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Abstract

For several problems of interest, there are natural constraints which exist over the
output label space. For example, for the joint task of NER and POS labeling, these
constraints might specify that the NER label ‘organization’ is consistent only with
the POS labels ‘noun’ and ‘preposition’. These constraints can be a great way of
injecting prior knowledge into a deep learning model, thereby improving overall
performance. In this paper, we present a constrained optimization formulation for
training a deep network with a given set of hard constraints on output labels. Our
novel approach first converts the label constraints into soft logic constraints over
probability distributions outputted by the network. It then converts the constrained
optimization problem into an alternating min-max optimization with Lagrangian
variables defined for each constraint. Since the constraints are independent of
the target labels, our framework easily generalizes to semi-supervised setting.
We experiment on the tasks of Semantic Role Labeling (SRL), Named Entity
Recognition (NER) tagging, and fine-grained entity typing and show that our
constraints not only significantly reduce the number of constraint violations, but
can also result in state-of-the-art performance.

1 Introduction

Deep neural models have become the state of the art in many domains including vision, NLP and
speech processing. In the vanilla setting, they are trained end to end from data and without additional
knowledge about the task (other than neural architecture and loss function). However, for many
problems of interest (e.g., structured prediction or multi-task learning), there is a set of natural
constraints which need to be satisfied over the output variables. For example, for the task of NER and
POS labeling, the constraint might specify that a word which is given the NER label ‘institution’ must
have the POS label ‘noun’ or a ‘preposition’. Or in 3D human pose estimation from a single view, one
may impose symmetry constraints, like equal length of two arms, equal distance of shoulders from
the spine etc. (Márquez-Neila et al. [2017]). These constraints can be seen as additional background
knowledge made available by the domain experts. Incorporating these constraints into a model can
presumably regularize the output space resulting in improved predictions.

One line of work trains the neural models without this knowledge, but imposes constraints at inference
time (e.g., Lee et al. [2019]). We argue in this paper that this is bound to be sub-optimal since the
original training of the network was done oblivious to the constraints. Though the deep network, in
principle, could learn these directly from the data, but, in practice, this is true only when the available
training data is large. Our experiments reveal a large number of constraint violations from such
unconstrained models, when trained in low data settings. Rather, modeling the constraints explicitly
during training gives a strong prior to the model – it not only reduces constraint violations but can
also result in significantly improved predictions by making the training constraint-aware.
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In this paper, we present a principled solution to the problem of learning a deep network with a
given set of hard constraints on output labels. We first formulate this as a constraint optimization
problem wherein we maximize the original learning objective (e.g., cross entropy) subject to the
constraints being satisfied for each example in the training data.When the network makes predictions
in form of probabilities over the output variables, we can rewrite the constraints on output labels as
constraints on probabilities output by the network using soft logic (Bröcheler et al. [2010], Novák
[1987]). This rewrite can be seen as imposing constraints over the set of allowed distributions over the
output space, i.e., allowing only those distributions that satisfy the constraints. We then convert this
problem into a Lagrangian formulation, with one Lagrange variable per constraint. We solve it using
alternating min-max based optimization. Though the resulting problem can be highly non-convex
non-concave, convergence guarantees to a local min-max point (in the limit) follow from the theory
of min-max optimization (Jin et al. [2019]). Since our constraints are specified over the predicted
variables (no target values are involved), our formulation easily extends to semi-supervised setting
where the unlabeled data only contributes to constraint terms in the formulation.

We note that there have been a few recent attempts at adding constraints during training time, but
with significant differences from our work. These include the work by Xu et al. [2018], Mehta et al.
[2018] and Diligenti et al. [2017b]. While these existing approaches model the constraints as soft
and incorporate a constraint violation penalty directly in the loss term, our constraints are modeled
as hard, and we resort to a full Langrangian based optimization. The existing work can require an
exponential sum to be computed (Xu et al. [2018]), require an additional constraint violation penalty
as input with no explicit convergence guarantees (Mehta et al. [2018]), or require a specific functional
form for the constraints (Diligenti et al. [2017b]). In contrast, our formulation is tractable because we
do not compute an exponential sum, requires no additional constraint violation term, converges to
the stationary point of the objective function, and does not assume a specific functional form for the
constraints. We detail these differences in the related work.

