
Response to Reviewer #1:1

Q1. “The result establishes a connection to some kernel method in previous work. Significance: low.”2

A1. We clarify that our result in Section 3.2 is not a re-derivation of existing result. To our knowledge, existing results3

on NTK all focus on square loss, while the connection between NTK and NNs trained by minimizing cross-entropy loss4

is previously unknown. Therefore our results on the connection to NTK is still new and significant.5

Q2. “The generalization bound is only shown for the network at a randomly chosen step... any of the final step”6

A2. Our generalization bound at a randomly chosen step matches the standard results for stochastic optimization. Our7

result also directly implies bounds on the ‘best iterate’. To the best of our knowledge, previous works on generalization8

bounds of SGD-trained NNs, including Daniely [9], Allen-Zhu et al. [1] and Yehudai and Shamir [31], are all essentially9

of the same type, i.e., either on a randomly chosen step, or on the ‘best iterate’. We noticed that very recently [*]10

established the last iterate bound of SGD for convex optimization with decreasing step sizes. However, it is still not11

clear whether the last iterate guarantee can be proved for SGD-trained NNs, which is essentially a nonconvex (almost12

convex) optimization problem. We will study it in our future work.13

[*] Jain, P., Nagaraj, D. and Netrapalli, P., Making the last iterate of SGD information theoretically optimal, COLT’19.14

Q3. “... how the over-parameterization requirement of this paper compares to those in related works.”15

A3. To the best of our knowledge, the over-parameterization condition m “ Ωpn7q in this paper is the mildest compared16

with existing results for deep ReLU networks. (Note that many results’ over-parameterization conditions are dependent17

on the smallest eigenvalue of a kernel matrix, which hides dependency in n.) We will add this remark in our revision.18
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Figure 1: (a) Evaluation of the first term in the bound
of Theorem 3.3 for different values of R and m. (b)
Evaluation of the first term of the bound in Corollary 3.10
with different ratio of label flip.

Response to Reviewer #2:19

Q1. “... width requirement is still very stringent”20

A1. We agree that the condition on the number of hidden21

nodes per layer is still large, compared with the number22

of hidden nodes used in practice. Nevertheless, to the23

best of our knowledge, our over-parameterization condition24

is already the mildest among existing results for ReLU25

networks. Moreover, for smooth activation functions, we26

can further improve the condition to be m “ Ωpn2q.27

Q2. “... proof of Lemma 4.2. page 13, line 464... bound.”28

A2. We clarify that the proof is correct. By chain rule,29

we have
řL

l“1x∇WlLipWq,W1
l ´Wly “ `1ryifWpxiqs ¨ yi ¨30

x∇fWpxiq,W
1
´Wy. Therefore by triangle inequality, the31

RHS of the inequality above line 464 has the lower bound32

`1ryifWpxiqs ¨ yirfW1pxiq ´ fWpxiqs ě `1ryifWpxiqs ¨ yix∇fWpxiq,W
1
´Wy ´ I “

řL
l“1x∇WlLipWq,W1

l ´Wly ´ I,

where I “
ˇ

ˇ`1ryifWpxiqs ¨ yi ¨
“

fW1pxiq ´ fWpxiq ´ x∇fWpxiq,W
1
´Wy

‰
ˇ

ˇ. The first inequality below line 464 then33

follows by upper-bounding I with Lemma 4.1 and the fact that |`1ryifWpxiqs ¨ yi| ď 1.34

Q3. “... small scale experiments evaluating the first term in the RHS of Thm 3.3. and Corr 3.10...”35

A3. Following your suggestion, we have done experiments of a five-layer fully connected NN on MNIST dataset (336

versus 8), and calculated the first terms in the bounds given by Theorem 3.3 and Corollary 3.10. In particular, we plot37

the first term in the bound of Theorem 3.3 in Figure 1(a), by varying the values of R and m. We can see that our bound38

gives small and meaningful values. The curves corresponding to different m’s also validates our theoretical result39

that the wider the network is, the shorter SGD needs to travel to fit the training data. In addition, the larger the size40

of reference function class (i.e., R), the smaller this term will be. In addition, we plot the first term in the bound of41

Corollary 3.10 in Figure 1(b) by varying the level of label noise, i.e., ratio of the labels that are flipped. We can see that42

the noisier the labels, the larger this term is. When most of the labels are true labels, our bound can predict good test43

error; when the labels are purely random (i.e., ratio of label flip = 0.5), the bound on the test error can be larger than44

one. These plots demonstrate the practical values of our generalization bounds, and suggest that our bound can provide45

good measurements of the data classifiability. We will add these experimental results in the camera ready.46

Q4. “Suggestion: the connection to NTK is rather straightforward... in the first page? ”47

A4. Thanks for the suggestion. At high level, if data are generated by y “ f˚pxq for f˚p¨q with bounded norm in the48

NTK-induced RKHS space, SGD-trained NNs generalizes well. We will add more discussions and examples.49

Response to Reviewer #3:50

Q1. “Some treatment of the neural tangent random feature limitations... random initialization. (lines 159-161)”51

A1. We clarify that the infimum on the right-hand of theorem 3.3 is a convex optimization problem that only depends on52

training data and can be easily solved. Therefore the bound can be easily calculated in practice. We will add discussion53

and examples on the target function y “ f˚pxq that can be learned by NNs trained with SGD in the revision.54

Q2. “There are several statements made without proof... inclusion of experimental results would also help. ”55

A2. We will provide more details on extensions to networks with different layer widths and different loss functions. We56

will also add experimental results in the revision. Please see Figure 1 above and A3 to Reviewer #2.57


