
Appendices

A Proofs of Theorems 1 and 2

Lemma 1. Suppose that a graph G has k connected components {Ci}ki=1 and L is di↵usion
operator defined in (3). If G has no bipartite components, then �i(L) 2 (�1, 1] with

�1 = · · · = �k = 1 > |�k+1| � · · · � |�N |
Proof See Theorem 1 in [21]. ⇤

Theorem 1. Suppose that G has k connected components and the di↵usion operator L is
defined as that in (3). Let X 2 RN⇥F be any block vector and let Wj be any non-negative
parameter matrix with kWjk2 1 for j = 0, 1, If G has no bipartite components, then in
(4), as n!1, rank(Y0) k.

Proof Note that Y
0 is N by F. Certainly rank(Y0) k if k � F. In the following we assume

k < F.

Let Y0 = ReLU(LXW0), then Y0 is a non-negative block vector. Since L and W1 are non-
negative as well, we have

LReLU(LY0W1)W2 = LLY0W1W2 = L2
Y0W1W2

which is non-negative. In general, it is easy to see from (4), we have
Y
0 = Ln

Y0W1W2 · · ·Wn

Thus, with the condition kWjk2 1 for any j, the i-th largest singular value of Y
0 satisfies

�i(Y0) �i(Ln)kY0k2kW1k2 · · · kWnk2 |�i(L)|nkY0k2, i = 1, 2, . . . ,min{N,F}
From Lemma 1 we can conclude that

lim
n!1
�i(Y0) = 0, i = k + 1, k + 2, . . . ,min{N,F}

Thus, limn!1 rank(Y0) k. ⇤

Theorem 2. Suppose the n-dimensional x and y are independently sampled from a contin-
uous distribution and the activation function Tanh(z) = ez�e�z

ez+e�z is applied to [x, y] pointwisely,
then

P(rank
�
Tanh([x, y])

�
= rank([x, y])) = 1

Proof Since x and y are sampled from a continuous distribution, P(rank([x, y]) = 2) = 1
(see [9]). Then

P(rank(Tanh([x, y])) = rank([x, y]))
= P(rank(Tanh([x, y])) = rank([x, y]) | rank([x, y]) = 2)P(rank([x, y]) = 2)
+ P(rank(Tanh([x, y])) = rank([x, y]) | rank([x, y]) < 2)P(rank([x, y]) < 2)

= P(rank(Tanh([x, y])) = rank([x, y]) | rank([x, y]) = 2) (11)

For any fixed x 2 Rn, suppose x and random y are linearly independent, but Tanh(x)
and Tanh(y) are linearly dependent. Without loss of generality, we assume xn , 0. Thus
Tanh(xn) , 0 and Tanh(xn) , 0. Then we have

Tanh(yi)
Tanh(yn)

=
Tanh(xi)
Tanh(xn)

, i = 2, . . . ,n

Thus,

yi = Tanh�1

Tanh(xi)Tanh(yn)
Tanh(xn)

!
, i = 2, . . . ,n

For any fixed x, the set formed by all y satisfying the above equalities has dimension 1, and
therefore its Lebesgue measure is 0, implying that

P(rank(Tanh([x, y])) = 1 | rank([x, y]) = 2) = 0
Then from (11) we can conclude the result holds. ⇤

12

B Numerical Experiments on Synthetic Data

The goal of the experiments is to test which network structure with which kind of activation
function has the potential to be extended to deep architecture. We measure this potential
by the numerical rank of the output features in each hidden layer of the networks using
synthetic data. The reason of choosing this measure can be explained by Theorem 2.2. We
build the certain networks with depth 100 and the data is generated as follows.

We first randomly generate edges of an Erdős-Rényi graph G(1000, 0.01), i.e. the existence of
the edge between any pair of nodes is a Bernoulli random variable with p = 0.01. Then, we
construct the corresponding adjacency matrix A of the graph which is a R1000⇥1000 matrix.
We generate a R1000⇥500 feature matrix X and each of its element is drawn from N(0, 1). We
normalize A and X as [18] and abuse the notation A,X to denote the normalized matrices.
We keep 3 blocks in each layer of truncated block Krylov network. The number of input
channel in each layer depends on the network structures and the number of output channel
is set to be 128 for all networks. Each element in every parameter matrix Wi, i = 1, . . . , 100
is randomly sampled from N(0, 1) and the size is R#input⇥#output. With the synthetic A,X,Wi,
we simulate the feedforward process according to the network architecture and collect
the numerical rank (at most 128) of the output in each of the 100 hidden layers. For each
activation function under each network architecture, we repeat the experiments for 20 times
and plot the mean results with standard deviation bars.