We experiment on three different NLP tasks: (a) semantic role labeling, (b) NER tagging, and (c)
fine grained entity typing over hierarchical label space. Our experiments clearly demonstrate that,
in low data setting, our constraint based learning not only reduces the number of violations, but
also result in significantly improved prediction accuracy compared to unconstrained baselines as
well as vanilla post processing of constraints at inference time. Semi-supervised learning results in
further improvements using our formulation. Furthermore, in some cases, our approach altogether
eliminates the need for post-processing of constraints, since they have already been learned by the
neural model. For two of the tasks, we obtain state-of-the-art results for small data sizes. On NER,
our constrained learning completely eliminates the need for further post-processing with constraints,
saving on precious inference time.

Our contribution in this paper can be summarized as follows: (1) We present a principled approach
for incorporating domain knowledge in the form of hard constraints. We present a Lagrangian based
formulation for learning with constraints in a deep network. Our constraints make use of soft rules to
deal with logical operators. (2) We employ a min-max based optimization to solve our constrained
formulation. To the best our knowledge, we are the first to use a min-max based formulation for
learning with constraints specified over output variables in deep networks. Convergence to local
min-max points (Jin et al. [2019]) in the limit follows from the theory of min-max optimization.
(3) We present experimental results on three different tasks demonstrating the effectiveness of our
approach, while achieving state-of-the-art results in two of the domains and also significantly reducing
the number of constraint violations in each case.

2 Related Work

Use of hard (or soft) constraints in machine learning models predates modern deep learning. Much
of this work is concerned with constrained inference. Constrained conditional models use integer
linear programming to perform inference with global hard constraints (Roth and Yih [2005], Chang
et al. [2013]). Other approaches have used dual decomposition to solve locally decomposable
constraints (Rush and Collins [2012]). A recent attempt incorporates constraints during inference
by incrementally adjusting the learned weights of the network forcing the probability of currently
predicted non-satisfying state towards zero (Lee et al. [2019]).

Our focus in this work is learning with constraints. Posterior regularization (Ganchev et al. [2010])
adapts the learned distribution (post facto) so as to satisfy structural constraints over latent variables
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in expectation. Chen and Deng [2013] have employed a primal-dual based formulation for optimizing
with constraints in deep models, but their constraints are specified over the weights in a recurrent
neural network and are only concerned with imparting stability to the overall learning algorithm. In
deep learning models, one of the ways to regularize the output space is through a CRF layer (Koller
and Friedman [2009]) at the end of a deep network (Lample et al. [2016]). This has met with partial
success in vision (Knöbelreiter et al. [2017]) as well as in NLP with some state-of-the-art models
deploying this either as a post processing step or jointly integrated with training (Huang et al. [2015],
Chen et al. [2018]).

There have been some recent attempts to explicitly incorporate constraints over the output space
during training of a deep network. Hu et al. [2016] perform posterior regularization over the weights
being learned at each step, so that the resultant distribution satisfies a given set of logical rules
(constraints). This rule regularized network (teacher) is then used to guide the learning of the original
network (student) which balances between optimizing the likelihood based objective and mimicking
the teacher network. Their work is different from ours in two main aspects. (1) The imposition of
constraints in their algorithm is only indirect by mimicking the rule regularized network. In contrast,
we optimize for satisfying the constraints directly. (2) They model constraints as soft whereas we
deal with hard constraints. Further, they could achieve limited success in their experiments.

Xu et al. [2018] incorporate constraints by forcing the probability of states violating the constraints
to zero. They model this as a soft constraint by incorporating a constraint violation penalty in the
loss function. More importantly, they need to (pre-)compile a circuit for every constraint in order to
compute the sum over all the non-satisfying states. Computing these circuits can be NP hard in many
cases leading to intractability. In contrast, we model constraints as hard through the use of Lagrangian.
Our formulation disallows the non-satisfying states directly through the use of constraints, and does
not require an exponential sum to be computed.

