
Appendix

Necessary and sufficient conditions for optimality of (8)

Recall that the primal-dual problems we are considering are:

minimize h(x) + g(y)
subject to x = Ay,

maximize �h
⇤(�p)� g

⇤(q)
subject to q = A

T
p,

over primal variables y 2 Rm, x 2 Rn, dual variables p 2 Rn, q 2 Rm, where matrix A 2 Rn⇥m

is data and the functions h : Rn
! R [ {1} and g : Rm

! R [ {1} are convex, with convex
conjugates h⇤ and g

⇤ respectively. The necessary and sufficient condition for optimality of y? for the
primal problem is

0 2 A
T
@h(Ay?) + @g(y?).

We can rewrite the optimality condition as, 9p? 2 �@h(Ay?),

0 2 �A
T
p? + @g(y?). (17)

Note we have the following property for any proper convex f (see Theorem 23.5 of [17]). For any
x
⇤
, x 2 Rm,

x 2 @f
⇤(x⇤) iff x

⇤
2 @f(x) (18)

Now using this fact, for any p? satisfying (17) we get the following two inclusions

Ay? 2 A@g
⇤(AT

p?)

Ay? 2 @h
⇤(�p?)

(19)

Together, this implies
0 2 �@h

⇤(�p?) +A@g
⇤(AT

p?),

which is the necessary and sufficient condition for p? to be optimal for the dual problem. Then taking
primal-dual optimal (y?, p?) and introducing x? = Ay? and q? = A

T
p?, we get

y? 2 @g
⇤(q?)

x? = Ay?

�p? 2 @h(x?)

q? = A
T
p?,

which are the necessary and sufficient conditions for (x?, y?, p?, q?) to be primal-dual optimal for
(8). In the main text we assumed that h and g

⇤ were differentiable, in which case we can replace
subdifferentials with gradients, and inclusion with equality.

Relationship between the duality gap and Bregman divergences

Starting with the definition of Bregman divergences and noting that rh(x?) = �p?,

Dh(x, x?) = h(x)� h(x?) + p
T
? (x� x?),

and similarly using rg
⇤(q?) = y?,

Dg⇤(q, q?) = g
⇤(q)� g

⇤(q?)� y
T
? (q � q?).

Using p
T
? x? = p

T
? (Ay?) = q

T
? y? and summing the two Bregman divergences yields the gap (10).

Now let us define

D̂h⇤(�p,�p?) = h
⇤(�p)� h

⇤(�p?)� x
T
? (�p+ p?),

and

D̂g(y, y?) = g(y)� g(y?)� q
T
? (y � y?),

which are both nonnegative due to the convexity of h⇤ and g, and note that if h⇤ and g are differentiable
then these are just Bregman divergences, in which case we could drop the ‘hat’ notation.
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Now we shall show that the usual duality gap can be decomposed into the sum of four (pseudo)-
Bregman divergences. Let D̂f (y, y?) = f(y)� f(y?), which by the linearity of (pseudo)-Bregman
divergences satisifes

D̂f (y, y?) = D̂h�A+g(y, y?) = Dh(Ay, x?) + D̂g(y, y?)

and similarly denoting D̂d(p, p?) = �d(p) + d(p?) we have

D̂d(p, p?) = D̂h⇤(�p,�p?) +Dg⇤(AT
p, q?).

Summing these and using the fact that strong duality implies that f(y?) = d(p?) we obtain

f(y)� d(p) = Dh(Ay, x?) + D̂g(y, y?) + D̂h⇤(�p,�p?) +Dg⇤(AT
p, q?),

which, due to the nonnegativity of D̂h⇤ and D̂g , implies that

f(y)� d(p) � Dh(Ay, x?) +Dg⇤(AT
p, q?) = gap(Ay,A

T
p).

Proof of generalized Moreau decomposition

Lemma 1. Given a convex, closed, proper function f : Rm
! R, matrix A 2 Rn⇥m, and ⇢ > 0.

Any point x 2 Rn satisfies

x = (I + ⇢A@fA
T )�1

x+ ⇢A(@f⇤ + ⇢A
T
A)�1

A
T
x.

