
A Additional Experiments

A.1 Norm Ablation

We compare using the `∞-norm to minimize the feasibility vector with using the `1-norm. As shown
in Figure 7, `∞-norm performs better, which matches the intuition it will more consistently push all
terms in the feasibility vector towards zero.

1
Norm

0.0

0.5

1.0

1.5

2.0

Fi
na

l d
ist

an
ce

 to
 G

oa
l

2D Navigation

Figure 7: We compare using the `∞-norm to the `1-norm. We see that the `∞-norm outperforms the `1-norm.

A.2 Optimizer Ablation

We compare the performance of different optimizers on the 2D Navigation tasks. As shown in
Figure 8, CEM consistently outperforms other optimizers both in terms of the optimizer loss, and the
corresponding final performance on the task.

CEM Adam RMSProp SGD L-BFGS
Optimizer

0

1

2

3

4

5

6

7

Fi
na

l O
pt

im
ize

r L
os

s

2D Navigation

CEM Adam RMSProp SGD L-BFGS
Optimizer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fi
na

l d
ist

an
ce

 to
 G

oa
l

2D Navigation

Figure 8: We compare CEM to different optimizers L-BFGS, Adam, RMSProp, and gradient descent (SGD)
that have had their learning rates tuned. (Left) The optimizer loss, where CEM outperforms the other methods.
(Right) The performance of the policy after using the plan chosen by each optimizer. We see that the lower
optimizer loss of CEM corresponds to a better performance.

A.3 Likelihood Penalty Ablation

We examine the effect of the additional log-likelihood term (under the VAE prior) in Equation 3.
In particular, we vary the weighting hyperparameter λ for the 2D Navigation and Push and Reach
environments. For each environment, we note the final performance of the RL algorithm, in addition
to the log-likelihood values and V values that compose equation 3. See Figure 9 for detailed results.
We see that there is a trade-off between achieving a high likelihood under the prior and high V values.
As we increase the weighting term λ the likelihood values increase while the V values decrease.
There is an optimal threshold at which RL performance is maximized. For 2D Navigation, we note
this value to be λ = 0.01 and for Push and Reach any range of values between 0.0001 and 0.01. For
Ant Navigation, we independently verified an optimal choice of λ = 0.1.

13

0.0 1e-2 1e-1 1e0
Weight

0.0

0.2

0.4

0.6

0.8

1.0

Fi
na

l d
ist

an
ce

 to
 G

oa
l

2D Navigation

0.0 1e-2 1e-1 1e0
Weight

140

120

100

80

60

40

20

0

lo
g

pr
ob

 o
f p

rio
r

2D Navigation

0.0 1e-2 1e-1 1e0
Weight

0.8

0.6

0.4

0.2

0.0

V
va

lu
e

2D Navigation

0.0 1e-4 1e-3 1e-2 1e-1
Weight

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fi
na

l d
ist

an
ce

 to
 p

uc
k

Go
al

 (c
m

)

Push and Reach

0.0 1e-4 1e-3 1e-2 1e-1
Weight

120

100

80

60

40

20

0

lo
g

pr
ob

 o
f p

rio
r

Push and Reach

0.0 1e-4 1e-3 1e-2 1e-1
Weight

0.08

0.06

0.04

0.02

0.00

V
va

lu
e

Push and Reach

Figure 9: Examining the effect of the weight λ in Equation 3. We note the final RL performance (left),
log-likelihood under the VAE prior (middle), and V values (right). As we increase λ, the log-likelihood values
increase while the V values decrease. For 2D navigation (top), we note the optimal value to be λ = 0.01 and for
Push and Reach (bottom) any range of values between 0.0001 and 0.01.

B Environment Details

B.1 2D Navigation

The agent must learn to navigate around a square room with a U-shaped wall in the center. See
Figure 3 for a visualization of the environment. The dimensions of the space are 8× 8 units, the walls
are 1 unit thick, and the agent is a circle with radius 0.5 units. The observation is a 48 × 48 RGB
image and the agent specifies a 2D velocity as the action. At each timestep, the agent can attempt to
move up to 0.15 units in either dimension. The distance for Equation 1 is the distance between the
current 2D position and the target position. We note that a greedy policy can easily lower the final
distance by moving directly towards the goal. To measure whether or not the final policy performs
more non-greedy behavior, we define success as whether or not the policy ends below the horizontal
wall and within a diameter of the intended goal. Complete results are provided in Figure 10. Plots
are averaged across 5 seeds, with the exception of PETS, which uses 3 seeds due to computational
constraints. For image based baselines (all except PETS), we first train VAEs and select the top 5
seeds based on VAE loss. We proceed to training our RL algorithm with one seed per selected VAE.
Note that for the ablation study in Figure 6, we select the top VAE seed based on VAE loss, and train
our RL algorithm with 5 seeds.