Mehta et al. [2018] present an approach for learning with constraints and demonstrate the effectiveness
of their method for the specific task of Semantic Role Labeling (SRL). They model the constraints by
adding another term to the loss which penalizes the currently predicted state for violating the constraint.
They require an additional constraint violation penalty from the designer. Their approach can be seen
as a local search in the weight space, so that the resultant weights result in a satisfying assignment.
They do not have a global metric which optimizes the weights for satisfying the constraints (e.g,
forcing the non-satisfying states to zero probability), and it not clear if their algorithm will converge
in the limit. In contrast, we can provide convergence guarantees to min-max points of the objective
and we experiment on a variety of NLP tasks.

Diligenti et al. [2017b] propose an approach for learning with constraints, where the constraints are
specified as logical formulas. Though their approach seems similar to ours at the outset, there are
some important differences. Unlike us, they do not work with full Lagrangian formulation. Their
approach is simply modifying the loss, and can not handle hard constraints. Further, they require the
constraint function to be of specific form (i.e., functionals in the range [0, 1]), and present experiments
only on a single task. Our work makes no such assumption about the form of constraints and we
experiment on a variety of tasks.

3 Constrained Learning of Neural Models

Consider learning a neural network over a set of training examples given as {x(i), y(i)}m
i=1. Each

x(i) ∈ Rn represents an n-dimensional feature vector in a real valued space. Each y(i) ∈ Vr

represents an r dimensional target (label) vector, where each element of the vector takes values from
a discrete (or continuous) valued space denoted by V . Note that r may be input-dependent, e.g., in
sequence labeling tasks. Given the parameters w of the network, let lw(ŷ(i), y(i)) denote the loss
obtained by predicting ŷ(i) when the target is y(i). For instance, this could be the cross entropy loss
when the labels are discrete. The goal of learning is to find a set of parameters w∗ of the network
such that the average loss L(w) = 1

m

∑m
i=1 lw(ŷ(i), y(i)) between the network outputs ŷ(i) and the

target values y(i) is minimized, i.e., w∗ = argminw L(w).

In this work, we are interested in a scenario where we are additionally provided with a set of (hard)
constraints which hold over the output label space. We assume that these constraints are provided
to us by the domain experts and are available in the form of background knowledge. Our goal is
to incorporate this background knowledge to learn a more robust and generalizable model. Our
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formulation is based on constructing a Lagrangian, which tries to minimize the original objective
subject to the given constraints. We solve our problem using an alternating optimization over a
max-min formulation.

3.1 A Lagrangian-based Formulation

Let us assume we are given a set of K constraints as {C1(ŷ), C2(ŷ), · · · , CK(ŷ)}. We will use
index k to vary over the constraint set. Each constraint is a function of the predicted values ŷ on
a given example x. Since each of the network outputs in turn is directly a function of weights w
of the network (for a given x), for ease of notation, we will simply write the constraint set to be
{C1(w), C2(w), · · · , CK(w)}. Note that the dependence on input vector x is implicit in this notation.
Further, without loss of generality, we will assume that each of our constraints Ck(w) is expressed as
an inequality constraint over an appropriately defined function fk(w), i.e., Ck(w) : {fk(w) ≤ 0}.
This can also model constraints of the form fk(w) = 0 by replacing them with two inequality
constraints of the form fk(w) ≤ 0 and −fk(w) ≤ 0.

When dealing with constraints over the set ofm training examples, we will incorporate the dependence
on the ith example by including the index in the super script, i.e., we will denote the jth constraint
over the ith example as Ci

j(w). We are now ready to define our constrained formulation.

argminw L(w) subject to f i
k(w) ≤ 0; ∀1 ≤ i ≤ m; ∀1 ≤ k ≤ K. (1)

One problem with the above formulation is that it has O(mK) number of constraints. In particular,
the number of constraints grows linearly with number of examples, which may become unwieldy.
We use the following trick to reduce the number of constraints. Since we are only interested in
eliminating the states that do not satisfy the constraints, we can in fact ignore the value the function
f i

k(w) takes when the corresponding constraint is satisfied. Accordingly, we define the Hinge function
H : R → R as: H (c) = c for c ≥ 0, and 0 for c < 0.
We equivalently replace each constraint of the form f i

k(w) ≤ 0 by H(f i
k(w)) = 0 without changing

the original formulation. Intuitively, H(f i
k(w)) can be thought of as describing the loss incurred

when the corresponding constraint is not satisfied. This loss is zero when the constraint is satisfied.
This transformation will be useful in the next step when we combine together instances of a single
type of constraint applied to different examples in the training set. In the new formulation, we get our
primal objective as:

argminw L(w) subject to H(f i
k(w)) = 0; ∀1 ≤ i ≤ m; ∀1 ≤ k ≤ K. (2)