Proof. Recall that (I + ⇢A@fA
T )�1 is always single-valued, because it is the proximal operator of

the convex function f �A
T [32]. So to start we shall show that A(@f⇤ + ⇢A

T
A)�1

q is also single-
valued for any q, A, and convex f

⇤. Choose y and z to be any two elements of (@f⇤ + ⇢A
T
A)�1

q.
We shall show that it must be the case that Ay = Az, even if z 6= y. Membership of the set implies
that

q � ⇢A
T
Ay 2 @f

⇤(y)

q � ⇢A
T
Az 2 @f

⇤(z),

therefore by convexity and the definition of subdifferentials we have

f
⇤(z) � f

⇤(y) + (q � ⇢A
T
Ay)T (z � y)

f
⇤(y) � f

⇤(z) + (q � ⇢A
T
Az)T (y � z),

and adding these we get

0 � (q � ⇢A
T
Ay)T (z � y) + (q � ⇢A

T
Az)T (y � z)

= ⇢(AT
Ay)T (y � z)� ⇢(AT

Az)T (y � z)

= ⇢(y � z)TAT
A(y � z)

= ⇢kA(y � z)k22,

which implies that Az = Ay, so A(@f⇤ + ⇢A
T
A)�1

q must be single-valued.

Now let y = (@f⇤ + ⇢A
T
A)�1

A
T
x (which is valid, because it is single-valued). We will make use

of the following fact for any proper convex f (see Theorem 23.5 of [17]). For any x
⇤
, x 2 Rm,

x 2 @f
⇤(x⇤) iff x

⇤
2 @f(x) (20)

Now using (20),

A
T (x� ⇢Ay) 2 @f

⇤(y) =) y 2 (@fAT )(x� ⇢Ay)

=) ⇢Ay 2 ⇢(A@fA
T )(x� ⇢Ay)

=) x 2 (I + ⇢A@fA
T )(x� ⇢Ay)

Since (I + ⇢A@fA
T )�1

x is single valued, we can use (20) along with the definition of y to finish
the proof:

x = (I + ⇢A@fA
T )�1

x+ ⇢Ay

= (I + ⇢A@fA
T )�1

x+ ⇢A(@f⇤ + ⇢A
T
A)�1

A
T
x.
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The Moreau decomposition can be seen as a generalization of an orthogonal decomposition induced
by a subspace, and the standard statement of the theorem assumes that A = I , see, e.g., [32]. This
extension can be interpreted as a decomposition when the projection is weighted by the matrix A,
since

argmin
v

�
f(AT

v) + (1/2)kv � yk
2
2

�
= (I +A@fA

T )�1
y

argmin
u

�
f
⇤(u) + (1/2)kAu� xk

2
2

�
= (@f⇤ +A

T
A)�1

A
T
x.

Convergence of Explicit discretization scheme when rH is L-Lipschitz

To show convergence of the scheme presented in equation (5) we shall use the additional assumption
that H has an L-Lipschitz gradient, which implies that

H(v) � H(u) +rH(u)T (v � u) + (1/2L)krH(v)�rH(u)k22

H(v)  H(u) +rH(u)T (v � u) + (L/2)kv � uk
2
2,

for any u, v. Using this we can write:

H(zk+1)�H(zk)  rH(zk)T (zk+1
� z

k) + (L/2)kzk+1
� z

k
k
2
2

= ✏rH(zk)T (JrH(zk) + z? � z
k) + (✏2L/2)kJrH(zk) + z? � z

k
k
2
2

 �✏H(zk)� (✏/2L)krH(zk)k22 + (✏2L/2)kJrH(zk) + z? � z
k
k
2
2,

(21)

where the first inequality is a consequence of the Lipschitz assumption, and the last is a combination
of the Lipschitz assumption and the fact that J is skew symmetric. Now we will use the following
identity:

k(1� ✏)u+ ✏vk
2
2 = (1� ✏)kuk22 + ✏kvk

2
2 � ✏(1� ✏)ku� vk

2
2

for any u, v and ✏ 2 R. We apply this to the following

kz
k+1

� z?k
2
2 = (1� ✏)kzk � z?k

2
2 + ✏krH(zk)k22 � ✏(1� ✏)kJrH(zk) + z? � z

k
k
2
2

where we used the fact that kJrH(z)k22 = krH(z)k22 since JT
J = I . This allows us to replace the

last term in (21)

H(zk+1)�H(zk)  �✏H(zk)� (✏/2L)krH(zk)k22+

✏L

2(1� ✏)

�
(1� ✏)kzk � z?k

2
2 + ✏krH(zk)k22 � kz

k+1
� z?k

2
2

�
.

(22)

Now select ✏ to satisfy
✏

2L
�

✏
2
L

2(1� ✏)
,

which removes the terms involving krH(zk)k22. For simplicity we shall take ✏ = 1/(L2 + 1), which
satisfies the condition. Now we take the sum of (22), which telescopes to yield

H(zT )�H(z0)  �✏

T�1X

k=0

H(zk) + (2L)�1(kz0 � z?k
2
2 � kz

T
� z?k

2
2). (23)

Now consider the averaged iterate z̄
T = (1/T )

PT�1
k=0 z

k

H(z̄T ) 
1

T

T�1X

k=0

H(zk) 
1

✏T

�
H(z0) + (2L)�1

kz
0
� z?k

2
2

�
,

where the first inequality is Jensen’s, and the second follows from (23) and the nonnegativity of H.
In other words H(z̄k) ! 0, and the rate of convergence is O(1/k).
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Convergence of Explicit discretization scheme when rH is L-Lipschitz and H is µ strongly
convex

Here we show the convergence of the scheme presented in equation (5) under the assumption that
H has an L-Lipschitz gradient and is µ strongly convex for L � µ > 0. We show that the H(zk)
converges linearly.

