a+ t)2; and (iii) ST =

P
T�1
t=o

wt �
T

3

3 .

Corollary 2. For a > max{ 4H
�
, 32, H}, �max = maxr2[R] �r, and using Ekx0 � x⇤

k
2


4G2

µ2

from Lemma 2 in [25], we have

E[f (xT)]� f
⇤
 O

⇣
G

2
H

3

µ2�3T3

⌘
+O

⇣
�
2
max

µ2bRT
+

H�
2
max

µ2bR�T2

⌘
+O

⇣
G

2
H

2

µ3�2T2

⌘
. (4)

In order to ensure that the compression does not affect the dominating terms while converging at a
rate of O (1/(bRT)), we would require H = O

⇣
�

p
T/(bR)

⌘
.

Theorem 2 has been proved in Appendix B. For no compression and only local computations, i.e., for
� = 1, and under the same assumptions, we recover/generalize a few recent results from literature
with similar convergence rates: (i) We recover [43, Theorem 1], which is for non-convex case; (ii) We
generalize [31, Theorem 2.2], which is for a strongly convex case and requires that each worker has
identical datasets, to the distributed case. We emphasize that unlike [31, 43], which only consider
local computation, we combine quantization and sparsification with local computation, which poses
several technical challenges (e.g., see proofs of Lemma 3, 4,7 in Appendix B).

3.2 Proof Outlines

Maintain virtual sequences for every worker

ex(r)
0 := bx(r)

0 and ex(r)
t+1 := ex(r)

t
� ⌘trf

i
(r)
t

⇣
bx(r)
t

⌘
(5)

Define (i) pt := 1
R

P
R

r=1rfi
(r)
t

⇣
bx(r)
t

⌘
, p

t
:= Eit [pt] = 1

R

P
R

r=1rf
(r)

⇣
bx(r)
t

⌘
;

and (ii) ext+1 := 1
R

P
R

r=1 ex
(r)
t+1 = ext � ⌘tpt, bxt := 1

R

P
R

r=1 bx
(r)
t

.

Proof outline of Theorem 1. Since f is L-smooth, we have f(ext+1)� f(ext)  �⌘thrf(ext),pti+
⌘
2
tL

2 kptk
2. With some algebraic manipulations provided in Appendix B, for ⌘t  1/2L, we arrive at

⌘t
4R

RX

r=1

Ekrf(bx(r)
t

)k2  E[f(ext)]� E[f(ext+1)] + ⌘
2
tLEkpt � p

t
k
2 + 2⌘tL

2Ekext � bxtk
2

+2⌘tL
2 1
R

RX

r=1

Ekbxt � bx(r)
t
k
2
. (6)

Under Assumptions 1 and 2, we have Ekpt � p
t
k
2


PR
r=1 �

2
r

bR2 . To bound Ekext � bxtk
2 in (6), we

first show (in Lemma 7 in Appendix B) that bxt � ext = 1
R

P
R

r=1 m
(r)
t

, i.e., the difference of the
true and the virtual parameter vectors is equal to the average memory, and then we bound the local
memory at each worker r 2 [R] below.

7Here we characterize the reduction in communication that can be afforded, however for a constant H we get
the same rate of convergence after T = ⌦

�
(bR)3/�4

�
. Analogous statements hold for Theorem 2-4.

6

Lemma 3 (Bounded Memory). For ⌘t = ⌘, gap(IT)  H , we have for every t 2 Z+ that

Ekm(r)
t
k
2
 4 ⌘

2(1��
2)

�2 H
2
G

2
. (7)

Using Lemma 3, we get Ekext � bxtk
2


1
R

P
R

r=1 Ekm
(r)
t

k
2
 4⌘

2(1��
2)

�2 H
2
G

2. We can bound the

last term of (6) as 1
R

P
R

r=1 Ekbxt�bx(r)
t

k
2
 ⌘

2
G

2
H

2 in Lemma 9 in Appendix B. Putting them back
in (6), performing a telescopic sum from t = 0 to T � 1, and then taking an average over time, we get

1
RT

T�1X

t=0

RX

r=1

Ekrf(bx(r)
t

)k2 
4(E[f(ex0)]�f

⇤)
⌘T

+ 4⌘L
bR2

RX

r=1

�
2
r + 32 ⌘

2(1��
2)

�2 L
2
G

2
H

2 + 8⌘2
L

2
G

2
H

2
.

By letting ⌘ = bC/
p
T , where bC is a constant such that bCp

T


1
2L , we arrive at Theorem 1.

Proof outline of Theorem 2. Using the definition of virtual sequences (5), we have kext+1 � x⇤
k
2 =

kext � x⇤
� ⌘tpt

k
2 + ⌘

2
t
kpt � p

t
k
2
� 2⌘t hext � x⇤

� ⌘tpt
,pt � p

t
i. With some algebraic manipu-

lations provided in Appendix B, for ⌘t  1/4L and letting et = E[f(bxt)]� f
⇤, we get

Ekext+1 � x⇤
k
2


�
1� µ⌘t

2

�
Ekext � x⇤

k
2
�

⌘tµ

2L et + ⌘t

�
3µ
2 + 3L

�
Ekbxt � extk

2

+ 3⌘tL
R

RX

r=1

Ekbxt � bx(r)
t
k
2 + ⌘

2
t

PR
r=1 �

2
r

bR2 . (8)

To bound the 3rd term on the RHS of (63), first we note that bxt � ext =
1
R

P
R

r=1 m
(r)
t

, and then we
bound the local memory at each worker r 2 [R] below.

Lemma 4 (Memory Contraction). For a > 4H/�, ⌘t = ⇠/a+t, gap(IT)  H , there exists a
C �

4a�(1��
2)

a��4H such that the following holds for every t 2 Z+

Ekm(r)
t
k
2
 4

⌘
2
t

�2CH
2
G

2
. (9)

A proof of Lemma 4 is provided in Appendix B and is technically more involved than the proof
of Lemma 3. This complication arises because of the decaying learning rate, combined with
compression and local computation. We can bound the penultimate term on the RHS of (63) as
1
R

P
R

r=1 Ekbxt � bx(r)
t

k
2
 4⌘2

t
G

2
H

2. This can be shown along the lines of the proof of [31, Lemma
3.3] and we show it in Lemma 8 in Appendix B. Substituting all these in (63) gives

Ekext+1 � x⇤
k
2


�
1� µ⌘t

2

�
Ekext � x⇤

k
2
�

µ⌘t
2L et + ⌘t

�
3µ
2 + 3L

�
C

4⌘2
t

�2 G
2
H

2

+ (3⌘tL)4⌘
2
tLG

2
H

2 + ⌘
2
t

PR
r=1 �

2
r

bR2 . (10)

Since (10) is a contracting recurrence relation, with some calculation done in Appendix B, we
complete the proof of Theorem 2.

4 Asynchronous Qsparse-local-SGD

We propose and analyze a particular form of asynchronous operation where the workers synchronize
with the master at arbitrary times decided locally or by master picking a subset of nodes as in federated
learning [17, 22]. However, the local iterates evolve at the same rate, i.e. each worker takes the same
number of steps per unit time according to a global clock. The asynchrony is therefore that updates
occur after different number of local iterations but the local iterations are synchronous with respect to
the global clock.8

In this asynchronous setting, I(r)
T

’s may be different for different workers. However, we assume that
gap(I(r)

T
)  H holds for every r 2 [R], which means that there is a uniform bound on the maximum

delay in each worker’s update times. The algorithmic difference from Algorithm 1 is that, in this
case, a subset of workers (including a single worker) can send their updates to the master at their
synchronization time steps; master aggregates them, updates the global parameter vector, and sends
that only to those workers. Our algorithm is summarized in Algorithm 2 in Appendix C. We give the
simplified expressions of our main results below; more precise results are in Appendix C.

8This is different from asynchronous algorithms studied for stragglers [26, 41], where only one gradient step
is taken but occurs at different times due to delays.

7

Theorem 3 (Convergence in the smooth non-convex case with fixed learning rate). Under the
same conditions as in Theorem 1 with gap(I(r)

T
)  H , if {bx(r)

t
}
T�1
t=0 is generated according to

Algorithm 2, the following holds, where E[f(x0)] � f
⇤
 J

2, �max = maxr2[R] �r, and bC2 =
bR(E[f(x0)]�f

⇤)/�2
max.

Ekrf(zT)k2  O

⇣
J�maxp

bRT

⌘
+O

⇣
J
2
bRG

2

�2
max�2T

(H2 +H
4)
⌘
. (11)

where zT is a random variable which samples a previous parameter bx(r)
t

with probability 1/RT . In
order to ensure that the compression does not affect the dominating terms while converging at a rate
of O

⇣
1/
p
bRT

⌘
, we would require H = O

�p
�T

1/8
/(bR)3/8

�
.

We give a precise result in Theorem 6 in Appendix C. Note that Theorem 3 provides non-asymptotic
guarantees, where compression is almost for “free”. The corresponding asymptotic result with
decaying learning rate, with a convergence rate of O(1

log T
), is provided in Theorem 8 in Appendix C.

Theorem 4 (Convergence in the smooth and strongly convex case with decaying learning rate).
Under the same conditions as in Theorem 2 with gap(I(r)

T
)  H , a > max{4H/�, 32, H}, �max =

maxr2[R] �r, if {bx(r)
t

}
T�1
t=0 is generated according to Algorithm 2, the following holds:

E[f (xT)]� f
⇤
 O

⇣
G

2
H

3

µ2�3T3

⌘
+O

⇣
�
2
max

µ2bRT
+

H�
2
max

µ2bR�T2

⌘
+O

⇣
G

2

µ3�2T2 (H
2 +H

4)
⌘
. (12)

where xT , ST are as defined in Theorem 2. To ensure that the compression does not affect the dominat-
ing terms while converging at a rate of O (1/(bRT)), we would require H = O

�p
�(T/(bR))1/4

�
.

We give a more precise result in Theorem 7 in Appendix C. If I(r)
T

’s are the same for all the workers,
then one would ideally require that the bounds on H in the asynchronous setting reduce to the bounds
on H in the synchronous setting. This is not happening, as our bounds in the asynchronous setting
are for the worst case scenario – they hold as long as gap(I(r)

T
)  H , for every r 2 [R].

4.1 Proof Outlines

Our proofs of these results follow the same outlines of the corresponding proofs in the synchronous
setting, but some technical details change significantly. This is because, in our asynchronous setting,
workers are allowed to update the global parameter vector in between two consecutive synchronization
time steps of other workers. For example, unlike the synchronous setting, bxt � ext =

1
R

P
R

r=1 m
(r)
t

does not hold here; however, we can show that bxt � ext is equal to the sum of 1
R

P
R

r=1 m
(r)
t

and an
additional term, which leads to potentially a weaker bound Ekbxt � extk

2
 O

�
⌘
2
t/�2G

2(H2 +H
4)
�

(vs. O
�
⌘
2
t/�2G

2
H

2
�

for the synchronous setting), proved in Lemma 13-14 in Appendix C. Similarly,
the proof of the average true sequence being close to the virtual sequence requires carefully chosen
reference points on the global parameter sequence lying within bounded steps of the local parameters.
We show a bound on 1

R

P
R

r=1 Ekbxt � bx(r)
t

k
2
 O(⌘2

t
G

2(H2 + H
4
/�2), which is weaker than the

corresponding bound O(⌘2
t
G

2
H

2) for the synchronous setting, in Lemma 11-12 in Appendix C.

5 Experiments

Experiment setup: We train ResNet-50 [13] (which has d = 25, 610, 216 parameters) on ImageNet
dataset, using 8 NVIDIA Tesla V100 GPUs. We use a learning rate schedule consisting of 5 epochs of
linear warmup, followed by a piecewise decay of 0.1 at epochs 30, 60 and 80, with a batch size of 256
per GPU. For experiments, we focus on SGD with momentum of 0.9, applied on the local iterations
of the workers. We build our compression scheme into the Horovod framework [28].9 We use
SignTopk (as in Lemma 2) as our composed operator. In Topk, we only update kt = min(dt, 1000)
elements per step for each tensor t, where dt is the number of elements in the tensor. For ResNet-50
architecture, this amounts to updating a total of k = 99, 400 elements per step. We also perform
analogous experiments on the MNIST [19] handwritten digits dataset for softmax regression with a
standard `2 regularizer, using the synchronous operation of Qsparse-local-SGD with 15 workers, and

9Our implementation is available at https://github.com/karakusc/horovod/tree/qsparselocal.

