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Abstract

Sparse coding is typically solved by iterative optimization techniques, such as1

the Iterative Shrinkage-Thresholding Algorithm (ISTA). Unfolding and learning2

weights of ISTA using neural networks is a practical way to accelerate estimation.3

In this paper, we study the selection of adapted step sizes for ISTA. We show4

that a simple step size strategy can improve the convergence rate of ISTA by5

leveraging the sparsity of the iterates. However, it is impractical in most large-6

scale applications. Therefore, we propose a network architecture where only the7

step sizes of ISTA are learned. We demonstrate that for a large class of unfolded8

algorithms, if the algorithm converges to the solution of the Lasso, its last layers9

correspond to ISTA with learned step sizes. Experiments show that our method is10

competitive with state-of-the-art networks when the solutions are sparse enough.11

1 Introduction12

The resolution of convex optimization problems by iterative algorithms has become a key part of13

machine learning and signal processing pipelines. Amongst these problems, special attention has14

been devoted to the Lasso (Tibshirani, 1996), due to the attractive sparsity properties of its solution15

(see Hastie et al. 2015 for an extensive review). For a given input x ∈ Rn , a dictionary D ∈ Rn×m16

and a regularization parameter λ > 0 , the Lasso problem is17

z∗(x) ∈ arg min
z∈Rm

Fx(z) with Fx(z) ,
1

2
‖x−Dz‖2 + λ‖z‖1 . (1)

A variety of algorithms exist to solve Problem (1), e.g. proximal coordinate descent18

(Tseng, 2001; Friedman et al., 2007), Least Angle Regression (Efron et al., 2004) or proximal19

splitting methods (Combettes and Bauschke, 2011). The focus of this paper is on the Iterative20

Shrinkage-Thresholding Algorithm (ISTA, Daubechies et al. 2004), which is a proximal-gradient21

method applied to Problem (1). ISTA starts from z(0) = 0 and iterates22

z(t+1) = ST

(
z(t) − 1

L
D>(Dz(t) − x),

λ

L

)
, (2)

where ST is the soft-thresholding operator defined as ST(x, u) , sign(x) max(|x| − u, 0) , and L23

is the greatest eigenvalue of D>D . In the general case, ISTA converges at rate 1/t , which can be24

improved to the optimal rate 1/t2 (Nesterov, 1983). However, this optimality stands in the worst25

possible case, and linear rates are achievable in practice (Liang et al., 2014).26

A popular line of research to improve the speed of Lasso solvers is to try to identify the support27

of z∗ , in order to diminish the size of the optimization problem (El Ghaoui et al., 2012; Ndiaye28

et al., 2017; Johnson and Guestrin, 2015; Massias et al., 2018). Once the support is identified, larger29

steps can also be taken, leading to improved rates for first order algorithms (Liang et al., 2014; Poon30

et al., 2018; Sun et al., 2019).31
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However, these techniques only consider the case where a single Lasso problem is solved. When32

one wants to solve the Lasso for many samples {xi}Ni=1 – e.g. in dictionary learning (Olshausen and33

Field, 1997) – it is proposed by Gregor and Le Cun (2010) to learn a T -layers neural network of34

parameters Θ , ΦΘ : Rn → Rm such that ΦΘ(x) ' z∗(x) . This Learned-ISTA (LISTA) algorithm35

yields better solution estimates than ISTA on new samples for the same number of iterations/layers.36

This idea has led to a profusion of literature (summarized in Table A.1 in appendix). Recently, it37

has been hinted by Zhang and Ghanem (2018); Ito et al. (2018); Liu et al. (2019) that only a few38

well-chosen parameters can be learned while retaining the performances of LISTA.39

In this article, we study strategies for LISTA where only step sizes are learned. In Section 3, we40

propose Oracle-ISTA, an analytic strategy to obtain larger step sizes in ISTA. We show that the41

proposed algorithm’s convergence rate can be much better than that of ISTA. However, it requires42

computing a large number of Lipschitz constants which is a burden in high dimension. This motivates43

the introduction of Step-LISTA (SLISTA) networks in Section 4, where only a step size parameter is44

learned per layer. As a theoretical justification, we show in Theorem 4.4 that the last layers of any45

deep LISTA network converging on the Lasso must correspond to ISTA iterations with learned step46

sizes. We validate the soundness of this approach with numerical experiments in Section 5.47

2 Notation and Framework48

Notation The `2 norm on Rn is ‖ · ‖. For p ∈ [1,∞] , ‖ · ‖p is the `p norm. The Frobenius matrix49

norm is ‖M‖F . The identity matrix of size m is Idm . ST is the soft-thresholding operator. Iterations50

are denoted z(t) . λ > 0 is the regularization parameter. The Lasso cost function is Fx . ψα(z, x) is51

one iteration of ISTA with step α: ψα(z, x) = ST(z−αD>(Dz−x), αλ) . φθ(z, x) is one iteration52

of a LISTA layer with parameters θ = (W,α, β): φθ(z, x) = ST(z − αW>(Dz − x), βλ) .53

The set of integers between 1 and m is J1,mK . Given z ∈ Rm , the support is supp(z) = {j ∈54

J1,mK : zj 6= 0} ⊂ J1,mK . For S ⊂ J0,mK, DS ∈ Rn×m is the matrix containing the columns of55

D indexed by S. We denote LS , the greatest eigenvalue of D>SDS . The equicorrelation set is E =56

{j ∈ J1,mK : |D>j (Dz∗−x)| = λ}. The equiregularization set is B∞ = {x ∈ Rn : ‖D>x‖∞ = 1}.57

Neural networks parameters are between brackets, e.g. Θ = {α(t), β(t)}T−1
t=0 . The sign function is58

sign(x) = 1 if x > 0, −1 if x < 0 and 0 is x = 0 .59

Framework This paragraph recalls some properties of the Lasso. Lemma 2.1 gives the first-order60

optimality conditions for the Lasso.61

Lemma 2.1 (Optimality for the Lasso). The Karush-Kuhn-Tucker (KKT) conditions read62

z∗ ∈ arg minFx ⇔ ∀j ∈ J1,mK, D>j (x−Dz∗) ∈ λ∂|z∗j | =
{{λ sign z∗j }, if z∗j 6= 0 ,

[−λ, λ], if z∗j = 0 .
(3)

Defining λmax , ‖D>x‖∞ , it holds arg minFx = {0} ⇔ λ ≥ λmax . For some results in Section 3,63

we will need the following assumption on the dictionary D:64

Assumption 2.2 (Uniqueness assumption). D is such that the solution of Problem (1) is unique for65

all λ and x i.e. arg minFx = {z∗} .66

Assumption 2.2 may seem stringent since whenever m > n , Fx is not strictly convex. However, it67

was shown in Tibshirani (2013, Lemma 4) – with earlier results from Rosset et al. 2004 – that if D is68

sampled from a continuous distribution, Assumption 2.2 holds for D with probability one.69

