
Supplementary Material: A New Defense Against Adversarial
Images: Turning a Weakness into a Strength

A Additional Experiments

A.1 Detection rates on Inception network

Table 5 shows detection rates on ImageNet using a Inception-v3 model [48] by criteria C1, C2t, and
C2u individually and jointly. We observe an almost identical trend as using ResNet-101 as the target
model (Table 1 in main paper): the adversary cannot simultaneously fool both criteria C1 and C2t.
Detection rates by Feature Squeezing are slightly higher than those for ResNet-101 but remain close
to 0 and are substantially worse than those by our combined detector.

Table 5: Detection rates for different detection algorithms against white-box adversaries on ImageNet
with Inception-v3 target model. Worst-case performance against all evaluated attacks is underlined
for each detector.

Detector FPR PGD CW

Feature Squeezing 0.2 0.068 0.031
Feature Squeezing 0.1 0.062 0.013

LR=0.01 LR=0.03 LR=0.1 LR=0.01 LR=0.03 LR=0.1

C1 0.2 0.858 0.712 0.628 0.803 0.483 0.362
C2t 0.2 0.173 0.411 0.424 0.449 0.585 0.543
C2u 0.2 0.004 0.013 0.003 0.346 0.225 0.067
Combined 0.2 0.762 0.546 0.468 0.788 0.527 0.479

C1 0.1 0.648 0.36 0.258 0.688 0.29 0.142
C2t 0.1 0.043 0.157 0.18 0.231 0.322 0.321
C2u 0.1 0.001 0.006 0.003 0.255 0.114 0.056
Combined 0.1 0.516 0.257 0.203 0.635 0.281 0.199

Table 6: Detection rates for variations of the white-box adversary. Worst-case performance against
all evaluated attacks is underlined for each detector.

Detector FPR PGD CW

LR=0.01 LR=0.03 LR=0.1 LR=0.01 LR=0.03 LR=0.1

Small radius (τ = 0.03) 0.2 0.715 0.674 0.571 0.934 0.86 0.713
Small radius (τ = 0.03) 0.1 0.583 0.522 0.418 0.894 0.753 0.500

L∗ = L1 + L2 0.2 0.695 0.765 0.800 0.738 0.604 0.512
L∗ = L1 + L2 0.1 0.527 0.572 0.632 0.58 0.353 0.304

Untargeted Attack 0.2 0.994 0.997 0.997 0.538 0.567 0.576
Untargeted Attack 0.1 0.987 0.995 0.995 0.395 0.342 0.378

A.2 Variations of the white-box attack

We further analyze our detection method in three different attack scenarios: Using a smaller percepti-
bility threshold τ = 0.03, attacking criterion C1 only, and performing untargeted attack. The second
variation is of interest since the losses L3 and L4 are in direct conflict with L2 (and L1), possibly
hindering optimization.

Table 6 shows detection rates for the combined detector using criteria C1 and C2 against these attack
variations on ResNet-101. First, as expected, we see that the small radius attack (τ = 0.03 at the
top two rows) is substantially easier to detect than the one with τ = 0.1. When evaluated against
the attack that only targets C1 (middle two rows) and against untargeted attack (last two rows), our
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method remains effective and the worst-case detection rate is higher than that for the targeted attack
in section 5.2. These experimental observations suggest that the white-box adversary we evaluate
against in section 5.2 could be the optimal first-order attack algorithm against our detector and
confirms that our evaluation protocol is sound.

A.3 Backpropagation through the gradients

Table 7: Detection rates of our combined
method against white-box adversaries us-
ing backpropagation through the gradi-
ents on ImageNet.

LR FPR PGD CW
0.01 0.2 0.536 0.587
0.03 0.2 0.652 0.794
0.10 0.2 0.710 0.817
0.01 0.1 0.288 0.337
0.03 0.1 0.411 0.593
0.10 0.1 0.493 0.692

In the section 4.3, we obtain the gradients of L3 and L4

for white-box attack using Backward Pass Differentiable
Approximation (BPDA) [1]. Here, we investigate back-
propagation through the gradients to obtain the gradients,
an approach commonly used in second order methods [15].
The results on ImageNet are reported in Table 7. The de-
tection rates are similar to those of using BPDA (Table 1,
combined) in section 5.2 except that CW attack at LR =
0.01 becomes stronger. The attack time is significantly
longer: on average 31 sec/image compared to 14 sec/image
by BPDA.