8

a decaying learning rate as proposed in Theorem 2, the details of which are provided in Appendix D.10

Results: Figure 1 compares the performance of SignTopk-SGD (which employs the 1 bit sign quan-
tizer and the Topk sparsifier) with error compensation (SignTopK) against (i) Topk SGD with error
compensation (TopK-SGD), (ii) SignSGD with error compensation (EF-SIGNSGD), and (iii) vanilla
SGD (SGD). All of these are specializations of Qsparse-local-SGD. Furthermore, SignTopK_hL
uses a synchronization period of h; same applies for other schemes. From Figure 1a, we observe that
quantization and sparsification, both individually and combined, with error compensation, has almost
no penalty in terms of convergence rate, with respect to vanilla SGD. We observe that SignTopK
demonstrates superior performance over EF-SIGNSGD, TopK-SGD, as well as vanilla SGD, both
in terms of the required number of communicated bits for achieving a certain target loss as well as
test accuracy. This is because in SignTopK, we send only 1 bit for the sign of each Topk coordinate,
along with its location. Observe that the incorporation of local iterations in Figure 1a has very little
impact on the convergence rates, as compared to vanilla SGD with the same number of local iterations.
Furthermore, this provides an added advantage over SignTopK, in terms of savings (by a factor of 6
to 8 times on average) in communication bits for achieving a certain target loss; see Figure 1b.

(a) Training loss vs epochs (b) Training loss vs log2 of
communication budget

(c) top-1 accuracy [18] for
schemes in Figure 1a

(d) top-5 accuracy [18] for
schemes in Figure 1a

Figure 1 Figure 1a-1d demonstrate performance gains of our of our scheme in comparison with local SGD [31],
EF-SIGNSGD [15] and TopK-SGD [4, 30] in a non-convex setting for synchronous updates.

Figure 1c and Figure 1d show the top-1, and top-5 convergence rates,11respectively, with respect
to the total number of bits of communication used. We observe that Qsparse-local-SGD combines
the bit savings of the deterministic sign based operator and aggressive sparsifier, with infrequent
communication; thereby, outperforming the cases where these techniques are individually used. In
particular, the required number of bits to achieve the same loss or accuracy in the case of Qsparse-
local-SGD is around 1/16 in comparison with TopK-SGD and over 1000⇥ less than vanilla SGD.

(a) Training loss vs epochs (b) Training loss vs log2 of communication
budget

(c) top-1 accuracy [18] for schemes in
Figure 2a

Figure 2 Figure 2a-2c demonstrate the performance gains of our scheme in a convex setting.

Figure 2b and 2c makes similar comparisons in the convex setting, and shows that for a test error
approximately 0.1, Qsparse-local-SGD combines the benefits of the composed operator SignTop

k
,

with local computations, and needs 10-15 times less bits than TopK-SGD and 1000⇥ less bits than
vanilla SGD. Also in Figure 2a, we observe that both TopK-SGD and SignTopK_8L (SignTopK with
8 local iterations) converge at rates which are almost similar to that of their corresponding local SGD
counterpart. Our experiments in both non-convex and convex settings verify that error compensation
through memory can be used to mitigate not only the missing components from updates in previous
synchronization rounds, but also explicit quantization error.

10Further numerics demonstrating the performance of Qsparse-local-SGD for the composition of a stochastic
quantizer with a sparsifier, as compared to SignTopk and other standard baselines can be found in [6].

11top-i refers to the accuracy of the top i predictions by the model from the list of possible classes; see [18].

9

Acknowledgments

The authors gratefully thank Navjot Singh for his help with experiments in the early stages of this
work. This work was partially supported by NSF grant #1514531, by UC-NL grant LFR-18-548554
and by Army Research Laboratory under Cooperative Agreement W911NF-17-2-0196. The views
and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation here on.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. A. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for large-scale
machine learning. In OSDI, pages 265–283, 2016.

[2] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.
In EMNLP, pages 440–445, 2017.

[3] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. QSGD: communication-efficient
SGD via gradient quantization and encoding. In NIPS, pages 1707–1718, 2017.

[4] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and C. Renggli. The
convergence of sparsified gradient methods. In NeurIPS, pages 5977–5987, 2018.

[5] Francis R. Bach and Eric Moulines. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In NIPS, pages 451–459, 2011.

[6] Debraj Basu, Deepesh Data, Can Karakus, and Suhas N. Diggavi. Qsparse-local-sgd: Distributed
SGD with quantization, sparsification, and local computations. CoRR, abs/1906.02367, 2019.

[7] J. Bernstein, Y. Wang, K. Azizzadenesheli, and A. Anandkumar. SignSGD: compressed
optimisation for non-convex problems. In ICML, pages 559–568, 2018.

[8] L. Bottou. Large-scale machine learning with stochastic gradient descent. In COMPSTAT,
pages 177–186, 2010.

[9] Kai Chen and Qiang Huo. Scalable training of deep learning machines by incremental block
training with intra-block parallel optimization and blockwise model-update filtering. In ICASSP,
pages 5880–5884, 2016.

[10] Gregory F. Coppola. Iterative parameter mixing for distributed large-margin training of
structured predictors for natural language processing. PhD thesis, University of Edinburgh,
UK, 2015.

[11] R. Gitlin, J. Mazo, and M. Taylor. On the design of gradient algorithms for digitally implemented
adaptive filters. IEEE Transactions on Circuit Theory, 20(2):125–136, March 1973.

[12] Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: optimal algorithms for
stochastic strongly-convex optimization. Journal of Machine Learning Research, 15(1):2489–
2512, 2014.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016.

[14] Robbins Herbert and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics. JSTOR, 22, no. 3:400–407, 1951.

[15] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U. Stich, and Martin Jaggi. Error
feedback fixes signsgd and other gradient compression schemes. In ICML, pages 3252–3261,
2019.

[16] Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi. Decentralized stochastic opti-
mization and gossip algorithms with compressed communication. In ICML, pages 3478–3487,
2019.

[17] Jakub Konecný. Stochastic, distributed and federated optimization for machine learning. CoRR,
abs/1707.01155, 2017.

10

[18] Maksim Lapin, Matthias Hein, and Bernt Schiele. Top-k multiclass SVM. In NIPS, pages
325–333, 2015.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, 86(11):2278-2324, 1998.

[20] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally. Deep gradient compression: Reducing the
communication bandwidth for distributed training. In ICLR, 2018.

[21] H. Mania, X. Pan, D. S. Papailiopoulos, B. Recht, K. Ramchandran, and M. I. Jordan. Perturbed
iterate analysis for asynchronous stochastic optimization. SIAM Journal on Optimization,
27(4):2202–2229, 2017.

[22] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In AISTATS, pages 1273–1282, 2017.

[23] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–
1609, 2009.

[24] Lam M. Nguyen, Phuong Ha Nguyen, Marten van Dijk, Peter Richtárik, Katya Scheinberg, and
Martin Takác. SGD and hogwild! convergence without the bounded gradients assumption. In
ICML, pages 3747–3755, 2018.

[25] A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly convex
stochastic optimization. In ICML, 2012.

[26] Benjamin Recht, Christopher Ré, Stephen J. Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In NIPS, pages 693–701, 2011.

[27] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its application
to data-parallel distributed training of speech dnns. In INTERSPEECH, pages 1058–1062, 2014.

[28] A. Sergeev and M. D. Balso. Horovod: fast and easy distributed deep learning in tensorflow.
CoRR, abs/1802.05799, 2018.

[29] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-gradient
solver for SVM. In ICML, pages 807–814, 2007.

[30] S. U. Stich, J. B. Cordonnier, and M. Jaggi. Sparsified SGD with memory. In NeurIPS, pages
4452–4463, 2018.

[31] Sebastian U. Stich. Local SGD converges fast and communicates little. In ICLR, 2019.
[32] Nikko Strom. Scalable distributed DNN training using commodity GPU cloud computing. In

INTERSPEECH, pages 1488–1492, 2015.
[33] A. Theertha Suresh, F. X. Yu, S. Kumar, and H. B. McMahan. Distributed mean estimation with

limited communication. In ICML, pages 3329–3337, 2017.
[34] H. Tang, S. Gan, C. Zhang, T. Zhang, and Ji Liu. Communication compression for decentralized

training. In NeurIPS, pages 7663–7673, 2018.
[35] Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication compression

for decentralized training. In NeurIPS, pages 7663–7673, 2018.
[36] H. Wang, S. Sievert, S. Liu, Z. B. Charles, D. S. Papailiopoulos, and S. Wright. ATOMO:

communication-efficient learning via atomic sparsification. In NeurIPS, pages 9872–9883,
2018.

[37] Jianyu Wang and Gauri Joshi. Cooperative SGD: A unified framework for the design and
analysis of communication-efficient SGD algorithms. CoRR, abs/1808.07576, 2018.

[38] J. Wangni, J. Wang, J. Liu, and T. Zhang. Gradient sparsification for communication-efficient
distributed optimization. In NeurIPS, pages 1306–1316, 2018.

[39] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. Terngrad: Ternary gradients to
reduce communication in distributed deep learning. In NIPS, pages 1508–1518, 2017.

[40] J. Wu, W. Huang, J. Huang, and T. Zhang. Error compensated quantized SGD and its applications
to large-scale distributed optimization. In ICML, pages 5321–5329, 2018.

[41] Tianyu Wu, Kun Yuan, Qing Ling, Wotao Yin, and Ali H. Sayed. Decentralized consensus
optimization with asynchrony and delays. IEEE Trans. Signal and Information Processing over
Networks, 4(2):293–307, 2018.

11

[42] Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient
momentum sgd for distributed non-convex optimization. In ICML, pages 7184–7193, 2019.

[43] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted SGD with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In AAAI, pages
5693–5700, 2019.

[44] Y. Zhang, J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Information-theoretic lower bounds
for distributed statistical estimation with communication constraints. In NIPS, pages 2328–2336,
2013.

[45] Y. Zhang, J. C. Duchi, and M. J. Wainwright. Communication-efficient algorithms for statistical
optimization. Journal of Machine Learning Research, 14(1):3321–3363, 2013.

12

A Supplementary Material of Section 2

Now we give a simple but important corollary, which allows us to apply different compression
operators to different coordinates of a vector. For example, in the case of training neural networks,
we can apply different compression operator to different layers.
Corollary 3 (Piecewise Compression). Let Ci : Rdi ! Rdi for i 2 [L] denote possibly different
compression operators with compression coefficients �i. Let x = [x1 x2 . . .xL], where xi 2 Rdi

for all i 2 [L]. Then C(x) := [C1(x1)C2(x2) . . . CL(xL)] is a compression operator with the
compression coefficient being equal to �min = min

i2[L]
�i.

Proof. Fix an arbitrary x 2 Rd.

ECkx� C(x)k22 =
LX

i=1

ECikxi � Ci(xi)k
2
2

(a)


LX

i=1

(1� �i)kxik
2
2

 (1� �min)kxk
2
2

Inequality (a) follows because each Ci is a compression operator with the compression coefficient
�i.

Lemma (Restating Lemma 1, Composing stochastic quantization and sparsification). Let Compk 2

{Top
k
,Randk}. Let Qs : Rd

! Rd be a stochastic quantizer with parameter s that satisfies
Definition 1. Let QsCompk : Rd

! Rd be defined as QsCompk(x) := Qs(Compk(x)) for every
x 2 Rd. Then QsCompk(x)

(1+�k,s)
is a compression operator with the compression coefficient being equal to

� = k

d(1+�k,s)
.

Proof. Fix an arbitrary x 2 Rd.