Definition 2.3 (Equicorrelation set). The KKT conditions motivate the introduction of the equicorre-70

lation set E , {j ∈ J1,mK : |D>j (Dz∗ − x)| = λ} , since j /∈ E =⇒ z∗j = 0 , i.e. E contains the71

support of any solution z∗ .72

When Assumption 2.2 holds, we have E = supp(z∗) (Tibshirani, 2013, Lemma 16).73

We consider samples x in the equiregularization set74

B∞ , {x ∈ Rn : ‖D>x‖∞ = 1} , (4)
which is the set of x such that λmax(x) = 1 . Therefore, when λ ≥ 1 , the solution is z∗(x) = 0 for75

all x ∈ B∞ , and when λ < 1 , z∗(x) 6= 0 for all x ∈ B∞ . For this reason, we assume 0 < λ < 1 in76

the following.77
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3 Better step sizes for ISTA78

The Lasso objective is the sum of a L-smooth function, 1
2‖x−D · ‖2 , and a function with an explicit79

proximal operator, λ‖ · ‖1 . Proximal gradient descent for this problem, with the sequence of step80

sizes (α(t)) consists in iterating81

z(t+1) = ST
(
z(t) − α(t)D>(Dz(t) − x), λα(t)

)
. (5)

ISTA follows these iterations with a constant step size α(t) = 1/L . In the following, denote82

ψα(z, x) , ST(z − αD>(Dz(t) − x), αλ). One iteration of ISTA can be cast as a majorization-83

minimization step (Beck and Teboulle, 2009). Indeed, for all z ∈ Rm ,84

Fx(z) = 1
2‖x−Dz(t)‖2 + (z − z(t))>D>(Dz(t) − x) + 1

2‖D(z − z(t))‖2 + λ‖z‖1 (6)

≤ 1
2‖x−Dz(t)‖2 + (z − z(t))>D>(Dz(t) − x) + L

2 ‖z − z(t)‖2 + λ‖z‖1︸ ︷︷ ︸
, Qx,L(z, z(t))

, (7)

where we have used the inequality (z − z(t))>D>D(z − z(t)) ≤ L‖z − z(t)‖2 . The minimizer of85

Qx,L(·, z(t)) is ψ1/L(z(t), x), which is the next ISTA step.86

Oracle-ISTA: an accelerated ISTA with larger step sizes Since the iterates are sparse, this87

approach can be refined. For S ⊂ J1,mK , let us define the S-smoothness of D as88

LS , max
z
z>D>Dz, s.t. ‖z‖ = 1 and supp(z) ⊂ S , (8)

with the convention L∅ = L . Note that LS is the greatest eigenvalue of D>SDS where DS ∈ Rn×|S|89

is the columns of D indexed by S . For all S , LS ≤ L , since L is the solution of Equation (8)90

without support constraint. Assume supp(z(t)) ⊂ S . Combining Equations (6) and (8), we have91

∀z s.t. supp(z) ⊂ S, Fx(z) ≤ Qx,LS
(z, z(t)) . (9)

The minimizer of the r.h.s is z = ψ1/LS
(z(t), x) . Furthermore, the r.h.s. is a tighter upper bound than92

the one given in Equation (7) (see illustration in Figure 1). Therefore, using z(t+1) = ψ1/LS
(z(t), x)93

minimizes a tighter upper bound, provided that the following condition holds94

supp(z(t+1)) ⊂ S . (?)

0 1
L

1
LS

Step size

C
os

t
fu

nc
ti

on

Fx Qx,L(·, z(t)) Qx,LS(·, z(t))

Figure 1: Majorization illustration. If z(t) has support
S , Qx,LS

(·, z(t)) is a tighter upper bound of Fx than
Qx,L(·, z(t)) on the set of points of support S .

Oracle-ISTA (OISTA) is an accelerated version of ISTA which leverages the sparsity of the iterates95

in order to use larger step sizes. The method is summarized in Algorithm 1. OISTA computes96

y(t+1) = ψ1/Ls
(z(t), x) , using the larger step size 1/LS , and checks if it satisfies the support97

Condition ?. When the condition is satisfied, the step can be safely accepted. In particular Equation (9)98

yields Fx(y(t+1)) ≤ Fx(z(t)) . Otherwise, the algorithm falls back to the regular ISTA iteration99

with the smaller step size. Hence, each iteration of the algorithm is guaranteed to decrease Fx . The100

following proposition shows that OISTA converges in iterates, achieves finite support identification,101

and eventually reaches a safe regime where Condition ? is always true.102
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Algorithm 1: Oracle-ISTA (OISTA) with larger step sizes
Input: Dictionary D , target x , number of iterations T
z(0) = 0
for t = 0, . . . , T − 1 do

Compute S = supp(z(t)) and LS using an oracle ;
Set y(t+1) = ψ1/LS

(z(t), x) ;
if Condition ? : supp(y(t+1)) ⊂ S then Set z(t+1) = y(t+1) ;
else Set z(t+1) = ψ1/L(z(t), x) ;

Output: Sparse code z(T )

Proposition 3.1 (Convergence, finite-time support identification and safe regime). When Assump-103

tion 2.2 holds, the sequence (z(t)) generated by the algorithm converges to z∗ = arg minFx .104

Further, there exists an iteration T ∗ such that for t ≥ T ∗ , supp(z(t)) = supp(z∗) , S∗ and105

Condition ? is always statisfied.106

Sketch of proof (full proof in Subsection B.1). Using Zangwill’s global convergence theorem (Zang-107

will, 1969), we show that all accumulation points of (z(t)) are solutions of Lasso. Since the solution108

is assumed unique, (z(t)) converges to z∗ . Then, we show that the algorithm achieves finite-support109

identification with a technique inspired by Hale et al. (2008). The algorithm gets arbitrary close110

to z∗ , eventually with the same support. We finally show that in a neighborhood of z∗ , the set of111

points of support S∗ is stable by ψ1/LS
(·, x) . The algorithm eventually reaches this region, and then112

Condition ? is true.113

It follows that the algorithm enjoys the usual ISTA convergence results replacing L with LS∗ .114

Proposition 3.2 (Rates of convergence). For t > T ∗ , Fx(z(t))− Fx(z∗) ≤ LS∗ ‖z
∗−z(T

∗)‖2
2(t−T∗) .115

If additionally inf‖z‖=1 ‖DS∗z‖2 = µ∗ > 0 , then the convergence rate for t ≥ T ∗ is116