A.4 Comparison to adversarial training

We compare to adversarial training [33], which aims to directly learn a target model that is robust
to adversaries. We note that [33] reports recognition accuracy rather than detection rates. Besides,
our results (on CIFAR) are based on an L∞ perturbation norm bound of 0.1, which is much larger
than the bound of 0.03 used in [33] and makes detection much harder. To better compare against
their work, we examine with the adversarially trained model that has a 87.3% accuracy on natural
images while the undefended model has 95.3%, which is close to the 10% FPR setting we use in our
experiments. We also evaluate our detector against the L∞-bound of 0.03. Under the strongest PGD
attack, our approach has a detection rate of 84.0% (50-step PGD, LR = 0.1) while the adversarially
trained model has a recognition accuracy of 45.8% (20-step PGD) on adversarial images.

A.5 Boundary attack
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Figure 5: Detection rates against boundary attack
at different steps of attacks on ImageNet.

To evaluate our detector against gradient-free
adversaries, we experiment with boundary at-
tack [4] for attacking the target model and de-
tection mechanism as a black box. We restrict
the mean squared error (MSE) of the adversar-
ial perturbation to be less than 0.01, which is
comparable to an L∞ bound of 0.1. We evalu-
ate the attack in three scenarios: attacking cri-
terion C1 alone, criteria C1+C2t, and criteria
C1+C2t+C2u. Here a successful adversary is an
image which not only fools the detector but also
has MSE less than 0.01; otherwise, we consider
this adversary to be detected. We plot the de-
tection rate curve on ImageNet in Figure 5. We
observe a similar trend against gradient-based adversaries ( Table 1 of the main text): the criterion
C1 alone is insufficient for detection, while adding the criterion C2 greatly increase the difficulty of
attack. When the detection criteria is C1+C2t+C2u, the mutual exclusivity of these criteria prohibits
optimization progress of the boundary attack.

B Implementation Details

B.1 Hyperparameter settings for detector

Our detection algorithm requires the following hyperparameters:
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Criterion 1. We set the variance parameter σ such that predictions on real images are minimally
affected after random perturbation. This quantity is set to σ = 0.1 on ImageNet and σ = 0.01 on
CIFAR-10.

Criterion 2. Hyperparameters for criterion C2t (number of steps to a chosen target class) consist of
all hyperparameters in the attack algorithm A, including step size, maximum number of steps, and
perceptibility threshold τA. On ImageNet, we chose a step size of 0.005, allow a maximum of 200
steps, and set τA = 0.03. This setting guarantees that most real images will be successfully perturbed
to cross the decision boundary. The hyperparameters for C2u are different due to over-saturation of
predicted probabilities. Thus, we chose a step size of 0.2 and allow a maximum of 1,000 steps. The
perceptibility threshold remains at τA = 0.03. Hyperparameters for Inception-v3 and for VGG-19 on
CIFAR-10 are set similarly but are adapted to the particular model and dataset.

B.2 Details for white-box attack against baselines

In this section we give details for the white-box attack used against Feature Squeezing and Artifacts.

Feature Squeezing applies three different transformations — median smoothing, bit quantization,
and non-local mean — to the input and measures the L1 distance in predicted probability before
and after transformation. We modify the white-box attack to bypass this defense as follows. Let
F1, F2, F3 denote the three transformations. The modified (PGD) adversarial loss is defined as

L?FS = cross-entropy(h(x′), yt) +

3∑
i=1

[‖h(x′)− h(Fi(x
′))‖1] .

Gradients of non-differentiable transformations, namely bit quantization and non-local mean, are
approximated using BPDA [1].

Artifacts uses empirical measures of density in feature space and model uncertainty estimated using
dropout to characterize adversarial examples. To bypass this defense, we can alter the adversarial
loss to maximize density and minimize uncertainty while causing misclassification.

Density is computed via kernel density estimation in feature space with a Gaussian kernel. This
quantity, say φ(x), is differentiable and can be directly optimized via gradient descent. On the
other hand, minimizing uncertainty can be achieved by computing the empirical variance via Monte
Carlo sampling. More specifically, let hb be the classification model with dropout mask b ∼
Bernoulli(0.5)m, where m is the number of model parameters. Each iteration, we sample N = 50
dropout masks bi and compute pi = hbi

(x) for i = 1, . . . , N . Let µ(x) and Σ(x) be the empirical
mean and variance of the sample of probability vectors p1, . . . ,pN . We can then minimize the trace
of Σ(x) to reduce variance.

The complete adversarial loss is given by

L?Art = cross-entropy(h(x′), yt)− φ(x′) + tr(Σ(x′)).
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