The assumption of L-Lipschitz gradients implies,

H(v) � H(u) +rH(u)T (v � u) + (1/L)krH(v)�rH(u)k22/2

H(v)  H(u) +rH(u)T (v � u) + Lkv � uk
2
2/2,

for any u, v. The µ strong convexity assumption implies

H(v)  H(u) +rH(u)T (v � u) + (1/µ)krH(v)�rH(u)k22/2

H(v) � H(u) +rH(u)T (v � u) + (µ)kv � uk
2
2/2,

for any u, v. In particular, we use

µH(z)  krH(z)k22/2  LH(z)

µkz � z?k
2
2/2  H(z)  Lkz � z?k

2
2/2

Using this we can write:

H(zk+1)�H(zk)  rH(zk)T (zk+1
� z

k) + (L/2)kzk+1
� z

k
k
2
2

= ✏rH(zk)T (JrH(zk) + z? � z
k) + (✏2L/2)kJrH(zk) + z? � z

k
k
2
2

 �✏H(zk)� (✏/2L)krH(zk)k22 + (✏2L/2)kJrH(zk) + z? � z
k
k
2
2,

 �✏

⇣
1 +

µ

L

⌘
H(zk) + (✏2L/2)kJrH(zk) + z? � z

k
k
2
2,

(24)

where the first inequality is a consequence of the Lipschitz assumption, the second is a combination
of the Lipschitz assumption and the fact that J is skew symmetric. Now using triangle and Jensen’s
inequalities:

H(zk+1)�H(zk)  �✏

⇣
1 +

µ

L

⌘
H(zk) + ✏

2
L
�
krH(zk)k22 + kz? � z

k
k
2
2

�
, (25)

where we used the fact that kJrH(z)k22 = krH(z)k22. All together, we have

H(zk+1)�H(zk)  �✏

⇣
1 +

µ

L

⌘
H(zk) + 2✏2L2

H(zk) + 2✏2
L

µ
H(zk), (26)

Thus, if 2✏  (L2 + L/µ)�1, we have

H(zk+1) 
⇣
1� ✏

µ

L

⌘
H(zk) 

⇣
1� ✏

µ

L

⌘k
H(z0) (27)

Taking 2✏ = (L2 + L/µ)�1 for simplicity we have

H(zk+1) 

✓
1�

µ

2L2µ+ 2L

µ

L

◆k

H(z0) (28)

PDHG corresponds to a discretization of Hamiltonian descent

The Hamiltonian descent equations are given by

ẏt = rg
⇤(qt)� yt

q̇t = �A
T
rh(Ayt)� qt,

and if we parameterize qt = A
T
pt then we can rewrite these as

ẏt = rg
⇤(AT

pt)� yt

ṗt = �rh(Ayt)� pt.
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Now we use the same trick as before, introducing identical terms that we add and subtract

ẏt = rg
⇤(AT

pt + yt/� � yt/�)� yt

ṗt = �rh(Ayt + pt/⇢� pt/⇢)� pt,

and then discretize as follows (which is valid due to the fact that we assumed that the Hamiltonian
was continuously differentiable):

(pk+✏
� p

k)/✏ = �rh(Ay
k + p

k+✏
/⇢� p

k
/⇢)� p

k

(yk+✏
� y

k)/✏ = rg
⇤(AT

p
k+✏ + y

k
/� � y

k+✏
/�)� y

k
.

Setting ✏ = 1 and rearranging yields

@h
⇤(�p

k+1)� p
k+1

/⇢ = Ay
k
� p

k
/⇢

@g(yk+1) + y
k+1

/� = A
T
p
k+1 + y

k
/�,

and finally

p
k+1 = �(I + ⇢@h

⇤)�1(⇢Ay
k
� p

k)

y
k+1 = (I + �@g)�1(�AT

p
k+1 + y

k),

which is PDHG.

Other gradient methods on problem (15)

(a) HD and proximal gradient descent (PGD). (b) HD and restarted accelerated gradient (RAG).

(c) HD and conjugate gradient (CG).

Figure 3: Comparison of Hamiltonian descent (HD) and other gradient methods for problem (15) for
different j.
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