Fx(z(t))− Fx(z∗) ≤ (1− µ∗

LS∗
)t−T

∗
(Fx(z(T∗))− Fx(z∗)) .117

Sketch of proof (full proof in Subsection B.2). After iteration T ∗ , OISTA is equivalent to ISTA ap-118

plied on Fx(z) restricted to z ∈ S∗ . This function is LS∗ -smooth, and µ∗-strongly convex if µ∗ > 0 .119

Therefore, the classical ISTA rates apply with improved condition number.120

These two rates are tighter than the usual ISTA rates – in the convex case L‖z
∗‖2
2t and in the µ-strongly121

convex case (1 − µ∗

L )t(Fx(0) − Fx(z∗)) (Beck and Teboulle, 2009). Finally, the same way ISTA122

converges in one iteration when D is orthogonal (D>D = Idm), OISTA converges in one iteration if123

S∗ is identified and DS∗ is orthogonal.124

Proposition 3.3. Assume D>S∗DS∗ = LS∗ Id|S∗| . Then, z(T∗+1) = z∗ .125

Proof. For z s.t. supp(z) = S∗ , Fx(z) = Qx,LS
(z, z(T∗)) . Hence, the OISTA step minimizes126

Fx .127

Quantification of the rates improvement in a Gaussian setting The following proposition gives128

an asymptotic value for LS

L in a simple setting.129

Proposition 3.4. Assume that the entries of D ∈ Rn×m are i.i.d centered Gaussian variables with130

variance 1 . Assume that S consists of k integers chosen uniformly at random in J1,mK . Assume that131

k,m, n→ +∞ with linear ratios m/n→ γ, k/m→ ζ . Then132

LS
L
→
(

1 +
√
ζγ

1 +
√
γ

)2

. (10)
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This is a direct application of the Marchenko-Pastur law (Marchenko and Pastur, 1967). The law is133

illustrated on a toy dataset in Figure D.1. In Proposition 3.4, γ is the ratio between the number of134

atoms and number of dimensions, and the average size of S is described by ζ ≤ 1 . In an overcomplete135

setting, we have γ � 1 , yielding the approximation of Equation (10): LS ' ζL . Therefore, if z∗ is136

very sparse (ζ � 1), the convergence rates of Proposition 3.2 are much better than those of ISTA.137

Example Figure 2 compares the OISTA, ISTA, and FISTA on a toy problem. The improved rate of138

convergence of OISTA is illustrated. Further comparisons are displayed in Figure D.2 for different139

regularization parameters λ . While this demonstrates a much faster rate of convergence, it requires140

computing several Lipschitz constants LS , which is cumbersome in high dimension. This motivates141

the next section, where we propose to learn those steps.142

10−6

10−12F
x
−
F
∗ x

0 50 100 150

Number of iterations

1

3

O
ra

cl
e

st
ep

1/L

ISTA FISTA OISTA (proposed)

Figure 2: Convergence curves of OISTA,
ISTA, and FISTA on a toy problem with
n = 10 , m = 50 , λ = 0.5 . The bottom
figure displays the (normalized) steps taken
by OISTA at each iteration. Full experimental
setup described in Appendix D.

4 Learning unfolded algorithms143

Network architectures At each step, ISTA performs a linear operation to compute an update144

in the direction of the gradient D>(Dz(t) − x) and then an element-wise non linearity with the145

soft-thresholding operator ST . The whole algorithm can be summarized as a recurrent neural network146

(RNN), presented in Figure 3a. Gregor and Le Cun (2010) introduced Learned-ISTA (LISTA), a147

neural network constructed by unfolding this RNN T times and learning the weights associated to each148

layer. The unfolded network, presented in Figure 3b, iterates z(t+1) = ST(W
(t)
x x+W

(t)
z z(t), λβ(t)) .149

It outputs exactly the same vector as T iterations of ISTA when W (t)
x = D>

L , W
(t)
z = Idm−D

>D
L150

and β(t) = 1
L . Empirically, this network is able to output a better estimate of the sparse code solution151

with fewer operations.152

Wxx z∗

Wz

(a) ISTA - Recurrent Neural Network

x

W
(0)
x

W
(1)
z

W
(1)
x

W
(2)
z

W
(2)
x

z(3)

(b) LISTA - Unfolded network with T = 3

Figure 3: Network architecture for ISTA (left) and LISTA (right).

Due to the expression of the gradient, Chen et al. (2018) proposed to consider only a subclass of153

the previous networks, where the weights Wx and Wz are coupled via Wz = Idm−W>x D . This is154

the architecture we consider in the following. A layer of LISTA is a function φθ : Rm × Rn → Rm155

parametrized by θ = (W,α, β) ∈ Rn×m × R+
∗ × R+

∗ such that156

φθ(z, x) = ST(z − αW>(Dz − x), βλ) . (11)

Given a set of T layer parameters Θ(T ) = {θ(t)}T−1
t=0 , the LISTA network ΦΘ(T ) : Rn → Rm is157

ΦΘ(T )(x) = z(T )(x) where z(t)(x) is defined by recursion158

z(0)(x) = 0, and z(t+1)(x) = φθ(t)(z
(t)(x), x) for t ∈ J0, T − 1K . (12)
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Taking W = D , α = β = 1
L yields the same outputs as T iterations of ISTA.159

To alleviate the need to learn the large matrices W (t), Liu et al. (2019) proposed to use a shared160

analytic matrix WALISTA for all layers. The matrix is computed in a preprocessing stage by161

WALISTA = arg min
W

‖W>D‖2F s.t. diag(W>D) = 111m . (13)

Then, only the parameters (α(t), β(t)) are learned. This effectively reduces the number of parameters162

from (nm+ 2)× T to 2× T . However, we will see that ALISTA fails in our setup.163

Step-LISTA With regards to the study on step sizes for ISTA in Section 3, we propose to learn164

approximation of ISTA step sizes for the input distribution using the LISTA framework. The resulting165

network, dubbed Step-LISTA (SLISTA), has T parameters ΘSLISTA = {α(t)}T−1
t=0 , and follows the166

iterations:167

z(t+1)(x) = ST(z(t)(x)− α(t)D>(Dz(t)(x)− x), α(t)λ) . (14)

This is equivalent to a coupling in the LISTA parameters: a LISTA layer θ = (W,α, β) corresponds to168

a SLISTA layer if and only if αβW = D. This network aims at learning good step sizes, like the ones169

used in OISTA, without the computational burden of computing Lipschitz constants. The number of170

parameters compared to the classical LISTA architecture ΘLISTA is greatly diminished, making the171

network easier to train. Learning curves are shown in Figure ?? in appendix. Figure 4 displays the172

learned steps of a SLISTA network on a toy example. The network learns larger step-sizes as the173

1/LS’s increase.174

1 10 20

Layer

1/L

2/L

3/L

S
te

p

1/L

Learned steps of the network

Median 1/LS on training samples Figure 4: Steps learned with a 20 layers SLISTA network
on a 10× 20 problem. For each layer t and each training
sample x, we compute the support S(x, t) of z(t)(x). The
brown curves display the quantiles of the distribution
of 1/LS(x,t) for each layer t . Full experimental setup
described in Appendix D.