Clearly, H(f i
k(w)) ≥ 0,∀i, k by definition. Therefore, a necessary and sufficient condition to enforce

∀i : H(f i
k(w)) = 0 is

∑
i H(f i

k(w)) = 0. This is true for all k. Defining hk(w) =
∑

i H(f i
k(w)),

we can therefore write our primal objective in Equation 1 as:
argminw L(w) subject to hk(w) = 0; ∀1 ≤ k ≤ K. (3)

A standard way of solving the optimization problem described in Equation 3 is to find a stationary
point of the corresponding Lagrangian, L

L(w; Λ) = L(w) +
K∑

k=1
λkhk(w) (4)

Here, Λ = {λk}K
k=1 denotes the K sized vector of Lagrange multipliers. Note that since hk(w) is

always non-negative, the constraint hk(w) = 0 is equivalent to hk(w) ≤ 0. Hence the Lagrange
multipliers are always non-negative. Our optimization problem in the primal can be written as:

min
w

max
Λ
L (w,Λ) (5)

Instead of solving the primal in (5), we often solve its corresponding dual:
max

Λ
min

w
L (w,Λ) (6)

We make two comments on our formulation. First, the use of the hinge function achieves two
objectives: (a) no penalty is paid when constraints are satisfied, and (b) the number of dual variables
is reduced from O(mK) to O(K), making the formulation scalable. Second, our formulation
can handle arbitrary constraints as long as they are differentiable. Note that even simple form of
constraints (such as linear) over the output variables typically represent highly non-linear functions
of the networks weights.
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Constraint: C g(w):Choice 1 g(w): Choice 2
yj = v Pw(yj = v)
¬C1 1− g1(w)
C1 ∨ C2 min(g1(w) + g2(w), 1) max(g1(w), g2(w))
C1 ∧ C2 max(g1(w) + g2(w)− 1, 0 min(g1(w), g2(w))

Table 1: g(w), g1(w) and g2(w) are soft value functions for C, C1 and C2, respectively.

.
3.2 Constraint Language for Discrete Output Spaces

A common learning scenario for many problems is when each element of the target y belongs‘ to a
discrete space. In such cases, each y is given as a vector (y1, y2, · · · , yr), where each yj ∈ V where V
represents a set of discrete values. The network output is then represented as an r dimensional vector,
where each element of the vector represents a probability distribution over V , i.e. Pw(yj |x) ∀j, 1 ≤
j ≤ r. One of the common loss functions for discrete spaces is the cross entropy based loss though
other loss functions can also be used. At prediction time, given a new test example x, we output
the vector of values which have the highest probability for each element yj in the output space, i.e.,
argmaxyj

Pw(yj |x),∀j, 1 ≤ j ≤ r. In this section, we lay out the details of a language which can
handle logical constraints specified over discrete output spaces as described above. Our formulation
is based on soft logic used earlier in the literature Bröcheler et al. [2010], and represents constraints
in the form of inequalities: fk(w) ≤ 0 where w are network weights.

Our constraints are defined as logical expressions over values v that each yj can take. A constraint C
can take the following form: (a) C : 1{yj = v} (b) C = ¬C1 (c) C = C1 ∨ C2 (d) C = C1 ∧ C2.
Here, C1, C2 denote constraints constructed recursively using above rules. The first expression (a)
can be thought of as an atomic constraint, and rest are constructed by applying logical operators over
existing constraint(s). Note that C1 → C2 can be written as ¬C1 ∨ C2. Given a logical constraint C
over the values output by a network with parameters w, we construct a function g(w) ∈ [0, 1] which
denotes the soft value of the corresponding logical expression. Table 1 describes conversions from a
logical expression to a corresponding (soft) value. Finally, given a constraint C and the associated
function g(w), the corresponding constraint can be written as: g(w) = 1. Since g(w) ∈ [0, 1], it is
equivalent to: g(w) ≥ 1 or f(w) = 1 − g(w) ≤ 0. We note that since all our constraints are over
variables with probability distributions defined over them, introducing soft logic does not make the
constraints any softer, it only gives a way to combine underlying probability values.