0 100 200 300 400 500
Number of Environment Steps Total (x1000)

0

1

2

3

4

5

6

Fi
na

l d
ist

an
ce

 to
 G

oa
l

2D Navigation
LEAP (ours)
TDM-25
TDM-100
RIG
HER
PETS, state

0 100 200 300 400 500
Number of Environment Steps Total (x1000)

0.0

0.2

0.4

0.6

0.8

1.0

Fi
na

l s
uc

ce
ss

2D Navigation

Figure 10: Complete 2D Navigation Results

B.2 Push and Reach

This task is based on the environment released by Nair et al. [40]. An additional invisible wall around
the goal space of the puck has been added to prevent the puck from moving to unreachable hand

14

locations. In contrast to prior work evaluated on goal-conditioned pushing tasks [2, 47, 8], this task is
solved using images as the observations and cannot be solved with a simple, unidirectional pushing
behavior [40, 49]. Specifically, the observation is an 84× 84 RGB image showing a top-down view
of the scene. The robot is operated via 2D position control, where each action is limited to moving
the robot end effector 2 cm in either dimension. The distance for Equation 1 is the Euclidean distance
between (1) the goal and (2) the XY-position of the puck concatenated with the XY-position of the
hand. We modify the task so as to require the agent to perform temporally extended planning. First,
we increase the workspace of the environment to 40 cm × 20 cm. Second, we evaluate the final
policy on 5 hard scenarios which require temporally extended behavior: rather than simply executing
a simple, unidirectional pushing behavior, the robot must reach across the table to a corner where
the puck is located, move its arm around the puck, and then pull the puck to a different corner of
the table, as shown in Figure 3. A trajectory is successful if the final puck position is within 6 cm
of the target position. For context, the puck has a radius of 4 cm. Complete results are provided in
Figure 11. Plots are averaged across 8 seeds, with the exception of PETS, which uses 5 seeds due
to computational constraints. For image based baselines (all except PETS), we first train VAEs and
select the top 8 seeds based on VAE loss. We proceed to training our RL algorithm with one seed per
selected VAE.

0 250 500 750 1000 1250 1500 1750 2000
Number of Environment Steps Total (x1000)

0

5

10

15

20

25

Fi
na

l d
ist

an
ce

 to
 h

an
d

Go
al

 (c
m

)

Push and Reach

LEAP (ours)
TDM-25
TDM-100
RIG
HER
PETS, state

0 250 500 750 1000 1250 1500 1750 2000
Number of Environment Steps Total (x1000)

0

5

10

15

20

25

30

35

Fi
na

l d
ist

an
ce

 to
 p

uc
k

Go
al

 (c
m

)

Push and Reach

0 250 500 750 1000 1250 1500 1750 2000
Number of Environment Steps Total (x1000)

0.0

0.2

0.4

0.6

0.8

1.0

Fi
na

l p
uc

k
su

cc
es

s

Push and Reach

Figure 11: Complete Push and Reach Results

B.3 Ant Navigation

The ant must learn to navigate around a narrow rectangular room with a long wall in the center. See
Figure 5 for a visualization of the environment. The dimensions of the space are 7.5 × 18 units,
the wall is 1.5 units thick, and the ant has a radius of roughly 0.75 units. The state includes the
position, orientation (in Euler angles rather than quaternions), joint angles, and velocities of the
aforementioned components. The gear ratio for the ant is reduced to 10 units, to prevent the ant
from flipping over. The distance for Equation 1 is the distance between the current 2D position and
the target position, in addition to the differences in orientation of the ant with respect to the target
orientation. We define success as whether or not the ant is within 1.5 units of the goal position.
Complete results are provided in Figure 12. Plots are averaged across 15 seeds, with the exception
of HIRO, which uses 5 seeds due to computational constraints. For LEAP, we first train VAEs and
select the top 5 seeds based on VAE loss. We proceed to training our RL algorithm with three seed
per selected VAE. Unlike the image-based experiments, the VAE is not used for training the RL
algorithm. It is only used during test time for planning subgoals. The VAE is trained on a dataset in
which the ant is in various valid positions of the maze, with a fixed orientation and fixed joint angles.

0 200 400 600 800 1000
Number of Environment Steps Total (x1000)

0

2

4

6

8

10

12

Fi
na

l d
ist

an
ce

 to
 G

oa
l

Ant Navigation
LEAP (ours)
TDM-50
TDM-600
HER+
HER
HIRO

0 200 400 600 800 1000
Number of Environment Steps Total (x1000)

0.0

0.2

0.4

0.6

0.8

1.0

Fi
na

l s
uc

ce
ss

Ant Navigation

Figure 12: Complete Ant Navigation Results

15

Hyper-parameter Value
Q network hidden sizes 400, 300

Policy network hidden sizes 400, 300
Q network and policy activation ReLU

Q network output activation None
Policy network output activation tanh

Exploration noise ε-greedy, ε = .1 (2D Navigation)
OU-process θ = .3, σ = .3 (Push and Reach and Ant Navigation)

training batches per time step 1

Batch size 128 (2D Navigation)
2048 (Push and Reach and Ant Navigation)

Optimizer Adam
Learning rate (all networks) 0.001

Target update rate τ 0.005
Replay buffer size 1000000

Table 1: TD3 [19] hyperparameters.