Training the network We consider the framework where the network learns to solve the Lasso on175

B∞ in an unsupervised way. Given a distribution p on B∞ , the network is trained by solving176

Θ̃(T ) ∈ arg min
Θ(T )
L(Θ(T )) , Ex∼p[Fx(ΦΘ(T )(x))] . (15)

Most of the literature on learned optimization train the network with a different supervised objective177

(Gregor and Le Cun, 2010; Xin et al., 2016; Chen et al., 2018; Liu et al., 2019). Given a set of pairs178

(xi, zi) , the supervised approach tries to learn the parameters of the network such that ΦΘ(xi) ' zi179

e.g. by minimizing ‖ΦΘ(xi)−zi‖2 . This training procedure differs critically from ours. For instance,180

ISTA does not converge for the supervised problem in general while it does for the unsupervised181

one. As Proposition 4.1 shows, the unsupervised approach allows to learn to minimize the Lasso cost182

function Fx .183

Proposition 4.1 (Pointwise convergence). Let Θ̃(T ) found by solving Problem (15).184

For x ∈ B∞ such that p(x) > 0 , Fx(ΦΘ̃(T )(x)) −−−−−→
T→+∞

F ∗x almost everywhere.185

Proof. Let Θ
(T )
ISTA the parameters corresponding to ISTA i.e. θ

(t)
ISTA = (D, 1/L, 1/L) . For all186

T , we have Ex∼p[F ∗x ] ≤ Ex∼p[Fx(ΦΘ̃(T )(x))] ≤ Ex∼p[Fx(Φ
Θ

(T )
ISTA

(x))] . Since ISTA converges187

uniformly on any compact, the right hand term goes to Ex∼p[F ∗x ] . Therefore, by the squeeze theorem,188

Ex∼p[Fx(ΦΘ̃(T )(x))− F ∗x ]→ 0 . This implies almost sure convergence of Fx(ΦΘ̃(T )(x))− F ∗x to 0189

since it is non-negative.190
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Asymptotical weight coupling theorem In this paragraph, we show the main result of this paper:191

any LISTA network minimizing Fx on B∞ reduces to SLISTA in its deep layers (Theorem 4.4). It192

relies on the following Lemmas.193

Lemma 4.2 (Stability of solutions around Dj). Let D ∈ Rn×m be a dictionary with non-duplicated194

unit-normed columns. Let c , maxl 6=j |D>l Dj | < 1 . Then for all j ∈ J1,mK and ε ∈ Rm such that195

‖ε‖ < λ(1− c) and D>j ε = 0 , the vector (1− λ)ej minimizes Fx for x = Dj + ε .196

It can be proven by verifying the KKT conditions (3) for (1− λ)ej , detailed in Subsection C.1.197

Lemma 4.3 (Weight coupling). Let D ∈ Rn×m be a dictionary with non-duplicated unit-normed198

columns. Let θ = (W,α, β) a set of parameters. Assume that all the couples (z∗(x), x) ∈ Rm ×B∞199

such that z∗(x) ∈ arg minFx(z) verify φθ(z∗(x), x) = z∗(x). Then, αβW = D .200

Sketch of proof (full proof in Subsection C.2). For j ∈ J1,mK , consider x = Dj + ε , with201

ε>Dj = 0 . For ‖ε‖ small enough, x ∈ B∞ and ε verifies the hypothesis of Lemma 4.2,202

therefore z∗ = (1− λ)ej ∈ arg minFx . Writing φθ(z
∗, x) = z∗ for the j-th coordinate yields203

αW>j (λDj + ε) = λβ . We can then verify that (αW>j − βD>j )(λDj + ε) = 0 . This stands for204

any ε orthogonal to Dj and of norm small enough. Simple linear algebra shows that this implies205

αWj − βDj = 0 .206

Lemma 4.3 states that the Lasso solutions are fixed points of a LISTA layer only if this layer207

corresponds to a step size for ISTA. The following theorem extends the lemma by continuity, and208

shows that the deep layers of any converging LISTA network must tend toward a SLISTA layer.209

Theorem 4.4. Let D ∈ Rn×m be a dictionary with non-duplicated unit-normed columns. Let210

Θ(T ) = {θ(t)}Tt=0 be the parameters of a sequence of LISTA networks such that the transfer function211

of the layer t is z(t+1) = φθ(t)(z
(t), x) . Assume that212

(i) the sequence of parameters converges i.e. θ(t) −−−→
t→∞

θ∗ = (W ∗, α∗, β∗) ,213

(ii) the output of the network converges toward a solution z∗(x) of the Lasso (1) uniformly over214

the equiregularization set B∞ , i.e. supx∈B∞ ‖ΦΘ(T )(x)− z∗(x)‖ −−−−→
T→∞

0 .215

Then α∗

β∗W
∗ = D .216

Sketch of proof (full proof in Subsection C.3). Let ε > 0 , and x ∈ B∞ . Using the triangular in-217

equality, we have218

‖φθ∗(z∗, x)− z∗‖ ≤ ‖φθ∗(z∗, x)− φθ(t)(z(t), x)‖+ ‖φθ(t)(z(t), x)− z∗‖ (16)

Since the z(t) and θ(t) converge, they are valued over a compact set K. The function f : (z, x, θ) 7→219

φθ(z, x) is continuous, piecewise-linear. It is therefore Lipschitz onK. Hence, we have ‖φθ∗(z∗, x)−220

φθ(t)(z
(t), x)‖ ≤ ε for t large enough. Since φθ(t)(z(t), x) = z(t+1) and z(t) → z∗ , ‖φθ(t)(z(t), x)−221

z∗‖ ≤ ε for t large enough. Finally, φθ∗(z∗, x) = z∗ . Lemma 4.3 allows to conclude.222

1 10 20 30 40

Layers

0

5

10

‖α
(t

) W
(t

)
−
β

(t
) D
‖ F

LISTA
Figure 5: Illustration of Theorem 4.4: for deep layers of
LISTA, we have ‖α(t)W (t)−β(t)D‖F → 0 , indicating
that the network ultimately only learns a step size. Full
experimental setup described in Appendix D.