4 Training

Supervised: We solve the dual optimization problem described in Equation 6 by alternating gradient
descent (ascent) steps over w and Λ, respectively. The gradients of the L with respect to w and λk

are given as:

∇w L(w; Λ) = ∇wL(w) +
K∑

k=1
λk∇whk(w); ∂ L(w; Λ)

∂λk
= hk(w),∀k. (7)

Non-differentiability due to the Hinge function in hk can be handled by using sub-gradients. Corre-
spondingly, the parameter update equations can be written as:

w(t1+1) ← w(t1) − αw∇w L(w; Λ); Λ(t+1) ← Λ(t) + αΛ∇Λ L(w; Λ) (8)

Algorithm 1 presents the pseudocode for our learning algorithm. Initially, w are updated for a
warmup number of iterations with each λk = 0 (i.e., no constraints). Then, we perform the
following in succession: for every one update of Λ parameters, we update the w parameters for l
steps, where l grows based on an arithmetic progression in increments of d. Intuitively, this ensures
that ratio of the effective learning rates for w updates and Λ updates goes to infinity with increasing
number of Λ updates as l→∞. For convergence, we resort to the theory of min-max optimization
presented by Jin et al. [2019]. Their key result states that for a min-max optimization problem,
alternating gradient ascent (descent) over max (min) variables converges to the local min-max point
(analogous of local minima in the single variable case) if the ratio of learning rates of inner and outer
variables goes to∞ in the limit. A significant advantage of our formulation is that in practice the
inner loop can often involve application of algorithms such as AdaDelta or RMSProp, which perform
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gradient descent, but we may not have direct control over the learning rate for w parameters. But
our step based update still ensures that effective ratio of learning rates goes to infinity. We state this
formally in our next theorem (see supplement for a proof).
Theorem 1. Algorithm 1 converges to a Local minmax point of L(w; Λ) for any d ≥ 1.

Semi-supervised: Our framework can be easily extended to the case of semi-supervised learning.
Since we do not have the target value y for unlabeled examples, we can’t compute the loss (cross-
entropy term) in expression for L(w; Λ) in Equation 4 and hence, contribution of unlabeled examples
to this term is ignored. On the other hand, the second term in the expression for L(w; Λ) (correspond-
ing to constraints) does not depend on the target values y. Therefore, for unlabeled examples, we can
take this contribution into account by computing this term just like in the case of labeled examples.
As demonstrated by our experiments, this simple idea of using unlabeled data only for enforcing
the constraints can act as a strong regularizer and result in significantly improved models, especially
when there is small amount of labeled data available for training. This is also observed in earlier
work (Xu et al. [2018]; Mehta et al. [2018]).

Algorithm 1 Training of a Deep Net with Constraints. Hyperparameters: warmup, d, β, α0
Λ, αw

1 Initialize: w randomly; λk = 0, ∀k = 1 . . .K
2 for warmup iterations do
3 Update w: Take an SGD step wrt w on L(w; Λ) on a mini-batch
4 Initialize: l = 1; t = 1; t1 = 1; αΛ = α0

Λ
5 while not converged do
6 Update Λ: Take an SGA step wrt Λ on L(w; Λ) on a mini-batch
7 Increment t = t+ 1
8 for l steps do
9 Update w: Take an SGD step wrt w on L(w; Λ) on a mini-batch

10 Increment t1 = t1 + 1
11 Update l = l + d

12 Set learning rates: αΛ = α0
Λ

1
1+βt

5 Experiments

The goal of our experiments is to answer three questions. (1) Does constrained training help in
learning more accurate models, especially in the low data setting? (2) Does constrained training
result in models with better constraint satisfaction at prediction time? (3) What is the impact of semi-
supervision? We perform experiments on three different NLP benchmarks, which we describe next.
The specific details of software environments and hyperparameters are mentioned in the supplement.

5.1 Semantic Role Labeling (SRL)

Given a sentence with a predicate (verb), the goal of SRL is to extract and label the arguments for it
to determine who did what to whom, when and where, etc. In SRL literature, there is a long history
of using linguistic and structural constraints in inference (e.g., Punyakanok et al. [2008]). We assess
the value of constraints in learning more robust neural models.