C Implementation Details

This section contains descriptions and hyperparameters of the experiment implementations.

C.1 Goal-conditioned reinforcement learning

Both the Q network and policy concatenate all inputs and pass them through a feed-forward network.
For RIG, the Q network outputs a scalar corresponding to the infinite discounted sum of rewards.
For TDMs, the Q network outputs a vector corresponding to the negative distance between the final
state and goal along each of the state dimensions. We train our networks using the twin delayed deep
deterministic policy gradient algorithm [19] (TD3). Hyperparameter details are provided in Table 1.
When sampling minibatches from the replay buffer, we sample transitions, goals, and times (for
TDMs only). For TDM, RIG, and HER+, we relabel the goals in our minibatches in the following
manner:

• 20%: original goals from collected trajectories

• 40%: randomly sampled states from the replay buffer

• 40%: future states along the same collected trajectory, as dictated by hindsight experience
replay [2] (HER).

We note that in the Ant Navigation task, we split sampling from the replay buffer to 20% from the
replay buffer and 20% oracle goals from the environment.

For HER, we relabel the goals in our minibatches in the following manner:

• 20%: original goals from collected trajectories

• 80%: future states along the same collected trajectory

C.2 Latent space optimization

In this subsection, we describe how we use the cross entropy method (CEM) [11] to optimize
equation 3. Given an optimization problem over K subgoals, with each subgoal represented as an
r-dimensional latent vector, the CEM optimizer is initialized with a standard multivariate Gaussian
distributionN (0rK , IrK), where 0rK is a rK-dimensional vector of zeros, and IrK is the rK × rK
identity matrix. We sample different subgoal sequences from our distribution and evaluate the value
of each sample using Equation 3. We then fit a diagonal multivariate Gaussian distribution to the
top 5% of samples. We repeat this process for 15 iterations, and at each iteration we sample 1000
subgoal sequences from the fitted Gaussian. For the Ant Navigation task which involves optimizing
over significantly higher number of subgoals, we sample 10000 subgoal sequences and run for 50
iterations instead. In addition, we found it beneficial to filter the top 25% of samples for the first half

16

of iterations, and then filter the top 1% in the latter half. For the weight on the log-likelihood of the
latents, we use λ = 0.1 for 2D Navigation and Ant Navigation tasks, and λ = 0.001 for Push and
Reach.

C.3 Variational auto-encoder

We use separate VAE architectures for 2D Navigation (48× 48 image) and Push and Reach (84× 84
image). For 2D Navigation, encoder kernel sizes of [5, 3, 3], encoder strides of [3, 2, 2], [16, 32, 64]
encoder channels, decoder kernel sizes of [3, 3, 6], decoder strides of [2, 2, 3], and [64, 32, 16] decoder
channels are used. For Push and Reach, we use encoder kernel sizes of [5, 5, 5], encoder strides of
[3, 3, 3], [16, 16, 32] encoder channels, decoder kernel sizes of [5, 6, 6], decoder strides of [3, 3, 3],
and [32, 32, 16] decoder channels. Both architectures have a representation size of 16 and ReLU
activation. We trained the 2D Navigation VAEs with binary cross-entropy loss, and the Push and
Reach VAEs with mean squared error loss.

For Ant Navigation, our VAE is a generative model for the full state of the ant, rather than images.
Our encoder and decoder are multilayer perceptrons with hidden sizes of [64, 128, 64] and ReLU
activation. We used a representation size of 8, and trained the VAE with mean squared error loss.

17

	Introduction
	Related Work
	Background
	Planning with Goal-Conditioned Policies
	Planning over Subgoals
	Optimizing over Images
	Goal-Conditioned Reinforcement Learning
	Summary of Latent Embeddings for Abstracted Planning

	Experiments
	Vision-based Comparison and Results
	Planning in Non-Vision-based Environments with Unknown State Spaces
	Ablation Study

	Discussion
	Acknowledgments
	Additional Experiments
	Norm Ablation
	Optimizer Ablation
	Likelihood Penalty Ablation

	Environment Details
	2D Navigation
	Push and Reach
	Ant Navigation

	Implementation Details
	Goal-conditioned reinforcement learning
	Latent space optimization
	Variational auto-encoder