C Rank Comparison of Activation Functions and Networks

0 20 40 60 80 100

0

20

40

60

80

100

120

140

ELU
HardShrink
SELU
Softshrink
Tanhshrink
Identity
Sigmoid
ReLU
LeakyReLU
Tanh

(a) GCN
0 20 40 60 80 100

0

20

40

60

80

100

120

140

ELU
HardShrink
SELU
Softshrink
Tanhshrink
Identity
Sigmoid
ReLU
LeakyReLU
Tanh

(b) Snowball
0 20 40 60 80 100

0

20

40

60

80

100

120

140

ELU
HardShrink
SELU
Softshrink
Tanhshrink
Identity
Sigmoid
ReLU
LeakyReLU
Tanh

(c) Truncated Block Krylov

Figure 4: Column ranks of di↵erent activation functions with the same architecture

0 20 40 60 80 100

0

20

40

60

80

100

120

140

GCN
Snowball
Truncated Krylov

(a) ReLU
0 20 40 60 80 100

0

20

40

60

80

100

120

140

GCN
Snowball
Truncated Krylov

(b) Identity
0 20 40 60 80 100

110

112

114

116

118

120

122

124

126

128

130

GCN
Snowball
Truncated Krylov

(c) Tanh

Figure 5: Column ranks of di↵erent architectures with the same activation function

13

(a) Cora (b) Citeseer (c) PubMed

Figure 6: Spectrum of the renormalized adjacency matrices for several datasets

D Spectrum of the Datasets

E Experiment Settings and Hyperparameters

The so-called public splits in [25] and the setting that randomly sample 20 instances for each
class as labeled data in [37] is actually the same. Most of the results for the algorithms with
validation are cited from [25], where they are reproduced with validation. However, some
of them actually do not use validation in original papers and can achieve better results. In
the paper, We compare with their best results.

We use NVIDIA apex amp mixed-precision plugin for PyTorch to accelerate our experiments.
Most of the results were obtained from NVIDIA V100 clusters on Beluga of Compute-
Canada, with minor part of them obtained from NVIDIA K20, K80 clusters on Helios
Compute-Canada. The hyperparameters are searched using Bayesian optimization.

A useful tip is the smaller your training set is, the larger dropout probability should be set
and the larger early stopping you should have.

Table 5 and Table 4 show the hyperparameters to achieve the performance in the experiments,
for cases without and with validation, respectively. When conducting the hyperparameter
search, we encounter memory problems: current GPUs cannot a↵ord deeper and wider
structures. But we do observe better performance with the increment of the network size. It
is expected to achieve better performance with more advanced deep learning devices.

14

Table 4: Hyperparameters for Tests with Validation

Architecture Dataset Split Accuracy Corresponding Hyperparameters
Our Best SOTA learning rate weight decay width depth/blocks dropout optimizer

linear Snowball

Cora

0.5% 72.51 60.8 1.8914E-03 9.1551E-03 4800 3 0.98369 RMSprop
1% 76.32 67.5 2.0050E-03 5.0915E-03 1200 4 0.96848 RMSprop
3% 82.24 77.7 4.3412E-03 2.1344E-03 900 2 0.98323 RMSprop

5.2% (public) 83.26 83.0 2.5363E-05 1.2692E-02 4100 3 0.63953 RMSprop

CiteSeer

0.5% 62.03 53.8 1.9738E-03 1.9239E-02 2200 2 0.98915 RMSprop
1% 66.71 63.3 1.0737E-03 2.4510E-02 800 3 0.97069 RMSprop