Dataset & Baseline Model: We use English Ontonotes 5.0 dataset1 using the CONLL 2011/12
shared task format (Pradhan et al. [2012]) as the training data. The labeling task is modeled as
sequence labeling using the BIOUL encoding. The baseline model (B) uses a deep Bidirectional
LSTM, initialized with ElMo+Glove embeddings.2

Constraints: We impose two types of constraints. (1) Syntactic Constraints: let SY = {(a, b)|a < b}
be the set of syntactic spans of a sentence in its syntactic parse tree. Let yBl

j and yLl
j be the indicator

variables corresponding to beginning and end (last) tag of argument label l at jth word. Then syntactic
constraints can be written as yBl

a =⇒
∨

j∈{b:(a,b)∈SY }
yLl

j and yLl

b =⇒
∨

j∈{a:(a,b)∈SY }
yBl

j , ∀ a, b, l.

These constraints are similar to those used by Mehta et al. [2018], albeit in a different formulation.
1http://cemantix.org/data/ontonotes.html
2implemented in https://allennlp.org/models#semantic-role-labeling
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F1 Score Total Constraint Violations
Scenario 1% Data 5% Data 10% Data 1% Data 5% Data 10% Data
B 62.99 72.64 76.04 14,857 9,708 7,704
CL 66.21 74.27 77.19 9,406 7,461 5,836
B+CI 67.90 75.96 78.63 5,737 4,247 3,654
CL + CI 68.71 76.51 78.72 5,039 3,963 3,476

Table 2: Effect of constrained learning on SRL, with and without constrained inference (CI).

(2) Transition Constraints: BIOUL encoding naturally defines valid transitions for a sequence, e.g.,
Ll must be preceded by Bl or Il. For a given tag t, let Vt be the set of valid tags for the next word.
Then, transition constraints enforce that: ∀ j, t : yt

j =⇒
∨

u∈Vt

yu
j+1.

Methodology: We compare against two different models, the baseline (B), and the baseline aug-
mented with Viterbi decoding (B+CI). This constrained decoding enforces transition constraints at
inference time. We name the constrained learning versions of these algorithms by CL and CL+CI,
respectively. Note that for test instances, the syntactic spans SY are not available. We use the
standard train/dev/test split and use the official Perl script to compute span based F1-scores. We train
with 1%, 5% and 10% of training data selected randomly.

Results: Table 2 presents our results. We observe significant F1 gains of constrained learning (B+CL)
over the baseline B, supporting the hypothesis that constraints can help in learning more robust
models. We find that constrained learning with constrained decoding consistently performs the
best, even though marginal improvements over B+CI are smaller.3 We also note that the benefit of
constrained learning decreases as training data increases, suggesting that this approach is most useful
in low data settings. In addition to F1-scores, we also report total number of constraint violations and
find that constrained learning consistently makes significantly fewer violations. At the same time, we
note that there are still substantial violations remaining. This is not entirely suprising, since learning
span constraints without known spans is akin to learning a significant aspect of the syntactic parsing
task, making the learning task much harder.

5.2 Named Entity Recognition (NER)

The task corresponds to assigning a tag for each word from a given set of NER tags, e.g., ‘location’,
‘person’ etc. In addition, we also assume that the (training) dataset is labeled with Part of Speech
(POS) tags for each word. This information is readily available for many datasets. We treat POS
tagging as an auxiliary task in the standard multi-task learning (MTL) framework.

Dataset & Baseline Model: We use the publicly available GMB4 dataset (Bos et al. [2017]) in our
experiments. It contains about 62 thousand sentences, 24 different NER tags and 43 different POS
tags. We randomly split it into 60/20/20 train/dev/test sets respectively. After removing the hierarchy
among NER tags (e.g., mapping ‘person-title’ and ‘person-family-name’ to a single ‘person’), we
are left with 9 high-level NER tags. We use the BIO encoding in our modeling. Our baseline model
(B) is a BiLSTM that is setup in an MTL framework for predicting both NER and POS. For both the
tasks, we use a single BiLSTM layer whose parameters are shared between the two tasks.

Constraints: We encode our prior linguistic knowledge about the relationships between NER and
POS as constraints – for any NER tag te, we have an allowed set of POS tags Tp(te). If a word takes
an NER tag te, then its POS tag must come from the set Tp(te), i.e., yNER

j = te ⇒ yP OS
j ∈ Tp(te).