EC,Q[kx�
QsCompk(x)

(1+�k,s)
k
2
2] = kxk22 � 2EC

hD
x,EQ

h
QsCompk(x)

(1+�k,s)

iEi
+ EC,Q

h
kQsCompk(x)k2

2
(1+�k,s)2

i

(a)
= kxk22 �

2
(1+�k,s)

EC [hx, Compk(x)i]

+ 1
(1+�k,s)2

EC,Q

⇥
kQsCompk(x)k

2
2

⇤

In (a) we used EQ[QsCompk(x)] = Compk(x), which follows from (i) of Definition 1. Observe
that, for Compk 2 {Top

k
,Randk}, we have hx, Compk(x)i = kCompk(x)k22. Continuing from

above, we get

EC,Q[kx�
QsCompk(x)

(1+�k,s)
k
2
2] = kxk22 �

2
(1+�k,s)

EC

⇥
kCompk(x)k

2
2

⇤

+ 1
(1+�k,s)2

EC,Q

⇥
kQsCompk(x)k

2
2

⇤
(13)

Observe that for any Compk 2 {Top
k
,Randk}, Compk(x) is a length-d vector, but only (at most)

k of its components are non-zero. This implies that, by treating Compk(x) a length-k vector
whose entries correspond to the k non-zero entries of x, we can write EQ[kQsCompk(x)k22] 
(1 + �k,s)kCompk(x)k22; see (ii) of Definition 1. Putting this back in (13), we get

EC,Q[kx�
QsCompk(x)

(1+�k,s)
k
2
2]  kxk22 �

2
1+�k,s

EC

⇥
kCompk(x)k

2
2

⇤

+ 1
(1+�k,s)

EC

⇥
kCompk(x)k

2
2

⇤

= kxk22 �
1

(1+�k,s)
EC

⇥
kCompk(x)k

2
2

⇤
(14)

Using EC [kCompk(x)k22] �
k

d
kxk22 (see (16) in Lemma 5) in (14) gives

EC,Q[kx�
QsCompk(x)

(1+�k,s)
k
2
2]  kxk22 �

(k/d)kxk2
2

(1+�k,s)

=
h
1� k

d(1+�k,s)

i
kxk22.

13

This completes the proof of Lemma 1.

Lemma 5. Let Compk 2 {Top
k
,Randk}. For any x 2 Rd, we have

E[kCompk(x)k
2
1] � max

n
k

d
kxk22,

k
2

d2 kxk
2
1

o
(15)

E[kCompk(x)k
2
2] �

k

d
kxk22. (16)

Proof. Let m 2 {1, 2}. Observe that for any x 2 Rd, we have E[kTop
k
(x)k2

m
] = kTop

k
(x)k2

m

and that kTop
k
(x)k2

m
� E[kRandk(x)k2m]. So, in order to prove the lemma, it suffices to show that

E[kRandk(x)k2m] � k

d
kxk2

m
holds for any m 2 {1, 2}, and that E[kRandk(x)k21] � k

2

d2 kxk21. Let
⌦k be the set of all the k-elements subsets of [d].

E[kRandk(x)k2m] =
X

!2⌦k

1
|⌦k|

dX

i=1

|xi|
m
· {i 2 !}

!2/m

(a)
�

X

!2⌦k

1
|⌦k|

dX

i=1

|xi|
2
· {i 2 !}

=
dX

i=1

x
2
i
·

1
|⌦k|

X

!2⌦k

{i 2 !}

=
dX

i=1

x
2
i
·

1
|⌦k|

✓
d� 1

k � 1

◆

= k

d
kxk22

Note that (a) holds only for m 2 {1, 2}, and it is equality for m = 2. Now we show that
E[kRandk(x)k21] � k

2

d2 kxk21.

E[kRandk(x)k21] � (E[kRandk(x)k1])2

=

X

!2⌦k

1
|⌦k|

dX

i=1

|xi| · {i 2 !}

!2

=

dX

i=1

|xi| ·
1

|⌦k|

X

!2⌦k

{i 2 !}

!2

=

dX

i=1

|xi| ·
1

|⌦k|

✓
d� 1

k � 1

◆!2

= k
2

d2 kxk
2
1

Lemma 6. For Compk 2 {Top
k
,Randk}, kCompk(x)km SignCompk(x)

k
, where k · km is the m-

norm,12 for any m 2 Z+ is a compression operator with the compression coefficient �m being equal
to

�m =

8
><

>:

max

⇢
1
d
,
k

d

⇣
kCompk(x)k1p
dkCompk(x)k2

⌘2�
if m = 1,

k

2
m

�1

d
if m � 2.

Remark 1. Note that this subsumes Lemma 2, which is for m = 1. Observe that for m = 1,
depending on the value of k, either of the terms inside the max can be bigger than the other term. For
example, if k = 1, then kCompk(x)k1 = kCompk(x)k2, which implies that the second term inside
the max is equal to 1/d2, which is much smaller than the first term. On the other hand, if k = d and
the vector x is dense, then the second term may be much bigger than the first term.

12The m-norm of a vector u 2 Rd is defined as kukm :=
⇣P

d

i=1 |ui|
m

⌘ 1
m ,

14

Proof of Lemma 6. Take an arbitrary x 2 Rd.

EC

���kCompk(x)km SignCompk(x)
k

� x
���
2

2

= EC

h
kCompk(x)k2

m
k

� 2
D

kCompk(x)km SignCompk(x)
k

,x
E
+ kxk22

i

= EC

h
kCompk(x)k2

m
k

� 2kCompk(x)kmkCompk(x)k1

k
+ kxk22

i

 kxk22 �
ECkCompk(x)k2

m
k

(17)

In (17) we used the fact that k · k1 � k · km for every m � 1.

Case 1. When m = 1: Substituting ECkCompk(x)k21 � max
n

k

d
kxk22,

k
2

d2 kxk21

o
(from (15)) in

(17) gives

EC

���kCompk(x)k1 SignCompk(x)
k

� x
���
2

2
 kxk22 �

1
k
max

n
k

d
kxk22,

k
2

d2 kxk
2
1

o




1�max

⇢
1
d
,
k

d

⇣
kCompk(x)k1p
dkCompk(x)k2

⌘2��
kxk22.

Case 2. When m � 2: Since kukp  k

1
p
� 1

q kukq holds for every u 2 Rk, whenever p  q, using
this in (17) with q = m and p = 2 gives

EC

���kCompk(x)km SignCompk(x)
k

� x
���
2

2

 kxk22 �
1
k
k

2
m

�1EC [kCompk(x)k
2
2]

 kxk22 �
1
k
k

2
m

�1(k/d)kxk22 (By Lemma 5)

=

"
1� k

2
m

�1

d

#
kxk22. (18)

This completes the proof of Lemma 6.

B Supplementary Material of Synchronous Qsparse-local-SGD from

Section 3

B.1 Additional Theorem

Here we give a complementary result for Theorem 1, which was for a fixed learning rate. As noted
earlier, the following theorem hold when Algorithm 1 is run with any compression operator (including
our composed operators).

Theorem 5 (Convergence in the smooth (non-convex) case with decaying learning rate). Let f (r)(x)
be L-smooth for every r 2 [R]. Let QCompk : Rd

! Rd be a compression operator whose
compression coefficient is equal to � 2 (0, 1]. Let {bx(r)

t
}
T�1
t=0 be generated according to Algorithm

1 with QCompk, for step sizes ⌘t = ⇠

(a+t) and gap(IT)  H , where a > 1 is such that, we have

a > max{ 4H
�
, 2⇠L,H} and C �

4a�(1��
2)

a��4H . Then the following holds.

Ekrf(zT)k
2


Ef(x0)�f
⇤

PT
+ L⇠

2

(a�1)PT

⇣PR
r=1 �

2
r

bR2

⌘
+
⇣

8C
�2 + 8

⌘
⇠
3
L

2
G

2
H

2

2(a�1)2PT
(19)

Here (i) �t := ⌘t

4R ; (ii) PT :=
P

T�1
t=0

P
R

r=1 �t, which is lower bounded as PT �
⇠

4 ln
�
T+a�1

a

�
; and

(iii) zT is a random variable which samples a previous parameter bx(r)
t

with probability �t/PT .

15

B.2 Maintain Virtual Sequences

As outlined in Section 3, in order to prove our results, we define virtual sequences for every worker
r 2 [R] and for all t � 0 as follows:

ex(r)
0 := bx(r)

0 and ex(r)
t+1 := ex(r)

t
� ⌘trf

i
(r)
t

⇣
bx(r)
t

⌘
(20)

Define (i) pt :=
1
R

P
R

r=1 rf
i
(r)
t

⇣
bx(r)
t

⌘
, p

t
:= Eit [pt] =

1
R

P
R

r=1 rf
(r)
⇣
bx(r)
t

⌘
;

and (ii) ext+1 := 1
R

P
R

r=1 ex
(r)
t+1 = ext � ⌘tpt, bxt :=

1
R

P
R

r=1 bx
(r)
t

B.3 Bounding Error Compensation (Memory)

B.3.1 Difference of the true and the virtual parameter vectors is the average memory

Lemma 7 (Memory). The memory is maintained so as to capture the distance between the true
sequence and virtual sequence.

bxt � ext =
1
R

RX

r=1

m
(r)
t

. (21)

Proof. Recall notation for an intermediate variable bx(r)
t+ 1

2
in Algorithm 1. Now consider bxt � ext =

1
R

P
R

r=1 bx
(r)
t

� ex(r)
t

. For the nearest tr + 1 2 IT such that tr + 1  t and the nearest t0
r
+ 1 2 IT

such that t0
r
+ 1  tr

bxt � ext =
1
R

RX

r=1

⇣
bx(r)
tr+1 � ex

(r)
tr+1

⌘

= 1
R

RX

r=1

xtr �

1
R

RX

r=1

g
(r)
tr

� (ex(r)
t0r+1 � (bx(r)

t0r+1 � bx
(r)

tr+
1
2

))

!
(22)

Here we used that bx(r)
t0r+1 � bx

(r)

tr+
1
2

=
trP

j=t0r+1
⌘jrf

i
(r)
j

⇣
bx(r)
j

⌘
. Substituting bx(r)

t0r+1 = xt0r+1 we get

bxt � ext =
1
R

RX

r=1

xtr �

1
R

RX

r=1

g
(r)
tr

� (ex(r)
t0r+1 � (xt0r+1 � bx(r)

tr+
1
2

))

!

= xt0r+1 �
1
R

RX

r=1

g
(r)
tr

� (ext0r+1 � (xt0r+1 � bx
tr+

1
2
))

= bxt0r+1 � ext0r+1 + (xt0r+1 � bx
tr+

1
2
)� 1

R

RX

r=1

g
(r)
tr

(23)

Now since xt0r+1 = xtr we have

bxt � ext = bxt0r+1 � ext0r+1 + (xtr � bx
tr+

1
2
)� 1

R

RX

r=1

g
(r)
tr

(24)

On rolling out the expression in (24) we get

bxt � ext =
1
R

RX

r=1

2

664
X

j:j+12IT
jtr

✓
x(r)
j

� bx(r)

j+
1
2

� g
(r)
j

◆
3

775

= 1
R

RX

r=1

m
(r)
tr+1

= 1
R

RX

r=1

m
(r)
t

(25)

16

Therefore bxt � ext =
1
R

P
R

r=1 m
(r)
t

is the average memory.

B.3.2 Memory contraction under the decaying learning rate

Lemma (Restating Lemma 4, Memory Contraction). Let IT 2 [T] be a set of time instances in
which the worker r updates and synchronizes with the master. For a >

4H
�

, ⌘t = ⇠

a+t
, gap(IT)  H

and t 2 Z+, there exists a C �
4a�(1��

2)
a��4H such that

Ekm(r)
t

k
2
 4 ⌘

2
t

�2CH
2
G

2
. (26)

Proof. Fix an arbitrary worker r 2 [R]. In order to prove the lemma, we need to show that
Ekm(r)

t
k
2
 4 ⌘

2
t

�2CH
2
G

2 holds for every t 2 [T], where C �
4a�(1��

2)
a��4H . We show this separately

for two cases, depending on whether or not t 2 IT . First consider the case when t 2 IT . Let
IT = {t(1), t(2), . . . , t(l) = T}. Fix any i = 1, 2, . . . , l and consider Ekm(r)

t(i+1)
k
2. Note that local

memory m
(r)
t

at any worker r and the global parameter vector xt do not change in between the
synchronization indices. We define m

(r)
t(0)

:= 0 for every r 2 [R].