Theorem 4.4 means that the deep layers of any LISTA network that converges to solutions of the223

Lasso correspond to SLISTA iterations: W (t) aligns with D , and α(t), β(t) get coupled. This is224

illustrated in Figure 5, where a 40-layers LISTA network is trained on a 10 × 20 problem with225
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λ = 0.1 . As predicted by the theorem, α
(t)

β(t)W
(t) → D . The last layers only learn a step size. This226

is consistent with the observation of Moreau and Bruna (2017) which shows that the deep layers227

of LISTA stay close to ISTA. Further, Theorem 4.4 also shows that it is hopeless to optimize the228

unsupervised objective (15) with WALISTA (13), since this matrix is not aligned with D .229

5 Numerical Experiments230

This section provides numerical arguments to compare SLISTA to LISTA and ISTA. All the experi-231

ments were run using Python (Python Software Foundation, 2017) and pytorch (Paszke et al., 2017).232

The code to reproduce the figures is available online1.233

Network comparisons We compare the proposed approach SLISTA to state-of-the-art learned234

methods LISTA (Chen et al., 2018) and ALISTA (Liu et al., 2019) on synthetic and semi-real cases.235

In the synthetic case, a dictionary D ∈ Rn×m of Gaussian i.i.d. entries is generated. Each column is236

then normalized to one. A set of Gaussian i.i.d. samples (x̃i)Ni=1 ∈ Rn is drawn. The input samples237

are obtained as xi = x̃i/‖D>x̃i‖∞ ∈ B∞ , so that for all i , xi ∈ B∞ . We set m = 256 and238

n = 64.239

For the semi-real case, we used the digits dataset from scikit-learn (Pedregosa et al., 2011) which240

consists of 8× 8 images of handwritten digits from 0 to 9 . We sample m = 256 samples at random241

from this dataset and normalize it do generate our dictionary D . Compared to the simulated Gaussian242

dictionary, this dictionary has a much richer correlation structure, which is known to imper the243

performances of learned algorithms (Moreau and Bruna, 2017). The input distribution is generated as244

in the simulated case.245

The networks are trained by minimizing the empirical loss L (15) on a training set of size Ntrain =246

10, 000 and we report the loss on a test set of size Ntest = 10, 000 . Further details on training are in247

Appendix D.248

0 10 20 30

Number of Layers

10−2

10−1

100

F
x
−
F
∗ x

Simulated data λ = 0.1

0 10 20 30

Number of Layers

10−6

10−4

10−2

Simulated data λ = 0.8

0 10 20 30

Number of Layers

10−1

Digits data λ = 0.1

0 10 20 30

Number of Layers

10−2

Digits data λ = 0.8

ISTA LISTA ALISTA SLISTA (proposed)

Figure 6: Test loss of ISTA, ALISTA, LISTA and SLISTA on simulated and semi-real data for
different regularization parameters.

Figure 6 shows the test curves for different levels of regularization λ = 0.1 and 0.8. SLISTA performs249

best for high λ, even for challenging semi-real dictionary D . In a low regularization setting, LISTA250

performs best as SLISTA cannot learn larger steps due to the low sparsity of the solution. In this251

unsupervised setting, ALISTA does not converge in accordance with Theorem 4.4.252

6 Conclusion253

We showed that using larger step sizes is an efficient strategy to accelerate ISTA for sparse solution254

of the Lasso. In order to make this approach practical, we proposed SLISTA, a neural network255

architecture which learns such step sizes. Theorem 4.4 shows that the deepest layers of any converging256

LISTA architecture must converge to a SLISTA layer. Numerical experiments show that SLISTA257

outperforms LISTA in a high sparsity setting. An major benefit of our approach is that it preserves258

the dictionary. We plan on leveraging this property to apply SLISTA in convolutional or wavelet259

cases, where the structure of the dictionary allows for fast multiplications.260

1 The code can be found in supplementary materials.

8



References261

Jonas Adler, Axel Ringh, Ozan Öktem, and Johan Karlsson. Learning to solve inverse problems262

using Wasserstein loss. preprint ArXiv, 1710.10898, 2017.263

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse264

problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.265

Mark Borgerding, Philip Schniter, and Sundeep Rangan. AMP-inspired deep networks for sparse266

linear inverse problems. IEEE Transactions on Signal Processing, 65(16):4293–4308, 2017.267

Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical linear convergence of268

unfolded ISTA and its practical weights and thresholds. In Advances in Neural Information269

Processing Systems (NIPS), pages 9061–9071, 2018.270

Patrick L Combettes and Heinz H. Bauschke. Convex Analysis and Monotone Operator Theory in271

Hilbert Spaces. Springer, 2011. ISBN 9788578110796. doi: 10.1017/CBO9781107415324.004.272

Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm273

for linear inverse problems with a sparsity constraint. Communications on Pure and Applied274

Mathematics, 57(11):1413–1457, 2004.275

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. Ann.276

Statist., 32(2):407–499, 2004.277

Laurent El Ghaoui, Vivian Viallon, and Tarek Rabbani. Safe feature elimination in sparse supervised278

learning. J. Pacific Optim., 8(4):667–698, 2012.279

Jerome Friedman, Trevor Hastie, Holger Höfling, and Robert Tibshirani. Pathwise coordinate280

optimization. The Annals of Applied Statistics, 1(2):302–332, 2007.281

Raja Giryes, Yonina C. Eldar, Alex M. Bronstein, and Guillermo Sapiro. Tradeoffs between con-282

vergence speed and reconstruction accuracy in inverse problems. IEEE Transaction on Signal283

Processing, 66(7):1676–1690, 2018.284

Karol Gregor and Yann Le Cun. Learning Fast Approximations of Sparse Coding. In International285

Conference on Machine Learning (ICML), pages 399–406, 2010.286

Elaine Hale, Wotao Yin, and Yin Zhang. Fixed-point continuation for `1-minimization: Methodology287

and convergence. SIAM J. Optim., 19(3):1107–1130, 2008.288

Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical Learning with Sparsity: The289

Lasso and Generalizations. CRC Press, 2015.290

John R. Hershey, Jonathan Le Roux, and Felix Weninger. Deep unfolding: Model-based inspiration291

of novel deep architectures. preprint ArXiv, 1409.2574, 2014.292

Daisuke Ito, Satoshi Takabe, and Tadashi Wadayama. Trainable ISTA for sparse signal recovery. In293

IEEE International Conference on Communications Workshops, pages 1–6, 2018.294

Tyler Johnson and Carlos Guestrin. Blitz: A principled meta-algorithm for scaling sparse optimization.295

In International Conference on Machine Learning (ICML), pages 1171–1179, 2015.296