Here, yNER
j , yP OS

j are the output variables corresponding to NER and POS tags for the jth word,
respectively. We give the full details of our constraints in the supplement.

Methodology: We compare the following models. (1) B: Baseline, (2) CI: Constrained Inference, (3)
CL: Constrained Learning, and (4) SCL: Semi-supervised Constrained Learning. B is the base model,
CI does regular training with constrained inference using dual decomposition (Rush and Collins
[2012]), CL is our model doing constrained training (supervised) and SCL does constrained training
using semi-supervised data. In order to test the performance of our model in low data setting, we
randomly select data subsets of sizes {400, 800, 1600, 6400, 12800, 25600, 37206} and use them for

3Our F1-scores are not directly comparable with those reported in Mehta et al. [2018], since their exact
training splits (or code) are unavailable. Overall, our gains due to constrained learning are similar to theirs.

4https://gmb.let.rug.nl/data.php

7



400 800 1.6k 3k 6k 13k 26k 37k
Training Size (#Sentences)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ga
in

 In
 F

1 
Sc

or
e

B
CI
CL
SCL

(a) Avg. Gain in F1 Score Over Baseline.

400 800 1.6k 3k 6k 13k 26k 37k
Training Size (#Sentences)

0

1

2

3

4

# 
Vi

ol
at

io
ns

(in
 th

ou
sa

nd
s)

B
CI
CL
SCL

(b) Avg. number of Constrained Violations

Figure 1: NER: Comparison of different training techniques. B: Baseline; CL: Constrained Learning;
SCL: Semi-supervised Constrained Learning; CI: Constrained Inference

training each model. In each case, the data not used for training is used as unlabeled data for SCL
(after removing the labels). The reported results are averaged over 10 different randomly selected
samples for each training size.

Results: Figure 1a compares the performance of the four models. We plot the baseline model at zero,
and plot the performance of all other models relative to the baseline (see supplement for absolute
numbers and standard deviations). There is a good gain in F1-score when learning with constraints,
with most gain obtained for smaller training sizes. Semi-supervision results in significant additional
gains. Figure 1b plots the number of constraint violations with varying training size. For CL and
SCL, this number is close to 0 all through. Counter intuitively, the violations increase monotonically
for CI. This is because with less training data, learning is very shallow, resulting in ‘Other’ prediction
most of the time, and the constraints are trivially satisfied. As learned model becomes more complex,
CI finds it harder to satisfy the constraints without hurting the performance. We do early stopping
of dual decomposition based on dev set performance. This results in decent F1 but high constraint
violations. If run till convergence, CI results in all constraints being satisfied but with performance
lower than the baseline. CL does not suffer from this phenomenon due to constraint aware learning.

We also experiment with using CI (constrained inference) on top of CL and SCL; this results in no
additional gains, since most constraints are already being satisfied. This highlights that constrained
learning may sometimes obviate the need for constrained inference, This can lead to a huge reduction
in precious test times. For instance CI has test times 3-15 times that of CL, depending on testing
batch size.

5.3 Fine Grained Entity Typing

This is a multi-label classification problem. Given a set M of textual mentions of an entity e, we are
interested in finding all the types that the mentions in M belong to (Yao et al. [2013]; Verga et al.
[2017]; Murty et al. [2018]). Note that the labels here are entity types.

Dataset & Baseline Model: We work with Typenet5 (Murty et al. [2017]), a publicly available
dataset of hierarchical entity types for extremely fine-grained entity typing. It has been curated by
mapping Freebase (Bollacker et al. [2008]) types into Wordnet (Miller [1995]) hierarchy. The dataset
contains over 1,900 types, placed in a hierarchy of average depth of 7.8. It also provides a corpus
of textual mentions extracted from Wikipedia articles. It contains 344,246 entities mapped to 1,081
types arranged in the type hierarchy. For baseline (B), we use the state of the art model proposed for
this task by Murty et al. [2018].6 Each mention m is represented by an encoding computed using
a CNN over the sentence, and each type is represented using an embedding vector. The two are
combined to get a similarity score. Scores coming from different mentions in a set are pooled to get a
final score for each entity. To exploit the hierarchical structure, an additional loss term (H) encourages
entities close in the hierarchy to get similar embedding vectors. This can be thought of as imposing a
soft constraint on the entity types. We compare with both these versions in our experiments.