3.6% (public) 72.85 72.5 4.5256E-03 7.4001E-03 4100 1 0.86582 RMSprop

Pubmed

0.03% 70.81 61.0 2.8443E-04 3.4670E-02 200 10 0.98961 RMSprop
0.05% 72.14 68.8 3.9460E-03 4.6622E-02 100 4 0.8315 RMSprop
0.1% 75.60 73.4 2.4167E-03 7.4730E-03 100 5 0.93811 RMSprop

0.3% (public) 79.10 79.0 3.9812E-03 2.1414E-02 400 3 0.96498 RMSprop

Snowball

Cora

0.5% 71.20 60.8 1.5666E-05 1.0674E-02 500 19 0.56764 RMSprop
1% 76.63 67.5 2.2739E-04 3.4224E-02 200 14 0.76807 RMSprop
3% 81.88 77.7 7.6164E-05 6.0082E-03 200 21 0.80589 RMSprop

5.2% (public) 83.19 83.0 7.7121E-05 3.2939E-02 4900 3 0.79489 RMSprop

CiteSeer

0.5% 61.03 53.8 1.0054E-03 4.2595E-02 1900 3 0.97837 RMSprop
1% 66.36 63.3 3.8615E-04 4.1289E-02 1300 5 0.93554 RMSprop

3.6% (public) 73.32 72.5 2.5530E-03 1.4541E-02 3700 1 0.98481 RMSprop

Pubmed

0.03% 69.91 61.0 6.1538E-03 3.5248E-02 200 8 0.45679 RMSprop
0.05% 72.67 68.8 4.0294E-03 3.2839E-03 100 18 0.81272 RMSprop
0.1% 75.16 73.4 2.3525E-03 1.5485E-03 3200 1 0.93519 RMSprop

0.3% (public) 79.16 79.0 9.4770E-03 8.8894E-04 1500 1 0.97378 RMSprop

truncated Krylov

Cora

0.5% 74.78 60.8 2.5929E-03 4.4878E-04 100 89 0.9568 RMSprop
1% 78.05 67.5 4.3995E-03 9.0436E-05 1200 40 0.96778 RMSprop
3% 82.67 77.7 8.2278E-03 3.6505E-04 2200 26 0.98803 RMSprop

5.2% (public) 83.16 83.0 5.9441E-04 6.8103E-03 900 54 0.9018 RMSprop

CiteSeer

0.5% 64.04 53.8 8.0455E-03 2.0007E-03 100 44 0.82302 RMSprop
1% 68.26 63.3 4.5515E-03 7.2589E-03 100 26 0.90988 RMSprop

3.6% (public) 73.86 72.5 3.8171E-03 1.4549E-02 400 14 0.9857 RMSprop

Pubmed

0.03% 72.17 61.0 6.9072E-03 1.1979E-03 3300 20 0.97751 RMSprop
0.05% 74.89 68.8 7.8567E-03 7.8038E-04 2400 25 0.90062 RMSprop
0.1% 77.97 73.4 1.5593E-03 6.3401E-03 4000 22 0.97544 RMSprop

0.3% (public) 80.12 79.0 8.3614E-04 8.4003E-03 4300 18 0.17299 RMSprop

15

Table 5: Hyperparameters for Tests without Validation

Architecture Dataset Split Accuracy Corresponding Hyperparameters
Our Best SOTA learning rate weight decay width depth/blocks dropout optimizer

linear Snowball

Cora

0.5% 67.575 61.5 6.1182E-04 4.9810E-03 600 7 0.62185 Adam
1% 74.579 69.9 1.6250E-04 7.4574E-04 200 20 0.43624 Adam
2% 78.921 75.9 8.3569E-04 2.0128E-03 1700 3 0.98032 Adam
3% 80.874 78.5 1.2211E-04 1.6298E-03 3600 3 0.98201 Adam
4% 82.308 80.4 9.9572E-05 6.3827E-03 2100 4 0.97283 Adam
5% 82.932 81.7 7.1942E-06 1.7084E-02 1400 7 0.15156 Adam

CiteSeer

0.5% 55.957 56.1 1.2813E-04 2.4846E-02 1300 5 0.12132 Adam
1% 63.4 62.1 4.9496E-03 5.0868E-03 800 2 0.10184 Adam
2% 69.251 68.6 5.0141E-04 2.8694E-02 2400 3 0.95313 Adam
3% 70.635 70.3 5.1388E-04 3.5018E-02 2100 3 0.96181 Adam
4% 72.48 70.8 7.3531E-05 4.5418E-02 2700 3 0.37424 Adam
5% 72.639 71.3 2.1794E-04 4.9282E-02 3200 3 0.86498 Adam