Ekm(r)
t(i+1)

k
2 = Ekm(r)

t(i+1)�1 + xt(i+1)�1 � bx(r)

t(i+1)�
1
2

� g
(r)
t(i+1)�1k

2

(a)
 (1� �)Ekm(r)

t(i+1)�1 + xt(i+1)�1 � bx(r)

t(i+1)�
1
2

k
2

(b)
= (1� �)Ekm(r)

t(i)
+ xt(i)

� bx(r)

t(i+1)�
1
2

k
2

(c)
= (1� �)Ekm(r)

t(i)
+ bx(r)

t(i)
� bx(r)

t(i+1)�
1
2

k
2 (27)

Here (a) is due to the compression property, (b) holds since the memory and master parameter remain
unchanged between two rounds of synchronization, and in (c) we used that bx(r)

t(i)
= xt(i)

, which holds
for every r. Using the inequality ka+ bk2  (1 + ⌧)kak2 + (1 + 1

⌧
)kbk2, which holds for every

⌧ > 0, in (27) gives (take any p > 1 in the following):

Ekm(r)
t(i+1)

k
2
 (1� �)

⇣
1 + (p�1)�

p

⌘
Ekm(r)

t(i)
k
2 +

⇣
1 + p

(p�1)�

⌘
Ekbx(r)

t(i)
� bx(r)

t(i+1)�
1
2

k
2

�



⇣
1� �

p

⌘
Ekm(r)

t(i)
k
2 + (1��)(p�+p)

(p�1)� Ekbx(r)
t(i)

� bx(r)

t(i+1)�
1
2

k
2

=
⇣
1� �

p

⌘
Ekm(r)

t(i)
k
2 + p(1��

2)
(p�1)� Ekbx(r)

t(i)
� bx(r)

t(i+1)�
1
2

k
2

=
⇣
1� �

p

⌘
Ekm(r)

t(i)
k
2 + p(1��

2)
(p�1)� Ek

t(i+1)�1X

j=t(i)

⌘jrf
i
(r)
j

⇣
bx(r)
j

⌘
k
2



⇣
1� �

p

⌘
Ekm(r)

t(i)
k
2 + p(1��

2)
(p�1)� ⌘

2
t(i)

H
2
G

2 (28)

In the last inequality (28) we used Ek
Pt(i+1)�1

j=t(i)
⌘jrf

i
(r)
j

⇣
bx(r)
j

⌘
k
2
 ⌘

2
t(i)

H
2
G

2, which can be
seen as follows:

Ek
t(i+1)�1X

j=t(i)

⌘jr
(r)

f(ij)

⇣
bx(r)
j

⌘
k
2 = (t(i+1) � t(i))

2Ek 1
(t(i+1)�t(i))

t(i+1)�1X

j=t(i)

⌘jrf
i
(r)
j

⇣
bx(r)
j

⌘
k
2

(a)
 (t(i+1) � t(i))

t(i+1)�1X

j=t(i)

Ek⌘jrf
i
(r)
j

⇣
bx(r)
j

⌘
k
2

(b)
 (t(i+1) � t(i))⌘

2
t(i)

t(i+1)�1X

j=t(i)

Ekrf
i
(r)
j

⇣
bx(r)
j

⌘
k
2

17

 (t(i+1) � t(i))⌘
2
t(i)

(t(i+1) � t(i))G
2

(c)
 ⌘

2
t(i)

H
2
G

2

Here (a) holds by Jensen’s inequality, (b) holds since since ⌘t  ⌘t(i)8t � t(i) and (c) holds because
(t(i+1) � t(i))  H . Define ⌘̃t =

1
a+t

and A = ⇠
2
H

2
G

2. Using this in (28) gives

Ekm(r)
t(i+1)

k
2


⇣
1� �

p

⌘
Ekm(r)

t(i)
k
2 + p(1��

2)
(p�1)� ⌘̃

2
t(i)

A. (29)

We want to show that Ekm(r)
t(i)

k
2
 4C

⌘̃
2
t(i)

�2 A holds for every i = 1, 2, . . ., where C �
4a�(1��

2)
a��4H .

In fact we prove a slightly stronger bound that Ekm(r)
t(i)

k
2
 C

⌘̃
2
t(i)

�2 A holds for every i = 1, 2,
We prove this using induction on i.

Base case (i = 1): Note that m(r)
t(1)�1 = m

(r)
0 = 0. Consider the following:

Ekm(r)
t(1)

k
2 = Ekxt(1)�1 � bx

t(1)�
1
2
� g

(r)
t(1)�1k

2

 (1� �)Ekxt(1)�1 � bx
t(1)�

1
2
k
2

(a)
= (1� �)Ekbx(r)

0 � bx
t(1)�

1
2
k
2

= (1� �)Ek
t(1)�1X

j=0

⌘jrf
i
(r)
j

⇣
bx(r)
j

⌘
k
2

 (1� �)⌘20H
2
G

2

= (1� �)⌘̃20A

Here (a) holds since xt(1)�1 = x0 = bx(r)
0 . It is easy to verify that (1� �)⌘̃20A 

4a�(1��
2)

a��4H

⌘̃
2
t(1)

�2 A.
To show this, we use ⌘̃0

⌘̃t(1)
=

a+t(1)

a


a+H

a
 2, where the first inequality follows from t(1)  H

and the second inequality follows from a � H . Now, since C �
4a�(1��

2)
a��4H , it follows that

Ekm(r)
t(1)

k
2
 C

⌘̃
2
t(1)

�2 A.

Inductive case: Assume Ekm(r)
(i) k

2
 C

⌘̃
2
t(i)

�2 A for some i 2 Z+. We need to show that

Ekm(r)
(i+1)k

2
 C

⌘̃
2
t(i+1)

�2 A. Using the inductive hypothesis in (29), we get

Ekm(r)
(i+1)k

2


⇣
1� �

p

⌘
C

⌘̃
2
t(i)

�2 A+ p(1��
2)

(p�1)� ⌘̃
2
t(i)

A

= C
⌘̃
2
t(i)

�2 A

⇣
1� �

p
+ p(1��

2)
p�1

�

C

⌘

= C
⌘̃
2
t(i)

�2 A

⇣
1� �

p

⇣
1� p

2(1��
2)

(p�1)C

⌘⌘
(30)

Claim 1. For any p > 1, if �

p

⇣
1� p

2(1��
2)

(p�1)C

⌘
�

2H
a

, then ⌘̃
2
t(i)

⇣
1� �

p

⇣
1� p

2(1��
2)

(p�1)C

⌘⌘
 ⌘̃

2
t(i+1)

holds.

Proof. Let �

p

⇣
1� p

2(1��
2)

(p�1)C

⌘
= �

a
. Since t(i+1)  t(i) +H (which implies that ⌘̃2

t(i)+H
 ⌘̃

2
t(i+1)

),

it suffices to show that ⌘̃2
t(i)

⇣
1� �

a

⌘
 ⌘̃

2
t(i)+H

holds whenever � � 2H . For simplicity of

notation, let t = t(i). Note that ⌘̃2
t

⇣
1� �

a

⌘
= (a��)

a(a+t)2 . We show below that if � > 2H , then

a(a + t)2 � (a + t + H)2(a � �). This proves our claim, because now we have (a��)
a(a+t)2 

18

(a��)
(a+t+H)2(a��) =

1
(a+t+H)2 = ⌘̃

2
t+H

. It only remains to show that a(a+ t)2  (a+ t+H)2(a��)
holds if � � 2H .

(a+ t+H)2(a� �) =
�
(a+ t)2 +H

2 + 2H(a+ t)
�
(a� �)

= a(a+ t)2 + aH
2 + 2Ha

2 + 2Hat� �(a+ t)2 � �H
2
� 2H�(a+ t)

= a(a+ t)2 + a(H2 + 2Ht� 2�t� 2H�) + a
2(2H � �)

� �t
2
� �H

2
� 2H�t

 a(a+ t)2.

The last inequality holds whenever � � 2H .

Therefore we need �

p

⇣
1� p

2(1��
2)

(p�1)C

⌘
�

2H
a

, which is equivalent to requiring C �
�ap

2(1��
2)

(p�1)(a��2pH) ,

where a >
2pH
�

. Since this holds for every p > 1, by substituting p = 2, we get C �
4�a(1��

2)
(a��4H) .

This together with (30) and Claim 1 implies that if C �
4�a(1��

2)
(a��4H) , where a > 4H/�, then

Ekm(r)
(i+1)k

2
 C

⌘̃
2
t(i+1)

�2 A holds. This proves our inductive step.

We have shown that Ekm(r)
t

k
2
 4C ⌘̃

2
t

�2A holds when t 2 IT . It only remains to show that

Ekm(r)
t

k
2
 4C ⌘̃

2
t

�2A also holds when t 2 [T] \ IT . Let i 2 Z+ be such that t(i)  t < t(i+1),
which implies that ⌘̃t(i)  2⌘̃t. Since local memory does not change in between the synchronization

indices, we have that m(r)
t

= m
(r)
t(i)

. Thus we have Ekm(r)
t

k
2 = Ekm(r)

t(i)
k
2
 C

⌘̃
2
t(i)

�2 A  4C ⌘̃
2
t

�2A.
This concludes the proof of Lemma 4.

B.3.3 Bounded memory under the fixed learning rate

Lemma (Restating Lemma 3, Bounded Memory). Let I(r)
T

2 [T] be a set of time instances in which
the worker r updates and synchronizes with the master. For ⌘t = ⌘, gap(IT)  H and t 2 Z+ we
have

Ekm(r)
t

k
2
 4⌘

2(1��
2)

�2 H
2
G

2 (31)

Proof. Observe that (28) holds irrespective of the learning rate schedule. In particular, using a fixed
learning rate ⌘t = ⌘ for every t gives

Ekm(r)
t(i+1)

k
2


⇣
1� �

p

⌘
Ekm(r)

t(i)
k
2 + p(1��

2)
(p�1)� ⌘

2
H

2
G

2

When rolled out we see that the memory is upper bounded by a geometric sum.

Ekm(r)
t(i+1)

k
2


p(1��
2)

(p�1)� ⌘
2
H

2
G

2
1X

j=0

⇣
1� �

p

⌘j


p
2(1��

2)
(p�1)

⌘
2

�2H
2
G

2
.

Note that the last inequality holds for every p > 1, and is minimized when p = 2. By plugging p = 2,
we get

Ekm(r)
t(i+1)

k
2


4(1��
2)⌘2

�2 H
2
G

2
.

Since the RHS does not depend on t, it follows that Ekm(r)
t

k
2


4(1��
2)⌘2

�2 H
2
G

2 holds for every
t 2 [T].

19

B.4 Sequence Deviation

B.4.1 Contracting deviation of local true sequences from the global true sequence under

decaying learning rate

Lemma 8 (Contracting Deviation of Local Sequences). Similar to Lemma 3.3 in [31] we bound the
deviation of the local sequences.

1
R

RX

r=1

Ekbxt � bx(r)
t

k
2
 4⌘2

t
G

2
H

2 (32)

Proof. We need to upper-bound 1
R

P
R

r=1 Ekbxt � bx(r)
t

k
2. Note that for any R vectors u1, . . . ,uR,

if we let ū = 1
R

P
r

i=1 ui, then
P

n

i=1 kui � ūk2 
P

R

i=1 kuik
2. We use this in the first inequality

below.

1
R

RX

r=1

Ekbxt � bx(r)
t

k
2 = 1

R

RX

r=1

Ekbx(r)
t

� bx(r)
tr

� (bxt � bx(r)
tr

)k2


1
R

RX

r=1

Ekbx(r)
t

� bx(r)
tr

k
2

 ⌘
2
tr
G

2
H

2

 4⌘2
t
G

2
H

2 (33)

The last inequality (33) uses ⌘tr  2⌘tr+H  2⌘t and t� tr  H .

B.4.2 Bounded deviation of local true sequences from the global true sequence under fixed

learning rate

Lemma 9 (Bounded Deviation of Local Sequences). With ⌘t = ⌘ this follows from the analysis of
Lemma 8

1
R

RX

r=1

Ekbxt � bx(r)
t

k
2
 ⌘

2
G

2
H

2 (34)

Proof. Similar to analysis in (33) we can show that 1
R

P
R

r=1 Ekbxt � bx(r)
t

k
2
 ⌘

2
G

2
H

2.