5https://github.com/iesl/TypeNet
6https://github.com/MurtyShikhar/Hierarchical-Typing
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MAP Scores Constraint Violations
Scenario 5% Data 10% Data 100% Data 5% Data 10% Data 100% Data
B 68.62 69.21 70.47 22,715 21,451 22,359
B+H 68.71 69.31 71.77 22,928 21,157 24,650
CL 80.13 81.36 82.80 25 45 12
SCL 82.22 83.81 41 26
Table 3: TypeNet: MAP Scores (in %) and # of constraint violations for different training sizes

Constraints: We enforce two types of constraints in our model. (a) Type Inclusion: given two types
ti and tj such that ti is ancestor of tj in the type hierarchy, for any entity, if ti is selected as a possible
entity type, then tj should also be selected. I.e., yti

⇒ ytj
where yti

and ytj
are indicators variables

for the corresponding types being selected. This results in 1,891 constraints. (b) Type Exclusion:
pairs of types ti and tj (e.g., ‘library’ and ‘camera’) that should not co-occur for any entity. I.e.,
yti
⇒ ¬ytj

. This results in a total of about 555,000 constraints.

Methodology: We compare four different models: (a) B: Baseline, (b) B+H: Baseline with hierar-
chically constrained embeddings (c) CL: constrained learning (d) SCL: constrained learning with
semi-supervision. Our constrained learning models are learned on top of vanilla baseline (and do not
make use of hierarchical embeddings). We use the original splits of 90%, 5% and 5% for training,
validation and testing, respectively (Murty et al. [2018]). We compare the performance of the four
models for training at (1) 5% of the data (2) 10% of the data, and (3) full training set. The smaller
training subsets are chosen randomly. As earlier, any unused data in the training fold is used for
semi-supervision (after removing labels).

Results: Table 3 presents our comparison results. We note that our baseline results are significantly
higher than those reported in Murty et al. [2018]. We believe this is because they did not train the
model until convergence; running till convergence results in significantly higher numbers. After
additional training, the relative advantage of B+H model over B as reported in their paper is lost. Our
constrained model (CL) can give up to 11 pt increase in the performance both at 5% of the data as
well as 10% of the data. With semi-supervision, this gain hovers in the range of 12-14 pts. There
is three orders of magnitude drop in the number of constraint violations when using constrained
learning. Interestingly, CL performance with 100% data is slightly worse than semi-supervision
with 10% data. We hypothesize that the reason is noise in training data in terms of either missing or
incorrect labels. We note that there are 634, 544 type inclusion constraint violations in the training
data containing 294, 781 entities. As a result, more noisy data is likely hurting the performance.

We also compare our constrained learning against Diligenti et al. [2017a]’s approach of using soft
constraints, where the violation penalty is multiplied with a constant λ and added to the original loss.
When using the best values of the λ parameter, we find that both methods perform similarly. However,
Diligenti’s performance requires extensive search over the λ parameters, and varies significantly
based on the value of λ. On the other hand, our formulation can implicitly discover optimal λk values
(we have one for every constraint) by way of our Langrangian formulation. This obviates the need
for an explicit search for λ which can be expensive. In fact, setting constant λ to be the average of
λk’s from our formulation gives its best score.

6 Conclusion and Future Work

In this paper, we have proposed a primal-dual based approach for solving the problem of learning
with hard constraints in deep learning models. While earlier work has modeled the constraints
as soft, incorporating penalty in the loss term, we instead directly optimize the hard constraints
using a Langrangian based formulation. We show that our algorithm converges to local min-max
points of the objective. For the case of discrete output spaces, we also present a constraint language
using soft logic. Experiments on three different NLP tasks show the effectiveness of our approach
compared to non-constrained baselines, as well as constrained inference, achieving the state-of-the-
art results in two of the domains. In one of the domains, our approach completely eliminates the
need for expensive constrained inference. Directions for future work include learning constraints
automatically, and experimenting on non-NLP tasks. We have made our all our code publicly available
at: https://github.com/dair-iitd/dl-with-constraints for future research.
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