Pubmed

0.03% 65.479 62.2 8.8680E-04 3.3575E-02 400 9 0.21978 Adam
0.05% 68.523 68.3 1.1179E-03 2.5143E-02 400 7 0.34326 Adam
0.1% 73.588 72.7 4.6872E-04 7.8163E-03 900 5 0.19117 Adam
0.3% 79.691 79.2 2.2653E-04 2.9657E-03 3400 4 0.98996 Adam

Snowball

Cora

0.5% 68.425 61.5 6.7929E-04 4.5636E-03 100 22 0.00547 Adam
1% 73.152 69.9 1.6805E-03 9.9231E-04 3200 2 0.90518 Adam
2% 78.405 75.9 1.3363E-05 4.5665E-04 500 16 0.3652 Adam
3% 80.827 78.5 1.9982E-04 2.4818E-02 4300 3 0.41048 Adam
4% 82.303 80.4 1.9945E-04 6.0539E-03 2300 2 0.96809 Adam
5% 83.006 81.7 3.2402E-04 1.3194E-02 3800 3 0.17131 Adam

CiteSeer

0.5% 56.438 56.1 4.6535E-05 2.1550E-02 1400 6 0.00548 Adam
1% 63.862 62.1 1.4755E-03 2.8593E-02 2100 4 0.92137 Adam
2% 68.729 68.6 3.1813E-05 2.2883E-02 2200 2 0.15915 Adam
3% 70.534 70.3 3.2765E-05 2.4819E-02 2300 4 0.88698 Adam
4% 71.813 70.8 3.8585E-04 3.6265E-02 2300 2 0.30763 Adam
5% 72.806 71.3 7.1685E-05 4.9615E-02 3900 3 0.87297 Adam

Pubmed

0.03% 66.477 62.2 4.9118E-05 1.6182E-03 200 22 0.028551 Adam
0.05% 68.583 68.3 1.1521E-03 3.8871E-02 400 7 0.059136 Adam
0.1% 73.194 72.7 5.1533E-04 1.2711E-02 3500 2 0.98885 Adam
0.3% 80.14 79.2 4.3710E-05 3.9694E-02 5000 2 0.067568 Adam

truncated Krylov

Cora

0.5% 71.819 61.5 1.0652E-04 3.0371E-04 100 97 0.47949 Adam
1% 76.485 69.9 4.3309E-03 2.3969E-04 300 25 0.96104 Adam
2% 79.974 75.9 9.9421E-04 6.4090E-04 1400 33 0.8084 Adam
3% 82.047 78.5 4.9624E-03 1.3848E-04 700 16 0.98362 Adam
4% 82.965 80.4 2.1988E-03 3.9724E-04 100 70 0.81721 Adam
5% 84.109 81.7 6.8068E-03 3.2025E-04 500 18 0.97897 Adam

CiteSeer

0.5% 59.85 56.1 4.8252E-03 2.1583E-03 500 22 0.98663 Adam
1% 66.073 62.1 1.7210E-03 1.9423E-03 100 27 0.74055 Adam
2% 69.809 68.6 6.4732E-03 4.2307E-03 400 11 0.16691 Adam
3% 71.3 70.3 5.8873E-04 2.0091E-02 1400 11 0.39397 Adam
4% 72.343 70.8 8.4962E-05 4.8571E-02 2300 7 0.70649 Adam
5% 73.713 71.3 2.7076E-03 1.7906E-02 1900 9 0.70568 Adam

Pubmed

0.03% 68.673 62.2 7.2129E-05 3.3215E-03 2500 25 0.017744 Adam
0.05% 71.447 68.3 1.1325E-04 2.2466E-03 3000 23 0.98752 Adam
0.1% 75.539 72.7 1.9708E-03 4.8034E-03 3900 17 0.98818 Adam
0.3% 80.384 79.2 1.9555E-03 1.4919E-03 5000 12 0.98867 Adam

16