B.5 Smooth and Non-Convex Objective

B.5.1 Proof of Theorem 1 – Fixed Learning Rate

Proof. Let x⇤ be the minimizer of f(x), therefore we denote f(x⇤) by f
⇤. For the purpose of reusing

the proof later while proving Theorem 5, we start off with the decaying learning rate ⌘t until (38) and
then switch to the fixed learning rate ⌘. Note that the proof remains the same until (38) irrespective
of the learning rate schedule; in particular, we can take ⌘t = ⌘ and the same proof holds until (38).

By the definition of L-smoothness, we have

f(ext+1)� f(ext)  hrf(ext), ext+1 � exti+
L

2 kext+1 � extk
2

= �⌘thrf(ext),pti+
⌘
2
tL

2 kptk
2

= �⌘thrf(ext),pti+
⌘
2
tL

2 kpt � p
t
+ p

t
k
2

 �⌘thrf(ext),pti+ ⌘
2
t
Lkpt � p

t
k
2 + ⌘

2
t
Lkp

t
k
2 (Using Jensen’s Inequality)

= �
⌘t

R

RX

r=1

hrf(ext),rf
i
(r)
t
(bx(r)

t
)i+ ⌘

2
t
Lk

1
R

RX

r=1

rf
(r)(bx(r)

t
)k2 + ⌘

2
t
Lkpt � p

t
k
2

Define it as the set of random sampling of the mini-batches at each worker {i(1)
t

, i
(2)
t

, . . . , i
(R)
t

}.
Taking expectation w.r.t. the sampling at time t (conditioned on the past) and using the lipschitz

20

continuity of the gradients of local functions gives

Eit [f(ext+1)]� f(ext)  �
⌘t

2

krf(ext)k

2 + k
1
R

RX

r=1

rf
(r)(bx(r)

t
)k2 � krf(ext)�

1
R

RX

r=1

rf
(r)(bx(r)

t
)k2
!

+ ⌘
2
t
Lk

1
R

RX

r=1

rf
(r)(bx(r)

t
)k2 + ⌘

2
tL

bR2

RX

r=1

�
2
r

 �
⌘t

2R

RX

r=1

⇣
krf(ext)k

2
� L

2
kext � bx(r)

t
k
2
⌘
+ 2⌘2

tL�⌘t

2 k
1
R

RX

r=1

rf
(r)(bx(r)

t
)k2

+ ⌘
2
tL

bR2

RX

r=1

�
2
r

= �
⌘t

2R

RX

r=1

⇣
krf(ext)k

2 + L
2
kext � bx(r)

t
k
2
⌘
+ 2⌘2

tL�⌘t

2R

RX

r=1

krf(bx(r)
t

)k2

+ ⌘
2
tL

bR2

RX

r=1

�
2
r
+ ⌘tL

2

R

RX

r=1

kext � bx(r)
t

k
2
. (35)

We bound the first term in terms of krf(bx(r)
t

)k2 as follows:

krf(bx(r)
t

)k2  2krf(bx(r)
t

)�rf(ext)k
2 + 2krf(ext)k

2

 2L2
kbx(r)

t
� extk

2 + 2krf(ext)k
2
, (36)

where the 2nd inequality follows from the smoothness (L-Lipschitz gradient) assumption. Using this
and that ⌘t  1

2L in (35) and rearranging terms give

⌘t

4R

RX

r=1

krf(bx(r)
t

)k2  f(ext)� E(it)[f(ext+1)] +
⌘
2
tL

bR2

RX

r=1

�
2
r
+ ⌘tL

2

R

RX

r=1

kext � bx(r)
t

k
2 (37)

Taking expectation w.r.t. to the entire process and using the inequality ku+ vk2  2kuk2 + 2kvk2

gives

⌘t

4R

RX

r=1

Ekrf(bx(r)
t

)k2  E[f(ext)]� E[f(ext+1)] +
⌘
2
tL

bR2

RX

r=1

�
2
r
+ 2⌘tL

2Ekext � bxtk
2

+ 2⌘tL
2 1
R

RX

r=1

Ekbxt � bx(r)
t

k
2 (38)

Observe that (38) holds irrespective of the learning rate schedule. In particular, if we take a fixed
learning rate ⌘t = ⌘ 

1
2L in (38), we get

⌘

4R

RX

r=1

Ekrf(bx(r)
t

)k2  E[f(ext)]� E[f(ext+1)] +
⌘
2
L

bR2

RX

r=1

�
2
r
+ 2⌘L2Ekext � bxtk

2

+ 2⌘L2 1
R

RX

r=1

Ekbxt � bx(r)
t

k
2 (39)

Lemma 7 and Lemma 3 together imply Ekbxt�extk
2


4⌘2(1��
2)

�2 G
2
H

2. We also have from Lemma 9

that 1
R

P
R

r=1 Ekbxt � bx(r)
t

k
2
 ⌘

2
G

2
H

2. Substituting these in (39) gives

⌘

4R

RX

r=1

Ekrf(bx(r)
t

)k2  E[f(ext)]� E[f(ext+1)] +
⌘
2
L

bR2

RX

r=1

�
2
r
+ 8⌘

3(1��
2)

�2 L
2
G

2
H

2

+ 2⌘3L2
G

2
H

2 (40)

21

By taking a telescopic sum from t = 0 to t = T � 1, we get

1
4RT

T�1X

t=0

RX

r=1

Ekrf(bx(r)
t

)k2 
E[f(ex0)]�f

⇤

⌘T
+ ⌘L

bR2

RX

r=1

�
2
r
+ 8⌘

2(1��
2)

�2 L
2
G

2
H

2

+ 2⌘2L2
G

2
H

2 (41)

Take ⌘ =
bCp
T

, where bC is a constant (that satisfies bC <

p
T

2L). For example, we can take bC = 1
2L .

This gives

1
RT

T�1X

t=0

RX

r=1

Ekrf(bx(r)
t

)k2 

E[f(x0)]�f

⇤

bC
+

bCL

bR2

RX

r=1

�
2
r

!
4p
T
+ 8

⇣
4 (1��

2)
�2 + 1

⌘
bC2

L
2
G

2
H

2

T
.

(42)

Sample a parameter zT from
n
bx(r)
t

o
for r = 1, . . . , R and t = 0, 1, . . . , T � 1 with probability

Pr[zT = bx(r)
t

] = 1
RT

, which implies EkzT k2 = 1
RT

P
T�1
t=0

P
R

r=1 Ekrf(bx(r)
t

)k2. Using this in
(42) gives

EkzT k2 =

E[f(x0)]�f

⇤

bC
+

bCL

bR2

RX

r=1

�
2
r

!
4p
T
+ 8

⇣
4 (1��

2)
�2 + 1

⌘
bC2

L
2
G

2
H

2

T
.

This completes the proof of Theorem 1.

B.5.2 Proof of Theorem 5 – Decaying Learning Rate

Proof. Observe that we can use the proof of Theorem 1 exactly until (38), for ⌘t 
1
2L (which

follows from our assumption that a � 2⇠L), which gives

⌘t

4R

RX

r=1

Ekrf(bx(r)
t

)k2  E[f(ext)]� E[f(ext+1)] +
⌘
2
tL

bR2

RX

r=1

�
2
r
+ 2⌘tL

2Ekext � bxtk
2

+ 2⌘tL
2 1
R

RX

r=1

Ekbxt � bx(r)
t

k
2 (43)

We have from Lemma 8 that 1
R

P
R

r=1 Ekbxt � bx(r)
t

k
2
 4⌘2

t
G

2
H

2. Lemma 7 and Lemma 4 together
imply that Ekbxt � extk

2


1
R

P
R

r=1 km
(r)
t

k
2
 C

4⌘2
t

�2 G
2
H

2. Using these bounds in (43) gives

⌘t

4R

RX

r=1

Ekrf(bx(r)
t

)k2  E[f(ext)]� E[f(ext+1)] +
⌘
2
tL

bR2

RX

r=1

�
2
r
+ 8⌘3

t
�2 CL

2
G

2
H

2 + 8⌘3
t
L
2
G

2
H

2

Taking a telescopic sum from t = 0 to t = T � 1 gives
T�1X

t=0

⌘t

4R

RX

r=1

Ekrf(bx(r)
t

)k2  E[f(x0)]� f
⇤ +

L
PR

r=1 �
2
r

bR2

T�1X

t=0

⌘
2
t
+
⇣

8C
�2 + 8

⌘
L
2
G

2
H

2
T�1X

t=0

⌘
3
t
.

(44)

Let �t := ⌘t

4R and PT :=
P

T�1
t=0

P
R

r=1 �t. We show at the end of this proof that PT �
⇠

4 ln
�
T+a�1

a

�
,

P
T�1
t=0 ⌘

2
t


⇠
2

a�1 , and that
P

T�1
t=0 ⌘

3
t


⇠
3

2(a�1)2 . Using these in (44) yields

1
PT

T�1X

t=0

RX

r=1

�tEkrf(bx(r)
t

)k2 
Ef(x0)�f

⇤

PT
+ L⇠

2

bR2(a�1)

PR
r=1 �

2

PT

+
⇣

8C
�2 + 8

⌘
L
2
G

2
H

2 ⇠
3

2PT (a�1)2 (45)

We therefore can show a weak convergence result, i.e.,

min
t2{0,...,T�1}, r2[R]

Ekrf(bx(r)
t

)k2
T!1
����! 0. (46)

22

Sample a parameter zT from
n
bx(r)
t

o
for r = 1, . . . , R and t = 0, 1, . . . , T � 1 with probability

Pr[zT = bx(r)
t

] = �t
PT

. This gives Ekrf(zT)k2 = 1
PT

P
T�1
t=0

P
R

r=1 �tEkrf(bx(r)
t

)k2. We therefore
have the following from (45)

Ekrf(zT)k
2


Ef(x0)�f
⇤

PT
+

L⇠
2 PR

r=1 �
2

bR2(a�1)PT
+
⇣

8C
�2 + 8

⌘
⇠
3
L

2
G

2
H

2

2(a�1)2PT

Since mint2{0,...,T�1}, r2[R] Ekrf(bx(r)
t

)k2, we have a weak convergence result:

min
t2{0,...,T�1}, r2[R]

Ekrf(bx(r)
t

)k2
T!1
����! 0.

Bounding the terms PT ,
P

T�1
t=0 ⌘

2
t

and
P

T�1
t=0 ⌘

3
t
:

PT = 1
4

T�1X

t=0

⌘t �
1
4

T�1X

t=0

⌘t �
⇠

4 ln
�
T+a�1

a

�

T�1X

t=0

⌘
2
t
 ⇠

2
⇣

1
a�1 �

1
T+a�1

⌘
= ⇠

2
T

(a�1)(T+a�1) 
⇠
2

a�1

T�1X

t=0

⌘
3
t


⇠
3

2

⇣
1

(a�1)2 �
1

(T+a�1)2

⌘


⇠
3

2(a�1)2

This completes the proof of Theorem 5.

B.6 Smooth and Strongly Convex Objective: Proof of Theorem 2 – Decaying Learning Rate

Proof. Let x⇤ be the minimizer of f(x), therefore we have rf(x⇤) = 0. We denote f(x⇤) by
f
⇤. By taking the average of the virtual sequences ex(r)

t+1 = ex(r)
t

� ⌘trf
i
(r)
t

⇣
bx(r)
t

⌘
for each worker

r 2 [R] and defining pt :=
1
R

P
R

r=1 rf
i
(r)
t

⇣
bx(r)
t

⌘
, we get

ext+1 = ext � ⌘tpt. (47)

Define it as the set of random sampling of the mini-batches at each worker {i(1)
t

, i
(2)
t

, . . . , i
(R)
t

} and
let p

t
= Eit [pt]. From (47) we can get

kext+1 � x⇤
k
2 = kext � x⇤

� ⌘tpt
k
2 + ⌘

2
t
kpt � p

t
k
2
� 2⌘t hext � x⇤

� ⌘tpt
,pt � p

t
i (48)

Taking the expectation w.r.t. the sampling it at time t (conditioning on the past) and noting that last
term in (48) becomes zero gives:

Eitkext+1 � x⇤
k
2 = kext � x⇤

� ⌘tpt
k
2 + ⌘

2
t
Eitkpt � p

t
k
2 (49)

It follows from the Jensen’s inequality and independence that Eitkpt � p
t
k
2


PR
r=1 �

2
r

bR2 . This gives

Eitkext+1 � x⇤
k
2
 kext � x⇤

� ⌘tpt
k
2 + ⌘

2
t

PR
r=1 �

2
r

bR2 . (50)

Now we bound the first term on the RHS.

