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Self-attention for Continuous-time Sequence
Modelling?

• Self-attention mechanism [4] is powerful but only works on discrete-time
sequence with positional encoding.

• Time spans between sequential events often carry important signals.

• We identify the forms of functional time mapping that work well with self-
attention especially the scaled dot-product attention.

• The proposed approaches have solid theoretical justification and guarantees.
Experiments demonstrate its great practical values on real-world continuous-
time sequence datasets.

Preliminaries in Functional Analysis

Temporal kernel. Embedding time from an interval T = [0, tmax] to Rd is equiv-
alent to finding a mapping Φ : T → Rd. Due to the inner product formulation
of self-attention [4] and the translation invariant property of time spans, we
define the temporal kernel as K : T × T → R where K(t1, t2) := 〈Φ(t1),Φ(t2)〉
and K(t1, t2) = ψ(t1 − t2),∀t1, t2 ∈ T for some ψ : [−tmax, tmax]→ R.

Embedding as feature maps. The feature map Φ captures how the temporal
kernel function embeds the original time data into a higher dimensional space.
So the task of learning temporal patterns is converted to a kernel learning problem
with Φ as feature map.

Theorem 1 (Bochner’s Theorem [1]). A continuous, translation-invariant kernel
K(x,y) = ψ(x − y) on Rd is positive definite if and only if there exists a non-
negative measure on R such that ψ is the Fourier transform of the measure.

Implications: when scaled properly we can express K with:

K(t1, t2) = ψ(t1, t2) =

∫
R
eiω(t1−t2)p(ω)dω = Eω

[
ξω(t1)ξω(t2)∗

]
, (1)

where ξω(t) = eiωt. Since the kernel K and the probability measure p(ω) are real,
we extract the real part of (1) and obtain an alternate expression of the kernel:

K(t1, t2) = Eω
[

cos(ω(t1 − t2))
]

= Eω
[

cos(ωt1) cos(ωt2) + sin(ωt1) sin(ωt2)
]
. (2)

Theorem 2 (Mercer Theorem [2]). Consider the function class L2(X ,P) where
X is compact. Suppose that the kernel function K is continuous with positive
semidefinite and satisfy the condition

∫
X×X K

2(x, z)dP(x)dP(y) ≤ ∞, then there
exist a sequence of eigenfunctions (φi)

∞
i=1 that form an orthonormal basis of

L2(X ,P), and an associated set of non-negative eigenvalues (ci)
∞
i=1 such that

K(x, z) =

∞∑
i=1

ciφi(x)φi(z), (3)

where the convergence of the infinite series holds absolutely and uniformly.

Implications: we can embed instances from the functional time domain
T into the infinite sequence space `2(N), by defining the mapping via
t 7→ ΦM(t) :=

[√
c1φ1(t),

√
c2φ2(t), . . .

]
, and Mercer’s Theorem guaran-

tees the convergence of
〈
ΦM(t1),ΦM(t2)

〉
→ K(t1, t2).

Note. We still haven’t reached a feasible parametric form for Φ, since the p(ω) in
Bochner’s and the set of basis {φi} in Mercer’s are unknown.

Proposed Approaches

Bochner’s encoding. Following the implications of Bochner’s Theorem, the expectation
in (1) can be approximated by Monte Carlo integral [3]. With d samples drawn from
p(ω), an estimate of our kernel K(t1, t2) can be constructed by 1

d

∑d
i=1 cos(ωit1) cos(ωit2) +

sin(ωit1) sin(ωit2). So we propose finite dimensional Bochner feature map:

t 7→ ΦBd (t) :=

√
1

d

[
cos(ω1t), sin(ω1t), . . . , cos(ωdt), sin(ωdt)

]
,

and we prove the following claim which guarantees the stochastic uniform convergence.

Claim 1. Let p(ω) be the corresponding probability measure stated in Bochner’s Theorem
for kernel function K. Suppose the feature map Φ is constructed as described above using
samples {ωi}di=1, we have

Pr
(

sup
t1,t2∈T

∣∣ΦBd (t1)
′
ΦBd (t2)−K(t1, t2)

∣∣ ≥ ε
)
≤ 4σp

√
tmax

ε
exp
(−dε2

32

)
, (4)

where σ2
p is the second momentum with respect to p(ω).

Therefore, we can either use parametric or non-parametric distributional learning methods to
obtain samples from the optimized p(ω), and then construct ΦBd accordingly.

Mercer’s encoding. As for the Mercer Theorem, we prove in the following Proposition 1
that a straightforward parameterization of the feature map via the Fourier basis expansion is
possible, by decomposing the temporal kernel K into a set of periodic kernel functions {Kω}.

Proposition 1. For kernel function K that is continuous, PSD and translation-invariant with
K = ψ(t1− t2), suppose ψ is a even periodic function with frequency ω, i.e ψ(t) = ψ(−t) and
ψ
(
t + 2k

ω

)
= ψ(t) for all t ∈ [− 1

ω,
1
ω ] and integers k ∈ Z, the eigenfunctions of K are given by

the Fourier basis.

After truncating the series of Fourier basis, we have the infinite dimensional Mercer’s feature
map for each Kω:

t 7→ ΦMω (t) =
[√

c1, . . . ,
√
c2j cos

(jπt
ω

)
,
√
c2j+1 sin

(jπt
ω

)
, . . .

]
,

where cj are the corresponding Fourier coefficients and ωi are free model parameters.

Fig. 1: Left panel: visual illustration of the proposed Bochner and Mercer time embedding (ΦBd (t) and ΦMω,d(t)) for a specific t = ti with

d = 3. Right panel: network architecture for next-event prediction at time t with a single block.

Experiments and Results

Time-event interaction: we first concatenate the event embedding and time
representations into [Z,ZT ] where Z =

[
Z1, . . . , Zq

]
, ZT =

[
Φ(t1), . . . ,Φ(tq)

]
and then project them into the Q, K and V spaces respectively to capture their
linear or non-linear interactions, e.g.

Q = ReLU
(
[Z,ZT ]W0 + b0

)
W1 + b1,

and finally we use h(i) = Attn(i)
(
Q,K,V

)
as the hidden output of the ith head in

the multi-head attention setting.

Fig. 2: A summary of the proposed approaches.

We compare among the proposed function mapping methods (the details are
shown in Figure 2) in self-attention and with state-of-the-art baseline approaches
including self-attention with positional encoding (PosEnc), on recommendation
tasks with the Stack Overflow, Moivelens and Walmart.com datasets. Case
studies and analysis on the attention weights are given in Fig. 3. The results are
provided in Fig. 4.

Fig. 3: Attention weight analysis as functions of time and event.

Fig. 4: Performance metrics for the proposed approach and baseline models. MAF and NVP are the flow-based

distribution learning methods, and k gives the dimension of Fourier basis expansions.
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