Jingwei Liang, Jalal Fadili, and Gabriel Peyré. Local linear convergence of forward–backward under297

partial smoothness. In Advances in Neural Information Processing Systems, pages 1970–1978,298

2014.299

Jialin Liu, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. ALISTA: Analytic weights are as good300

as learned weigths in LISTA. In International Conference on Learning Representation (ICLR),301

2019.302

Vladimir A Marchenko and Leonid Andreevich Pastur. Distribution of eigenvalues for some sets of303

random matrices. Mathematics of the USSR-Sbornik, 1(4):457, 1967.304

Mathurin Massias, Alexandre Gramfort, and Joseph Salmon. Celer: a Fast Solver for the Lasso with305

Dual Extrapolation. In International Conference on Machine Learning (ICML), 2018.306

Thomas Moreau and Joan Bruna. Understanding neural sparse coding with matrix factorization. In307

International Conference on Learning Representation (ICLR), 2017.308

Eugene Ndiaye, Olivier Fercoq, Alexandre Gramfort, and Joseph Salmon. Gap safe screening rules309

for sparsity enforcing penalties. J. Mach. Learn. Res., 18(128):1–33, 2017.310

9



Yurii Nesterov. A method for solving a convex programming problem with rate of convergence311

O(1/k2). Soviet Math. Doklady, 269(3):543–547, 1983.312

Bruno A. Olshausen and David J Field. Sparse coding with an incomplete basis set: a strategy313

employed by V1, 1997.314

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,315

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in316

PyTorch. In NIPS Autodiff Workshop, 2017.317

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-318

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and319

E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,320

12:2825–2830, 2011.321

Clarice Poon, Jingwei Liang, and Carola-Bibiane Schönlieb. Local convergence properties of SAGA322

and prox-SVRG and acceleration. In International Conference on Machine Learning (ICML),323

2018.324

Python Software Foundation. Python Language Reference, version 3.6. http://python.org/, 2017.325

Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a maximum margin326

classifier. J. Mach. Learn. Res., 5:941–973, 2004.327

Pablo Sprechmann, Alex M. Bronstein, and Guillermo Sapiro. Learning efficient structured sparse328

models. In International Conference on Machine Learning (ICML), pages 615–622, 2012.329

Pablo Sprechmann, Roee Litman, and TB Yakar. Efficient supervised sparse analysis and synthesis330

operators. In Advances in Neural Information Processing Systems (NIPS), pages 908–916, 2013.331

Yifan Sun, Halyun Jeong, Julie Nutini, and Mark Schmidt. Are we there yet? manifold identification332

of gradient-related proximal methods. In Proceedings of Machine Learning Research, volume 89333

of Proceedings of Machine Learning Research, pages 1110–1119. PMLR, 2019.334

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical335

Society: Series B (Methodological), 58(1):267–288, 1996.336

Ryan Tibshirani. The lasso problem and uniqueness. Electron. J. Stat., 7:1456–1490, 2013.337

Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.338

J. Optim. Theory Appl., 109(3):475–494, 2001.339

Zhangyang Wang, Qing Ling, and Thomas S. Huang. Learning deep `0 encoders. In AAAI Conference340

on Artificial Intelligence, pages 2194–2200, 2015.341

Bo Xin, Yizhou Wang, Wen Gao, and David Wipf. Maximal sparsity with deep networks? In342

Advances in Neural Information Processing Systems (NIPS), pages 4340–4348, 2016.343

Yan Yang, Jian Sun, Huibin Li, and Zongben Xu. Deep ADMM-Net for compressive censing MRI.344

In Advances in Neural Information Processing Systems (NIPS), pages 10–18, 2017.345

Willard I Zangwill. Convergence conditions for nonlinear programming algorithms. Management346

Science, 16(1):1–13, 1969.347

Jian Zhang and Bernard Ghanem. ISTA-Net: Interpretable optimization-inspired deep network for348

image compressive sensing. In IEEE Computer Society Conference on Computer Vision and349

Pattern Recognition, pages 1828–1837, 2018.350

10



A Unfolded optimization algorithms literature summary351

In Table A.1, we summarize the prolific literature on learned unfolded optimization procedures352

for sparse recovery. A particular focus is set on the chosen training loss training which is either353

supervised, with a regression of zi from the input xi for a given training set (xi, zi), or unsupervised,354

where the objective is to minimize the Lasso cost function Fx for each training point x.355

Table A.1: Neural network for sparse coding

Reference Base Algo Train Loss Coupled
weights Remarks

Gregor and Le Cun (2010) ISTA / CD supervised × –
Sprechmann et al. (2012) Block CD unsupervised × Group `1
Sprechmann et al. (2013) ADMM supervised N/A –

Hershey et al. (2014) NMF supervised × NMF
Wang et al. (2015) IHT supervised × Hard-thresholding
Xin et al. (2016) IHT supervised ×/X Hard-thresholding

Giryes et al. (2018) PGD/IHT supervised N/A Group `1
Yang et al. (2017) ADMM supervised N/A –

Adler et al. (2017) ADMM supervised N/A Wasserstein
distance with z∗

Borgerding et al. (2017) AMP supervised × –
Moreau and Bruna (2017) ISTA unsupervised × –

Chen et al. (2018) ISTA supervised X Linear convergence
rate

Ito et al. (2018) ISTA supervised X MMSE shrinkage
non-linearity

Zhang and Ghanem (2018) PGD supervised X Sparsity of Wavelet
coefficients

Liu et al. (2019) ISTA supervised X Analytic weight
WALISTA

Proposed ISTA unsupervised X –

B Proofs of Section 3’s results356

B.1 Proof of Proposition 3.1357

We consider that the solution of the Lasso is unique, following the result of Tibshirani (2013)[Lemmas358

4 and 16] when the entries of D and x come from a continuous distribution.359

Proposition 3.1 (Convergence, finite-time support identification and safe regime). When Assump-360

tion 2.2 holds, the sequence (z(t)) generated by the algorithm converges to z∗ = arg minFx .361

Further, there exists an iteration T ∗ such that for t ≥ T ∗ , supp(z(t)) = supp(z∗) , S∗ and362

Condition ? is always statisfied.363

Proof. Let z(t) be the sequence of iterates produced by Algorithm 1. We have a descent function364

Fx(z(t+1))− Fx(z(t)) ≤ −γ
2
‖z(t+1) − z(t)‖2 ≤ −min ‖Dj‖

2
‖z(t+1) − z(t)‖2 , (17)

where γ = LS if Condition ? is met, and L otherwise. Additionally, the iterates are bounded because365

Fx(z(t)) decreases at each iteration and Fx is coercive. Hence we can apply Zangwill’s Global366

Convergence Theorem (Zangwill, 1969). Any z∗ accumulation point of (z(t))t∈N is a minimizer of367

Fx .368

Since we only consider the case where the minimizer is unique, the bounded sequence (z(t))t∈N has369

a unique accumulation point, thus converges to z∗ .370

The support identification is a simplification of a result of Hale et al. (2008), we include it here for371

completeness.372
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Lemma B.1 (Approximation of the soft-thresholding). Let z ∈ R, ν > 0 . For ε small enough, we373

have374

ST(z + ε, ν) =


0 , if |z| < ν ,

max(0, ε) sign(z) , if |z| = ν ,

z + ε− ν sign z , if |z| > ν .