Lemma 10. If ⌘t  1
4L , then we have

kext � x⇤
� ⌘tpt

k
2

�
1� µ⌘t

2

�
kext � x⇤

k
2
�

⌘tµ

2L (f(bxt)� f
⇤)

+ ⌘t

� 3µ
2 + 3L

�
kbxt � extk

2 + 3⌘tL

R

RX

r=1

kbxt � bx(r)
t

k
2 (51)

Proof.

kext � x⇤
� ⌘tpt

k
2 = kext � x⇤

k
2 + ⌘

2
t
kp

t
k
2
� 2⌘t hext � x⇤

,p
t
i (52)

23

Using the definition of p
t

we have

kp
t
k
2 = k

1
R

RX

r=1

⇣
rf

(r)
⇣
bx(r)
t

⌘
�rf

(r)(ext)
⌘
+rf(ext)�rf(x⇤)k2


1
R

RX

r=1

2krf
(r)
⇣
bx(r)
t

⌘
�rf

(r)(ext)k
2 + 2krf(ext)�rf (x⇤) k2


2L2

R

RX

r=1

kbx(r)
t

� extk+ 2krf(ext)�rf (x⇤) k2 (53)

By the definition of smoothness, we have krf (ext) � rf (x⇤) k2  2L (f (ext)� f(x⇤)), where
rf(x⇤) = 0. Substituting this in (53) gives

⌘
2
t
kp

t
k
2


2⌘2
tL

2

R

RX

r=1

kbx(r)
t

� extk+ 4⌘2
t
L (f (ext)� f(x⇤)) (54)

Now we bound the last term of (52). By definition, we have

�2⌘t hext � x⇤
,p

t
i = �2⌘t

R

RX

r=1

D
bx(r)
t

� x⇤
,rf

(r)
⇣
bx(r)
t

⌘E
� 2⌘t

R

RX

r=1

D
ext � bx(r)

t
,rf

(r)
⇣
bx(r)
t

⌘E

(55)
For the first term on the RHS of (55), we can use strong convexity

�2
D
bx(r)
t

� x⇤
,rf

(r)
⇣
bx(r)
t

⌘E
 �2

⇣
f
(r)
⇣
bx(r)
t

⌘
� f

(r)(x⇤)
⌘
� µkbx(r)

t
� x⇤

k
2 (56)

For the second term on the RHS of (55), we can use the following by smoothness.

�2
D
ext � bx(r)

t
,rf

(r)
⇣
bx(r)
t

⌘E
 Lkext � bx(r)

t
k
2 + 2

⇣
f
(r)
⇣
bx(r)
t

⌘
� f

(r) (ext)
⌘

(57)

Using (56)-(57) in (55) we get

�2⌘t hext � x⇤
,p

t
i  �

2⌘t

R

RX

r=1

⇣
f
(r) (ext)� f

(r)(x⇤)
⌘
�

⌘tµ

R

RX

r=1

kbx(r)
t

� x⇤
k
2 + L⌘t

R

RX

r=1

kext � bx(r)
t

k
2

= �2⌘t (f (ext)� f(x⇤))� ⌘tµ

R

RX

r=1

kbx(r)
t

� x⇤
k
2 + L

⌘t

R

RX

r=1

kext � bx(r)
t

k
2

(58)

Adding (54) and (58) and using a � 32L/µ which implies ⌘t  1/4L yields

⌘
2
t
kp

t
k
2
� 2⌘t hext � x⇤

,p
t
i  �2⌘t(1� 2⌘tL) (f (ext)� f

⇤)� ⌘tµ

R

RX

r=1

kbx(r)
t

� x⇤
k
2

+ L⌘t+2⌘2
tL

2

R

RX

r=1

kext � bx(r)
t

k
2

 �⌘t (f (ext)� f
⇤)� ⌘tµkbxt � x⇤

k
2

+ 3L⌘t

R

RX

r=1

⇣
kext � bxtk

2 + kbxt � bx(r)
t

k
2
⌘

(59)

Since kx+ yk2  2kxk2 + 2kyk2, we have

�kbxt � x⇤
k
2
 kbxt � extk

2
�

1
2kext � x⇤

k
2 (60)

Using (60) in (59) and then substituting (59) in (52) gives
kext � x⇤

� ⌘tpt
k
2

�
1� µ⌘t

2

�
kext � x⇤

k
2
� ⌘t (f (ext)� f

⇤)

+ ⌘t (µ+ 3L) kbxt � extk
2 + 3L⌘t

R

RX

r=1

kbxt � bx(r)
t

k
2 (61)

24

Using strong convexity of f we have

kext � x⇤
� ⌘tpt

k
2

�
1� µ⌘t

2

�
kext � x⇤

k
2
�

⌘tµ

2 kext � x⇤
k
2

+ ⌘t (µ+ 3L) kbxt � extk
2 + 3L⌘t

R

RX

r=1

kbxt � bx(r)
t

k
2 (62)

Now use �kext � x⇤
k
2
 kext � bxtk

2
�

1
2kbxt � x⇤

k
2 We get

kext � x⇤
� ⌘tpt

k
2

�
1� µ⌘t

2

�
kext � x⇤

k
2
�

⌘tµ

4 kbxt � x⇤
k
2

+ ⌘t

� 3µ
2 + 3L

�
kbxt � extk

2 + 3L⌘t

R

RX

r=1

kbxt � bx(r)
t

k
2


�
1� µ⌘t

2

�
kext � x⇤

k
2
�

⌘tµ

2L (f(bxt)� f
⇤) (Using smoothness of f(x))

+ ⌘t

� 3µ
2 + 3L

�
kbxt � extk

2 + 3L⌘t

R

RX

r=1

kbxt � bx(r)
t

k
2 (63)

This completes the proof of Lemma 10.

Using (63) in (50) and then taking the expectation over the entire process gives

Ekext+1 � x⇤
k
2

�
1� µ⌘t

2

�
Ekext � x⇤

k
2
�

⌘tµ

2L (E[f(bxt)]� f
⇤)

+ ⌘t

� 3µ
2 + 3L

�
Ekbxt � extk

2 +
3⌘tL

R

RX

r=1

Ekbxt � bx(r)
t

k
2 + ⌘

2
t

PR
r=1 �

2
r

bR2 (64)

From Lemma 8, we have 1
R

P
R

r=1 Ekbxt � bx(r)
t

k
2
 4⌘2

t
G

2
H

2. Lemma 7 and Lemma 4 together
imply that Ekbxt�extk

2
 4C ⌘

2
t

�2H
2
G

2. Substituting these back in (64) and letting et = E[f(bxt)�f
⇤]

gives

Ekext+1 � x⇤
k
2

�
1� µ⌘t

2

�
Ekext � x⇤

k
2
�

µ⌘t

2L et + ⌘t

� 3µ
2 + 3L

�
C

4⌘2
t

�2 G
2
H

2

+ (3L⌘t)4⌘
2
t
LG

2
H

2 + ⌘
2
t

PR
r=1 �

2
r

bR2 (65)

Now using ⌘t 
1/4L we have

Ekext+1 � x⇤
k
2

�
1� µ⌘t

2

�
Ekext � x⇤

k
2
�

µ⌘t

2L et + ⌘t

� 3µ
2 + 3L

�
C

4⌘2
t

�2 G
2
H

2

+ (3⌘tL)4⌘
2
t
LG

2
H

2 + ⌘
2
t

PR
r=1 �

2
r

bR2 (66)

Employing a slightly modified Lemma 3.3 from [30] with A =
PR

r=1 �
2
r

bR2 , B =

4
⇣� 3µ

2 + 3L
�

CG
2
H

2

�2 + 3L2
G

2
H

2
⌘

, and at = Ekext � x⇤
k
2, we have

at+1 
�
1� µ⌘t

2

�
at �

µ⌘t

2L et + ⌘
2
t
A+ ⌘

3
t
B (67)

For ⌘t = 8
µ(a+t) and wt = (a+ t)2, ST =

P
T�1
t=o

�
T

3

3 we have

µ

2LST

T�1X

t=0

wtet 
µa

3

8ST
a0 +

4T (T+2a)
µST

A+ 64T
µ2ST

B (68)

From convexity we can finally write

Ef (xT)� f
⇤


La
3

4ST
a0 +

8LT (T+2a)
µ2ST

A+ 128LT

µ3ST
B (69)

Where xT := 1
ST

P
T�1
t=0

h
wt

⇣
1
R

P
R

r=1 bx
(r)
t

⌘i
= 1

ST

P
T�1
t=0 wtbxt

25

Algorithm 2 Qsparse-local-SGD with asynchronous updates

1: Initialize x0 = ¯̄x0 = x(r)
0 = bx(r)

0 = m
(r)
0 = 0, 8r 2 [R]. Suppose ⌘t follows a certain learning rate

schedule.
2: for t = 0 to T � 1 do

3: On Workers:

4: for r = 1 to R do

5: bx(r)

t+ 1
2
 bx(r)

t
� ⌘trf

i
(r)
t

⇣
bx(r)
t

⌘
; i(r)

t
is a mini-batch of size b uniformly in Dr

6: if t+ 1 /2 I
(r)
T

then

7: x(r)
t+1 x(r)

t
, m(r)

t+1 m
(r)
t

and bx(r)
t+1 bx(r)

t+ 1
2

8: else

9: g
(r)
t
 QCompk

⇣
m

(r)
t

+ x(r)
t
� bx(r)

t+ 1
2

⌘
and send g

(r)
t

to the master

10: m
(r)
t+1 m

(r)
t

+ x(r)
t
� bx(r)

t+ 1
2
� g

(r)
t

11: Receive ¯̄xt+1 from the master and set x(r)
t+1

¯̄xt+1 and bx(r)
t+1

¯̄xt+1

12: end if

13: end for

14: At Master:

15: if t+ 1 /2 I
(r)
T

for all r 2 [R] then

16: ¯̄xt+1 ¯̄xt

17: else

18: Let S ✓ [R] be the set of all workers r such that master receives g(r)
t

from r.
19: Compute ¯̄xt+1 ¯̄xt �

1
R

P
r2S g

(r)
t

and broadcast ¯̄xt+1 to all the workers in S.
20: end if

21: end for

C Supplementary Material of Asynchronous Qsparse-local-SGD from

Section 4

Our algorithm for Asynchronous Qsparce-local-SGD is given below.

Below we give more precise statements of Theorem 3 and Theorem 4 from Section 4 (see Theorem 6
and Theorem 7, respectively), along with an additional theorem (see Theorem 8), which is a comple-
mentary result for Theorem 3, which was for a fixed learning rate. As noted earlier, the following
theorem hold when Algorithm 2 is run with any compression operator (including our composed
operators).
Theorem 6 (Convergence in the smooth and non-convex case with fixed learning rate). Under the
same conditions as in Theorem 1 with gap(I(r)

T
)  H and C1 = (8

�2 � 6)(4� 2�), if {bx(r)
t

}
T�1
t=0 is

generated according to Algorithm 2, the following holds.

Ekrf(zT)k
2


⇣
E[f(x0)]�f

⇤

bC
+ bCL

⇣PR
r=1 �

2
r

bR2

⌘⌘
4p
T
+ 8

⇣
12 (1��

2)
�2 + (2 + 8C1H

2)
⌘

bC2
L

2
G

2
H

2

T
.

Here (i) zT is a random variable which samples a previous parameter bx(r)
t

with probability 1/RT ;
and (ii) bC is a constant such that bCp

T


1
2L .

Corollary. Under the same conditions as in Theorem 1 with gap(I(r)
T

)  H , if {bx(r)
t

}
T�1
t=0 is

generated according to Algorithm 2, the following holds, where E[f(x0)] � f
⇤
 J

2, �max =
maxr2[R] �r, and bC2 = bR(E[f(x0)]�f

⇤)/�2
max.