(18)

Let ρ > 0 be such that Equation (18) holds for ν = λ/L , every ε < ρ , and every z = z∗j −375

1
LD
>
j (Dz∗ − x) .376

Let t ∈ N such that z(t) = z∗+ε ,with ‖ε‖ ≤ ρ .With ε′ , (Id− 1
LD
>D)ε ,we also have ‖ε′‖ ≤ ρ .377

Let j ∈ J1,mK .378

If j /∈ E , |z∗j − 1
LD
>
j (Dz∗ − x)| = | 1LD>j (Dz∗ − x)| < λ/L hence ST(z∗j − 1

LD
>
j (Dz∗ − x) +379

ε′j , λ/L) = 0 .380

If j ∈ E , |z∗j − 1
LD
>
j (Dz∗− x)| = |z∗j + λ

L sign z∗j | > λ/L , and sign ST(z∗j − 1
LD
>
j (Dz∗− x) +381

ε′j , λ/L) = sign z∗j .382

The same reasoning can be applied with ρ′ such that Equation (18) holds for ν = λ/LS∗ , every383

ε < ρ′ , and every z = z∗j − 1
L∗S
D>j (Dz∗ − x). If we introduce η > 0 such that ‖ε‖ ≤ η =⇒384

‖(Id− 1
LS∗

D>D)ε‖ ≤ ρ′ , in the ball of center z∗ and radius η , the iteration with step size LS∗385

identifies the support.386

Additionnally, since Id− 1
LS∗

D>S∗DS∗ is non expansive on vectors which support is S∗ , the iterations387

with the step LS∗ never leave this ball once they have entered it.388

Therefore, once the iterates enter B(z∗,min(η, ρ)) , Condition ? is always satisfied.389

390

B.2 Proof of Proposition 3.2391

Proposition 3.2 (Rates of convergence). For t > T ∗ , Fx(z(t))− Fx(z∗) ≤ LS∗ ‖z
∗−z(T

∗)‖2
2(t−T∗) .392

If additionally inf‖z‖=1 ‖DS∗z‖2 = µ∗ > 0 , then the convergence rate for t ≥ T ∗ is393

Fx(z(t))− Fx(z∗) ≤ (1− µ∗

LS∗
)t−T

∗
(Fx(z(T∗))− Fx(z∗)) .394

Proof. For t ≥ T ∗ , the iterates support is S∗ and the objective function is LS∗-smooth instead of395

L-smooth. It is also µ∗ strongly convex if µ∗ > 0 . The obtained rates are a classical result of the396

proximal gradient descent method in these cases.397

C Proof of Section 4’s Lemmas398

C.1 Proof of Lemma 4.2399

Lemma 4.2 (Stability of solutions around Dj). Let D ∈ Rn×m be a dictionary with non-duplicated400

unit-normed columns. Let c , maxl 6=j |D>l Dj | < 1 . Then for all j ∈ J1,mK and ε ∈ Rm such that401

‖ε‖ < λ(1− c) and D>j ε = 0 , the vector (1− λ)ej minimizes Fx for x = Dj + ε .402

Proof. Let j ∈ J1,mK and let ε ∈ Rm ∩D⊥j be a vector such that ‖ε‖ < λ(1− c) .403

For notation simplicity, we denote z∗ = z∗(Dj − ε) .404

D>j (Dz∗ −Dj − ε) = D>j (−λDj − ε) = −λ = −λ sign z∗j , (19)
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since 1− λ > 0 . For the other coefficients l ∈ J1,mK \ {j} , we have405

|D>l (Dz∗ −Dj − ε)| = |D>l (−λDj − ε)| , (20)

= |λD>l Dj +D>l ε)| , (21)

≤ λ|D>l Dj |+ |D>l ε| , (22)
≤ λc+ ‖Dl‖‖ε‖ , (23)
≤ λc+ ‖ε‖ < λ , (24)

(25)

Therefore, (1− λ)ej verifies the KKT conditions (3) and z∗(Dj + ε) = (1− λ)ej .406

C.2 Proof of Lemma 4.3407

Lemma 4.3 (Weight coupling). Let D ∈ Rn×m be a dictionary with non-duplicated unit-normed408

columns. Let θ = (W,α, β) a set of parameters. Assume that all the couples (z∗(x), x) ∈ Rm ×B∞409

such that z∗(x) ∈ arg minFx(z) verify φθ(z∗(x), x) = z∗(x). Then, αβW = D .410

Proof. Let x ∈ B∞ be an input vector and z∗(x) ∈ Rm be a solution for the Lasso at level λ > 0 .411

Let j ∈ J1,mK be such that z∗j > 0 . The KKT conditions (3) gives412

D>j (Dz∗(x)− x) = −λ . (26)

Suppose that z∗(x) is a fixed point of the layer, then we have413

ST(z∗j (x)− αW>j (Dz∗(x)− x), λβ) = z∗j (x) > 0 . (27)

By definition, ST(a, b) > 0 implies that a > b and ST(a, b) = a− b . Thus,414

z∗j (x)− αW>j (Dz∗(x)− x)− λβ = z∗j (x) (28)

⇔ αW>j (Dz∗(x)− x) + λβ = 0 (29)

⇔ αW>j (Dz∗(x)− x)− βD>j (Dz∗(x)− x) = 0 by (26) (30)

⇔ (αWj − βDj)
>(Dz∗(x)− x) = 0 . (31)

As the relation (31) must hold for all x ∈ B∞ , it is true for allDj+ε for all ε ∈ B(0, λ(1−c))∩D⊥j .415

Indeed, in this case, ‖D>(Dj + ε)‖∞ = 1 . D verifies the conditions of Lemma 4.2, and thus416

z∗ = (1− λ)ej , i.e.417

(αWj − βDj)
>(D(1− λ)ej − (Dj + ε)) = 0 (32)

(αWj − βDj)
> (−λDj − ε) = 0 (33)

Taking ε = 0 yields (αWj − βDj)
>Dj = 0 , and therefore Eq. (33) becomes (αWj − βDj)

>ε = 0418

for all ε small enough and orthogonal to Dj , which implies αWj − βDj = 0 and concludes our419

proof.420

C.3 Proof of Theorem 4.4421

Theorem 4.4. Let D ∈ Rn×m be a dictionary with non-duplicated unit-normed columns. Let422

Θ(T ) = {θ(t)}Tt=0 be the parameters of a sequence of LISTA networks such that the transfer function423

of the layer t is z(t+1) = φθ(t)(z
(t), x) . Assume that424

(i) the sequence of parameters converges i.e. θ(t) −−−→
t→∞

θ∗ = (W ∗, α∗, β∗) ,425

(ii) the output of the network converges toward a solution z∗(x) of the Lasso (1) uniformly over426

the equiregularization set B∞ , i.e. supx∈B∞ ‖ΦΘ(T )(x)− z∗(x)‖ −−−−→
T→∞

0 .427

Then α∗

β∗W
∗ = D .428
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Proof. For simplicity of the notation, we will drop the x variable whenever possible, i.e. z∗ = z∗(x)429

and φθ(z) = φθ(z, x) . We denote z(t) = ΦΘ(t)(x) the output of the network with t layers.430

Let ε > 0 . By hypothesis (i), there exists T0 such that for all t ≥ T0 ,431

‖W (t) −W ∗‖ ≤ ε |α(t) − α∗| ≤ ε |β(t) − β∗| ≤ ε . (34)
By hypothesis (ii), , there exists T1 such that for all t ≥ T1 and all x ∈ B∞ ,432

‖z(t) − z∗‖ ≤ ε . (35)
Let x ∈ B∞ be an input vector and t ≥ max(T0, T1) . Using (35), we have433

‖z(t+1) − z(t)‖ ≤ ‖z(t+1) − z∗‖+ ‖z(t) − z∗‖ ≤ 2ε (36)

By (i), there exist a compact set K1 ⊂ Rn×m × R+
∗ × R+

∗ s.t. θ(t) ∈ K1 for all t ∈ N and434

θ∗ ∈ K . The input x is taken in a compact set B∞ and as z∗ = arg minz Fx(z) , we have435

λ‖z‖1 ≤ Fx(z∗) ≤ Fx(0) = ‖x‖ thus z∗ is also in a compact set K2 .436

We consider the function f(z, x, θ) = ST(z−αW>(Dz−x), β) on the compact setK2×B∞×K1 .437

This function is continuous and piece-wise linear on a compact set. It is thus L-Lipschitz and thus438

‖φθ(t)(z(t))− φθ(t)(z∗)‖ ≤ L‖z(t) − z∗‖ ≤ Lε (37)

‖φθ∗(z∗)− φθ(t)(z∗)‖ ≤ L‖θ(t) − θ∗‖ ≤ Lε (38)
Using these inequalities, we get439

‖φθ∗(z∗, x)− z∗‖ ≤ ‖φθ∗(z∗)− φθ(t)(z∗)‖︸ ︷︷ ︸
<Lε by (38)

+ ‖φθ(t)(z∗)− φθ(t)(z(t))‖︸ ︷︷ ︸
<Lε by (37)

(39)

+ ‖φθ(t)(z(t))− z(t)‖︸ ︷︷ ︸
<2ε by (36)

+ ‖z(t) − z∗‖︸ ︷︷ ︸
<ε by (35)

≤ (2L+ 3)ε . (40)
As this result holds for all ε > 0 and all x ∈ B∞ , we have φθ∗(z∗) = z∗ for all x ∈ B∞ . We can440

apply the Lemma 4.3 to conclude this proof.441

D Experimental setups and supplementary figures442

Dictionary generation: Unless specified otherwise, to generate synthetic dictionaries, we first draw443

a random i.i.d. Gaussian matrix D̂ ∈ Rn×m. The dictionary is obtained by normalizing the columns:444

Dij = 1
‖D̂i:‖

D̂ij .445

Samples generation: The samples x are generated as follows: Random i.i.d. Gaussian samples446

x̂ ∈ Rn are generated. We then normalize them: x = 1
‖D>x̂‖∞ x̂, so that x ∈ B∞.447

Training the networks Since the loss function and the network are continuous but non-differentiable,448

we use sub-gradient descent for training. The sub-gradient of the cost function with respect to the449

parameters of the network is computed by automatic differentiation. We use full-batch sub-gradient450

descent with a backtracking procedure to find a suitable learning rate. To verify that we do not overfit451

the training set, we always check that the test loss and train loss are comparable.452

Main text figures setup453

• Figure 2: We generate a random dictionary of size 10× 50. We take λ = 0.5, and a random454

sample x ∈ B∞. F ∗x is computed by iterating ISTA for 10000 iterations.455

• Figure 4: We generate a random dictionary of size 10× 20. We take λ = 0.2. We generate456

a training set of N = 1000 samples (xi)1000
i=1 ∈ B∞. A 20 layers SLISTA network is trained457

by gradient descent on these data. We report the learned step sizes. For each layer t of458

the network and each training sample x, we compute the support at the output of the t-th459

layer, S(x, t) = supp(z(t)(x)). For each t, we display the quantiles of the distribution of460

the (1/LS(xi,t))
1000
i=1 .461

• Figure 5: A random 10× 20 dictionary is generated. We take 1000 training samples, and462

λ = 0.05. A 40 layers LISTA network is trained by gradient descent on those samples. We463

report the quantity ‖α(t)W (t) − β(t)D‖F for each layer t.464
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Supplementary experiments .465
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Figure D.1: Illustration of Proposition 3.4. A toy Gaussian
dictionary is generated with n = 200 , m = 600 so that
γ = 3 . We compute its Lipschitz constant L . For ζ
between 0 and 1 , we extract bζmc columns at random and
compute the corresponding Lipschitz constant LS . The
plot shows an almost perfect fit between the empirical law
and the theoretical limit (10).
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Figure D.2: Comparison between ISTA, FISTA and Oracle-ISTA for different levels of regularization
on a Gaussian dictionnary, with n = 100 and m = 200. We report the average number of iterations
taken to reach a point z such that Fx(z) < F ∗x + 10−13. The experiment is repeated 10 times, starting
from random points in B∞. OISTA is always faster than ISTA, and is faster than FISTA for high
regularization.
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Figure D.3: Learning curves of SLISTA and LISTA. Ran-
dom Gaussian dictionaries with n = 10 and m = 20 are
generated. We take λ = 0.3. Networks with 10 layers
are fit on those dictionaries, and their test loss is reported
for different number of training samples. The process is
repeated 100 times; the curves shown display the median
of the test-loss.
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