Ekrf(zT)k
2
 O

⇣
J�maxp

bRT

⌘
+O

⇣
J

2
bRG

2

�2
max�

2T
(H2 +H

4)
⌘
, (70)

where zT is a random variable which samples a previous parameter bx(r)
t

with probability 1/RT . In
order to ensure that the compression does not affect the dominating terms while converging at a rate
of O

⇣
1/
p
bRT

⌘
, we would require H = O

�p
�T

1/8
/(bR)3/8

�
.

Theorem 6 provides non asymptotic guarantees where we also observe that the compression comes
for “free". The corresponding asymptotic result has been omitted to Appendix C.

26

Theorem 7 (Convergence in the smooth and strongly convex case with decaying learning rate). Under
the same conditions as in Theorem 2 with gap(I(r)

T
)  H , if {bx(r)

t
}
T�1
t=0 is generated according to

Algorithm 2, the following holds.

E[f (xT)]� f
⇤


La
3

4ST
kx0 � x⇤

k
2 + 8LT (T+2a)

µ2ST
A+ 128LT

µ3ST
D (71)

Here (i) C �
4a�(1��

2)
a��4H , C1 = 192(4� 2�)

⇣
1 + C

�2

⌘
, C2 = 8(4� 2�)(1 + C

�2); (ii) A =
PR

r=1 �
2
r

bR2 ,

D =
� 3µ

2 + 3L
�
(12CG

2
H

2

�2 +C1⌘
2
t
H

4
G

2)+24(1+C2H
2)LG2

H
2; and (iii) xT , ST are as defined

in Theorem 2.
Corollary. Under the same conditions as in Theorem 2 with gap(I(r)

T
)  H , a > max{ 4H

�
, 32, H},

�max = maxr2[R] �r, if {bx(r)
t

}
T�1
t=0 is generated according to Algorithm 2, the following holds:

E[f (xT)]� f
⇤
 O

⇣
G

2
H

3

µ2�3T 3

⌘
+O

⇣
�
2
max

µ2bRT
+ H�

2
max

µ2bR�T 2

⌘
+O

⇣
G

2

µ3�2T 2 (H
2 +H

4)
⌘
, (72)

where xT , ST are as defined in Theorem 2. In order to ensure that the compression does not
affect the dominating terms while converging at a rate of O (1/(bRT)), we would require H =
O
�p

�(T/(bR))1/4
�
.

C.1 Additional Theorem

Theorem 8 (Convergence in the smooth and non-convex case with decaying learning rate). Let
f
(r)(x) be L-smooth for every r 2 [R]. Let QCompk : Rd

! Rd be a compression operator whose
compression coefficient is equal to � 2 (0, 1]. Let {bx(r)

t
}
T�1
t=0 be generated according to Algorithm 1

with QCompk, for step sizes ⌘t = ⇠

(a+t) , gap(Ir

T
)  H for r 2 [R], where a > 1 is such that, we

have a > max{ 4H
�
, 2⇠L,H},C �

4a�(1��
2)

a��4H . Then for C 0 = (4� 2�)(1 + C

�2) the following holds.

Ekrf(zT)k
2


Ef(x0)�f
⇤

PT
+ L⇠

2

(a�1)PT

⇣PR
r=1 �

2
r

bR2

⌘
+
⇣
16 + 24C

�2 + 200C 0
H

2
⌘

⇠
3
L

2
G

2
H

2

2(a�1)2PT
(73)

Here (i) �t := ⌘t

4R ; (ii) PT :=
P

T�1
t=0

P
R

r=1 �t, which is lower bounded as PT �
⇠

4 ln
�
T+a�1

a

�
; and

(iii) zT is a random variable which samples a previous parameter bx(r)
t

with probability �t/PT .

C.2 Maintain Virtual Sequences

As noted earlier in Section 3 and also in Appendix B, in order to prove our results in the asynchronous
setting, we define virtual sequences for every worker r 2 [R] and for all t � 0 as follows:

ex(r)
0 := bx(r)

0 ex(r)
t+1 := ex(r)

t
� ⌘trf

i
(r)
t

⇣
bx(r)
t

⌘

Define

1. ext+1 := 1
R

P
R

r=1 ex
(r)
t+1 = ext �

⌘t

R

P
R

r=1 rf
i
(r)
t

⇣
bx(r)
t

⌘

2. pt :=
1
R

P
R

r=1 rf
i
(r)
t

⇣
bx(r)
t

⌘

3. p
t
:= E(it)[pt] =

1
R

P
R

r=1 rf
(r)
⇣
bx(r)
t

⌘

4. bxt =
1
R

P
R

r=1 bx
(r)
t

5. I
(r)
T

= {t
(r)
(i) : i 2 Z+

, t
(r)
(i) 2 [T], |t(r)(i) � t

(r)
(j)|  H, 8|i� j|  1}

C.3 Contracting local sequence deviation under decaying learning rate

Lemma 11 (Contracting Local Sequence Deviation). For bxt, bx(r)
t

generated according to Algorithm 2
and gap(I(r)

T
)  H the following holds

1
R

RX

r=1

Ekbxt � bx(r)
t

k
2
 8(1 + C

00
H

2)⌘2
t
G

2
H

2 (74)

Here C
00 = 8B(1 + C

�2) where B is from EQ,CkQCompk(x)k2  Bkxk2 and C �
4a�(1��

2)
a��4H

27

Proof. Fix a time t and consider any worker r 2 [R]. Let tr 2 I
(r)
T

denote the last synchroniza-
tion step until time t for the r’th worker. Define t

0
0 := minr2[R] tr. We need to upper-bound

1
R

P
R

r=1 Ekbxt � bx(r)
t

k
2. Note that for any R vectors u1, . . . ,uR, if we let ū = 1

R

P
r

i=1 ui, thenP
n

i=1 kui � ūk2 
P

R

i=1 kuik
2. We use this in the first inequality below.

1
R

RX

r=1

Ekbxt � bx(r)
t

k
2 = 1

R

RX

r=1

Ekbx(r)
t

� ¯̄xt
0
0
� (bxt � ¯̄xt

0
0
)k2


1
R

RX

r=1

Ekbx(r)
t

� ¯̄xt
0
0
k
2


2
R

RX

r=1

Ekbx(r)
t

� bx(r)
tr

k
2 + 2

R

RX

r=1

Ekbx(r)
tr

� ¯̄xt
0
0
k
2 (75)

We bound both the terms separately. For the first term:

Ekbx(r)
t

� bx(r)
tr

k
2 = Ek

t�1X

j=tr

⌘jrf
i
(r)
j

⇣
bx(r)
j

⌘
k
2

 (t� tr)
t�1X

j=tr

Ek⌘jrf
i
(r)
j

⇣
bx(r)
j

⌘
k
2

 (t� tr)
2
⌘
2
tr
G

2

 4⌘2
t
H

2
G

2
. (76)

The last inequality (76) uses ⌘tr  2⌘tr+H  2⌘t and t � tr  H . To bound the second term of
(75), note that we have

¯̄x(r)
tr

= ¯̄xt
0
0
�

1
R

RX

s=1

tr�1X

j=t
0
0

{j + 1 2 I
(s)
T

}g
(s)
j

. (77)

Note that bx(r)
tr

= ¯̄x(r)
tr

, because at synchronization steps, the local parameter vector becomes equal to
the global parameter vector. Using this, the Jensen’s inequality, and that k {j + 1 2 I

(s)
T

}g
(s)
j

k
2


kg
(s)
j

k
2, we can upper-bound (77) as

Ekbx(r)
tr

� ¯̄xt
0
0
k
2


(tr�t
0
0)

R

RX

s=1

trX

j=t
0
0

Ekg(s)
j

k
2 (78)

Now we bound Ekg(s)
j

k
2 for any j 2 {t

0
0, . . . , tr} and s 2 [R]: Since EkQC(u)k2  Bkuk2 holds

for every u, where B = (4� 2�),13 we have for any s 2 [R] that

Ekg(s)
j

k
2
 BEkm(s)

j
+ x(s)

j
� bx(s)

j+
1
2

k
2 (79)

 2BEkm(s)
j

k
2 + 2BEkx(s)

j
� bx(s)

j+
1
2

k
2 (80)

Observe that the proof of Lemma 4 does not depend on the synchrony of the network; it only uses
the fact that gap(I(s)

T
)  H for any worker s 2 [R]. Therefore, we can directly use Lemma 4 to

bound the first term in (76) as Ekm(s)
j

k
2
 4C

⌘
2
j

�2H
2
G

2. In order to bound the second term of (76),

note that x(s)
j

= bx(s)
ts

, which implies that kx(s)
j

� bx(s)

j+
1
2

k
2 = k

P
j

l=ts
⌘lrf

i
(s)
l

⇣
bx(s)
l

⌘
k
2. Taking

expectation yields Ekx(s)
j

� bx(s)

j+
1
2

k
2
 4⌘2

ts
H

2
G

2
 4⌘2

t
0
0
H

2
G

2, where in the second inequality we

used t
0
0  ts, which implies ⌘ts  ⌘t00

. Using these in (80) gives

Ekg(s)
j

k
2
 8B

⇣
1 + C

�2

⌘
⌘
2
t
0
0
H

2
G

2
. (81)

13This can be seen as follows: EkQC(u)k2  2Eku�QC(u)k2 + 2kuk2  2(1� �)kuk2 + 2kuk2.

28

Since t
0
0  t  t

0
0 + H , we have ⌘t00

 2⌘t00+H  2⌘t. Putting the bound on Ekg(s)
j

k
2 (after

substituting ⌘n0
0
 2⌘t in (81)) in (78) gives

Ekbx(r)
tr

� ¯̄xt
0
0
k
2
 32B

⇣
1 + C

�2

⌘
⌘
2
t
H

4
G

2
. (82)

Putting this and the bound from (76) back in (75) gives

1
R

RX

r=1

Ekbxt � bx(r)
t

k
2
 8⌘2

t
H

2
G

2 + 64B
⇣
1 + C

�2

⌘
⌘
2
t
H

4
G

2

 8
h
1 + 8BH

2
⇣
1 + C

�2

⌘i
⌘
2
t
H

2
G

2
.

This completes the proof of Lemma 11.

C.4 Bounded local sequence deviation under fixed learning rate

Lemma 12 (Bounded Local Sequence Deviation). For bxt, bx(r)
t

generated according to Algorithm 2
with ⌘t = ⌘ the following holds

1
R

RX

r=1

Ekbxt � bx(r)
t

k
2
 (2 +H

2
C

0)⌘2G2
H

2 (83)

Here C
0 = (16

�2 � 12)B where B is from EQ,CkQCompk(x)k2  Bkxk2.

Proof. From (79) and (80) and using the fact that for a given QC operator, we show that
EkQC(u)k2  Bkuk2 holds for every u

Ekg(s)
j

k
2
 2BEkm(s)

j
k
2 + 2B⌘

2
H

2
G

2

 8B (1��
2)⌘2

�2 H
2
G

2 + 2⌘2BH
2
G

2

= 2B
⇣

4
�2 � 3

⌘
⌘
2
H

2
G

2 (84)

For a fixed learning rate ⌘, using (84) and following similar analysis as in (76) we can bound the first
term in (75) as follows

Ekbx(r)
t

� bx(r)
tr

k
2
 ⌘

2
H

2
G

2 (85)

Similarly as in (77)-(81) we can bound the second term in (75) as follows

Ekbx(r)
tr

� ¯̄xt
0
0
k
2
 2B

⇣
4
�2 � 3

⌘
⌘
2
H

4
G

2 (86)

Using (85) and (86) in (75) we can show that

1
R

RX

r=1

Ekbxt � bx(r)
t

k
2


h
2 + 4BH

2
⇣

4
�2 � 3

⌘i
⌘
2
H

2
G

2 (87)

C.5 Contracting distance between virtual and true sequence under decaying learning rate

Lemma 13 (Contracting distance between Virtual and True Sequence). Let I(r)
T

2 [T] be a set
of time instances in which the worker r updates and synchronizes with the master. For a >

4H
�

,

⌘t =
⇠

a+t
, gap(I(r)

T
 H) and t 2 Z+, there exists a C �

4a�(1��
2)

a��4H such that

Ekbxt � extk
2
 C

0
⌘
2
t
H

4
G

2 + 12C ⌘
2
t

�2G
2
H

2 (88)

Here C
0 = 192B

⇣
1 + C

�2

⌘
where B is from EQ,CkQCompk(x)k2  Bkxk2.

29

Proof. Fix a time t and consider any worker r 2 [R]. Let tr 2 I
(r)
T

denote the last synchronization
step until time t for the r’th worker. Define t

0
0 := minr2[R] tr. We want to bound Ekbxt � extk

2.
Note that in the synchronous case, we have shown in Lemma 7 that bxt � bxt =

1
R

P
R

r=1 m
(r)
t

. This
does not hold in the asynchronous setting, which makes upper-bounding Ekbxt � extk

2 a bit more
involved. By definition bxt � ext =

1
R

P
R

r=1

⇣
bx(r)
t

� ex(r)
t

⌘
. By the definition of virtual sequences

and the update rule for bx(r)
t

, we also have bxt � ext =
1
R

P
R

r=1

⇣
bx(r)
tr

� ex(r)
tr

⌘
. This can be written as

bxt � ext =

"
1
R

RX

r=1

bx(r)
tr

� ¯̄xt
0
0

#
+
⇥
¯̄xt

0
0
� ¯̄xt

⇤
+

"
¯̄xt �

1
R

RX

r=1

ex(r)
tr

#
(89)

Applying Jensen’s inequality and taking expectation gives

Ekbxt � extk
2


"
3
R

RX

r=1

Ekbx(r)
tr

� ¯̄xt
0
0
k
2

#
+
⇥
3Ek¯̄xt

0
0
� ¯̄xtk

2
⇤
+

"
3Ek¯̄xt �

1
R

RX

r=1

ex(r)
tr

k
2

#
(90)

We bound each of the three terms of (90) separately. We have upper-bounded the first term earlier in
(82), which is

Ekbx(r)
tr

� ¯̄xt
0
0
k
2
 32B

⇣
1 + C

�2

⌘
⌘
2
t
H

4
G

2
. (91)

To bound the second term of (90), note that

¯̄xt = ¯̄x0 �
1
R

RX

r=1

tr�1X

j=0

{j + 1 2 I
(r)
T

}g
(r)
j

(92)

= ¯̄xt
0
0
�

1
R

RX

r=1

tr�1X

j=t
0
0

{j + 1 2 I
(r)
T

}g
(r)
j

(93)

By applying Jensen’s inequality, using k {j + 1 2 I
(r)
T

}g
(r)
j

k
2
 kg

(r)
j

k
2, and taking expectation,

we can upper-bound (93) as

Ek¯̄xt
0
0
� ¯̄xtk

2


(tr�t
0
0)

R

RX

r=1

trX

j=t
0
0

Ekg(r)
j

k
2

Using the bound on Ekg(r)
j

k
2’s from (82) gives

Ek¯̄xt
0
0
� ¯̄xtk

2
 32B

⇣
1 + C

�2

⌘
⌘
2
t
H

4
G

2
. (94)

To bound the last term of (90), note that

ex(r)
tr

= ¯̄x0 �

tr�1X

j=0

⌘jrf
i
(r)
j

⇣
bx(r)
j

⌘
(95)

From (92) and (95), we can write

¯̄xt �
1
R

RX

r=1

ex(r)
tr

= 1
R

RX

r=1

2

4
tr�1X

j=0

⌘jr
(r)

f(ij)

⇣
bx(r)
j

⌘
�

tr�1X

j=0

{j + 1 2 I
(r)
T

}g
(r)
j

3

5 (96)

Let t(1)r and t
(2)
r be two consecutive synchronization steps in I

(r)
T

. Then, by the update rule of bx(r)
t

,

we have bx(r)

t
(1)
r

� bx(r)

t
(2)
r � 1

2

=
Pt

(2)
r �1

j=t
(1)
r

rf
i
(r)
j

⇣
bx(r)
j

⌘
. Since x(r)

t
(1)
r

= bx(r)

t
(1)
r

and the workers do not

modify their local x(r)
t

’s in between the synchronization steps, we have x(r)

t
(2)
r �1

= x(r)

t
(1)
r

= bx(r)

t
(1)
r

.
Therefore, we can write

x(r)

t
(2)
r �1

� bx(r)

t
(2)
r � 1

2

=

t
(2)
r �1X

j=t
(1)
r

rf
i
(r)
j

⇣
bx(r)
j

⌘
. (97)

30

Using (97) for every consecutive synchronization steps, we can equivalently write (96) as

¯̄xt �
1
R

RX

r=1

ex(r)
tr

= 1
R

RX

r=1

2

6664
X

j:j+12I(r)
T

jtr�1

✓
x(r)
j

� bx(r)

j+
1
2

� g
(r)
j

◆
3

7775

= 1
R

RX

r=1

m
(r)
tr

= 1
R

RX

r=1

m
(r)
t

(98)

In the last inequality, we used the fact that the workers do not update their local memory in between the
synchronization steps. For the reasons given in the proof of Lemma 11, we can directly apply Lemma 4
to bound the local memories and obtain Ek 1

R

P
R

r=1 m
(r)
t

k
2


1
R

P
R

r=1 Ekm
(r)
t

k
2
 4C ⌘

2
t

�2G
2
H

2.
This implies

Ek¯̄xt �
1
R

RX

r=1

ex(r)
tr

k
2
 4C ⌘

2
t

�2G
2
H

2
. (99)

Putting the bounds from (91), (94), and (99) in (90) gives

Ekbxt � extk
2
 192B

⇣
1 + C

�2

⌘
⌘
2
t
H

4
G

2 + 12C ⌘
2
t

�2G
2
H

2

This completes the proof of Lemma 13.

C.6 Bounded distance between virtual and true sequence under fixed learning rate

Lemma 14 (Bounded Distance between Virtual and True Sequence). Let I(r)
T

2 [T] be a set of time
instances in which the worker r updates and synchronizes with the master. For ⌘t = ⌘, gap(I(r)

T
 H)

and t 2 Z+ we have

Ekbxt � extk
2
 6C 0

⌘
2
H

4
G

2 + 12⌘2(1��
2)

�2 G
2
H

2 (100)

Here C
0 = B

⇣
8
�2 � 6

⌘
where B is from EQ,CkQCompk(x)k2  Bkxk2.

Proof. For a constant learning rate the first term in (90) has been bounded earlier in (86). Following
similar steps as in (93) we would have

Ek¯̄xt
0
0
� ¯̄xtk

2
 2B

⇣
4
�2 � 3

⌘
⌘
2
H

4
G

2 (101)

Finally using (86),(98), Lemma 3 and (101) in (90) we have

Ekbxt � extk
2
 12B

⇣
4
�2 � 3

⌘
⌘
2
H

4
G

2 + 12⌘2(1��
2)

�2 G
2
H

2 (102)

D Further Experiments

D.1 Experiments for Convex Objective

The experiments in Figure 3-4 and in Figure 2 are in a synchronous distributed setting with 15 worker
nodes, each processing a mini-batch size of 8 samples per iteration using the MNIST [19] handwritten
digits dataset. The corresponding experiments for the asynchronous operation (as in Algorithm 2) are
shown in Figure 5.

31

D.1.1 Model Architecture

Define the softmax function as

hx,z

⇣
a
(i)
⌘
=

exp
�
xT

j
a
(i) + z

(i)
�

P
L

l=1 exp
�
xT

l
a(i) + z(l)

� .

Our experiments are all for the softmax regression with a standard `2 regularizer. The cost function is

�
1

n

0

@
nX

i=1

LX

j=1

{b
(i) = j} log hx,z

⇣
a
(i)
⌘
1

A+
�

2
kxk2,

where a
(i)

2 Rd, b(i) 2 [L] are the data points, which can belong to one of the L classes, and
xj 2 Rd for every j 2 [L], are columns of the parameter structured as follows

x = [x1 x2 . . . xL] , xj 2 Rd
, 8j 2 [L],

and z
(i) for every i 2 [L] are the biases to be learnt corresponding to every class. We set � to be 1/n.

D.1.2 Parameter Selection and Learning Rates

We use our composed operator SignTopk (from Lemma 6) for compression, and denote the resulting
SGD algorithm by SignTopK. The schemes with which we compare SignTopK are EF-SIGNSGD [15],
TopK-SGD [4, 30], and local SGD [31]. The learning rate used for training is of the form c

�(a+t) ,
where (i) � is the regularization parameter; (ii) c is set with a careful hyperparameter sweep; (iii)
wt = (a + t)2 as in Theorem 2, where a is set as dH

k
with d being the dimension of the gradient

vector (7850 for MNIST); (iv) k = 40 is the sparsity; (v) H is the synchronization period; (vi) t is the
iteration index; (vii) b = 8 is the batch size; and (viii) R = 15 is the number of workers.

D.1.3 Results

(a) Training loss vs epochs (b) Training loss vs log2 of communication
budget

(c) top-1 accuracy [18] for schemes in
Figure 3a

Figure 3 Figure 3a-3c demonstrate the gains in performance achieved by our Qsparse operators in a convex
setting.

In Figure 3a, we observe that the composition of a quantizer with a sparsifier has very little effect on
the rate of convergence as compared to when the techniques are used individually. From Figure 3b
and 3c, we see that our composed operator achieves gains in communicated bits by a factor of 6-8
times over the state-of-the-art.

Figure 4a, demonstrates the effect of incorporating local iterations in SignTopK, and we see that the
rate of convergence is not significantly affected as we go from 1 to 8 local iterations. Furthermore,
observe that for a fixed number of local iterations h, SignTopK_hL maintains the same rates as vanilla
SGD or TopK-SGD. In doing so, it is able to achieve gains in communicated bits as seen in Figure 4b,
simply by communicating infrequently with the master.

We observe similar trends in Figure 5a-5b for our asynchronous operation, where workers synchronize
with the master at arbitrary time intervals as per Algorithm 2. Specifically, in our experiments, for
each r 2 [R], the time interval for the rth worker is decided uniformly at random from [H] after every
synchronization by that worker. This ensures that gap(I(r)

T
)  H holds for every worker r 2 [R]

and the schedule I
(r)
T

is different for each of them.

32

(a) Training loss vs epochs (b) Training loss vs log2 of communication budget

Figure 4 Figure 4a-4b demonstrate the effect of incorporating local iterations and compare these effects across
vanilla SGD, TopK-SGD, as well as SignTopK.

(a) Training loss with the communication budget for our schemes
against baselines

(b) Test error using a model trained for given number of iterations, as
seen in Figure 5a

Figure 5 Figure 5a-5b demonstrate the performance of our scheme in comparison with EF-SIGNSGD [15] and
TopK-SGD [4, 30] in a convex setting for asynchronous operation.

E Summary of Results

Combining local computations with quantization and explicit sparsification enables significantly
reduced communication, resulting in a lot of bit savings. For a fixed number of local iterations H , we
characterize the required total number of iterations T = ⌦(·) (see Table 1 and Table 2) after which
the algorithm converges at the rates of distributed vanilla SGD. Furthermore, we also characterize the
reduction in communication, in terms of the asymptotic limits of local computations, i.e., H = O(·)
(see Table 1 and Table 2).

Synchronous
Objective Rate H T

Smooth and non-convex O(1/
p
bRT) O(�T 1/4

/(bR)3/4) ⌦(H4(bR)3/�4)
Smooth and strongly convex O(1/bRT) O(�

p
T/(bR)) ⌦(H2(bR)/�2)

Table 1 Summary of results for the synchronous setting with fixed learning rate in both the smooth and
non-convex case and decaying learning rate in the smooth and strongly convex case.

33

Asynchronous
Objective Rate H T

Smooth and non-convex O(1/
p
bRT) O(

p
�T

1/8
/(bR)3/8) ⌦(H8(bR)3/�4)

Smooth and strongly convex O(1/bRT) O(
p
�(T/(bR))1/4) ⌦(H4(bR)/�2)

Table 2 Summary of results for the asynchronous setting with fixed learning rate in both the smooth and
non-convex case and decaying learning rate in the smooth and strongly convex case.

34

